NIVI5 GEOSPATIAL

2023

Southeast Alaska Landslides LIDAR PROCESSING REPORT

Submitted: May 10, 2023

Project ID: 300037 Work Unit: 300221

Prepared for:

Prepared by: NIV5 GEOSPATIAL

National Map Help Desk: tnm_help@usgs.gov

Contents

1. Summary / Scope	1
1.1. Summary	1
1.2. Scope	1
1.3. Coverage	1
1.4. Duration	1
1.5. Issues	1
2. Planning / Equipment	5
2.1. Flight Planning	5
2.2. Lidar Sensor	5
2.3. Aircraft	7
2.4. Time Period	8
3. Processing Summary	9
3.1. Flight Logs	9
3.2. Lidar Processing	10
3.3. LAS Classification Scheme	11
3.4. Classified LAS Processing	12
3.5. Hydro-Flattened Breakline Processing	12
3.6. Hydro-Flattened Raster DEM Processing	13
3.7. Swath Separation Raster Processing	13
3.8. Maximum Surface Height Raster Processing	14
4. Project Coverage Verification	17
5. Geometric Accuracy	20
5.1. Horizontal Accuracy	20
5.2. Relative Vertical Accuracy	21
Project Report Appendicesx	xii
Appendix Axx	xiii
Flight Logsxx	xiii

List of Figures

Figure 1. Work Unit Boundary	3
Figure 2. Work Unit Boundary	4
Figure 3. Riegl VQ1560ii Lidar Sensor	6
Figure 4. NV5 Geospatial's Aircraft	7
Figure 5. Lidar Tile Layout	15
Figure 6. Lidar Tile Layout	16
Figure 7. Lidar Coverage	
Figure 8. Lidar Coverage	

List of Tables

Table 1. Originally Planned Lidar Specifications	1
Table 2. Lidar System Specifications	6
Table 3. LAS Classifications	11

List of Appendices

Appendix A: Flight Logs

1. Summary / Scope

1.1. Summary

This report contains a summary of the Southeast Alaska Landslides, Work Unit 300221 lidar acquisition task order, issued by USGS under their Contract 140G0221D0012 on September 1, 2022. The task order yielded a work unit area covering approximately 247 square miles over Alaska at Quality Level 1. The intent of this document is only to provide specific validation information for the data acquisition/collection, processing, and production of deliverables completed as specified in the task order.

1.2. Scope

Aerial topographic lidar was acquired using state of the art technology along with the necessary surveyed ground control points (GCPs) and airborne GPS and inertial navigation systems. The aerial data collection was designed with the following specifications listed in Table 1 below.

Table 1. Originally Planned Lidar Specifications

Average Point Density	Flight Altitude (AGL)	Field of View	Minimum Side Overlap	RMSEz
8 pts / m2	2202 m	58.5°	55%	≤ 10 cm

1.3. Coverage

The work unit boundary covers approximately 247 square miles over Alaska. Work unit extents are shown in Figures 1 and 2.

1.4. Duration

Lidar data was acquired from September 10, 2022 to September 13, 2022 in 3 total lifts. See "Section: 2.4. Time Period" for more details.

1.5. Issues

Snow is present in some areas. There are two empty LAS tiles that are within water features: 938409 and 957410.

Southeast Alaska Landslides Work Unit 300221 Projected Coordinate System: State Plane AK Zone 1 Horizontal Datum: NAD83 (2011) Vertical Datum: NAVD88 (GEOID 12b) Units: Meters		
Lidar Point Cloud	Classified Point Cloud in .LAS 1.4 format	
Rasters	 0.5-meter Hydro-flattened Bare Earth Digital Elevation Model (DEM) in GeoTIFF format 1-meter Maximum Surface Height Raster in GeoTIFF format 1-meter Swath Seperation Images in GeoTIFF format 	
Vectors	 Shapefiles (*.shp) Project Boundary Lidar Tile Index Geodatabase (*.gdb) Continuous Hydro-flattened Breaklines 	
Reports	 Reports in PDF format Focus on Delivery Processing Report 	
Metadata	 XML Files (*.xml) Breaklines Classified Point Cloud DEM 	

Southeast Alaska Landslides Work Unit 300221 Boundary

Figure 1. Work Unit Boundary

Page 3 of 21

Southeast Alaska Landslides Work Unit 300221 Boundary

Figure 2. Work Unit Boundary

Page 4 of 21

2. Planning / Equipment

2.1. Flight Planning

Flight planning was based on the unique project requirements and characteristics of the project site. The basis of planning included: required accuracies, type of development, amount / type of vegetation within project area, required data posting, and potential altitude restrictions for flights in project vicinity.

Detailed project flight planning calculations were performed for the project using RiPARAMETER planning software.

2.2. Lidar Sensor

NV5 Geospatial utilized Riegl VQ1560ii lidar sensors (Figure 3), serial number(s) SN4046, for data acquisition.

The Riegl 1560ii system is a dual channel waveform processing airborne scanning system. It has a laser pulse repetition rate of up to 4 MHz resulting in up to 2.66 million measurements per second. The system utilizes a Multi-Pulse in the Air option (MPIA) and an integrated IMU/GNSS unit.

A brief summary of the aerial acquisition parameters for the project are shown in the lidar System Specifications in Table 2.

		Riegl VQ1560ii (SN4046)
Terrain and	Flying Height	2500 m
Aircraft Scanner	Recommended Ground Speed	146 kts
	Field of View	58.5°
Scanner	Scan Rate Setting Used	2 x 130 lps
Laser	Laser Pulse Rate Used 2 x 757 kHz	
	Multi Pulse in Air Mode	YES
C	Full Swath Width	2801 m
Coverage	Line Spacing	1261 m
Point Spacing	Average Point Spacing	0.35 m
and Density	Average Point Density	8 pts / m²

Table 2. Lidar System Specifications

Figure 3. Riegl VQ1560ii Lidar Sensor

2.3. Aircraft

All flights for the project were accomplished through the use of customized aircraft. Plane type and tail numbers are listed below.

Lidar Collection Planes

• Cessna Caravan (single-turboprop), Tail Number(s): N840JA

These aircraft provided an ideal, stable aerial base for lidar acquisition. These aerial platforms have relatively fast cruise speeds, which are beneficial for project mobilization / demobilization while maintaining relatively slow stall speeds, proving ideal for collection of high-density, consistent data posting using a state-of-the-art lidar system. NV5 Geospatial's operating aircraft can be seen in Figure 4 below.

Figure 4. NV5 Geospatial's Aircraft

Southeast Alaska Landslides Lidar Project - Work Unit 300221

Page 7 of 21

2.4. Time Period

Project specific flights were conducted between September 10, 2022 and September 13, 2022. Three aircraft lifts were completed. Accomplished lifts are listed below.

Lift	Start UTC	End UTC
09102022A (SN4046,N840JA)	9/11/2022 12:23:05 AM	9/11/2022 3:08:52 AM
09132022A (SN4046,N840JA)	9/13/2022 1:53:42 AM	9/13/2022 3:28:26 AM
09132022B (SN4046,N840JA)	9/13/2022 5:02:50 PM	9/13/2022 7:42:59 PM

3. Processing Summary

3.1. Flight Logs

Flight logs were completed by Lidar sensor technicians for each mission during acquisition. These logs depict a variety of information, including:

- Job / Project #
- Flight Date / Lift Number
- FOV (Field of View)
- Scan Rate (HZ)
- Pulse Rate Frequency (Hz)
- Ground Speed
- Altitude
- Base Station
- PDOP avoidance times
- Flight Line #
- Flight Line Start and Stop Times
- Flight Line Altitude (AMSL)
- Heading
- Speed
- Returns
- Crab

Notes: (Visibility, winds, ride, weather, temperature, dew point, pressure, etc). Project specific flight logs for each sortie are available in Appendix A.

3.2. Lidar Processing

Applanix + POSPac software was used for post-processing of airborne GPS and inertial data (IMU), which is critical to the positioning and orientation of the lidar sensor during all flights. Applanix POSPac combines aircraft raw trajectory data with stationary GPS base station data yielding a "Smoothed Best Estimate Trajectory" (SBET) necessary for additional post processing software to develop the resulting geo-referenced point cloud from the lidar missions.

During the sensor trajectory processing (combining GPS & IMU datasets) certain statistical graphs and tables are generated within the Applanix POSPac processing environment which are commonly used as indicators of processing stability and accuracy. This data for analysis include: max horizontal / vertical GPS variance, separation plot, altitude plot, PDOP plot, base station baseline length, processing mode, number of satellite vehicles, and mission trajectory.

Point clouds in flightline swath format were created using the RiPROCESS software. The generated point cloud is the mathematical three dimensional composite of all returns from all laser pulses as determined from the aerial mission. Each flightline swath point cloud was calibrated using Strip Align software that corrects systematic geometric errors and improves the relative and absolute accuracy of the flightline swath point cloud swaths were imported into GeoCue distributive processing software and the imported data was then tiled so further processing could take place in TerraScan software. Using TerraScan, the vertical accuracy of the surveyed ground control was tested and any vertical bias was removed from the data. TerraScan and TerraModeler software packages were then used for automated data classification and manual cleanup. The data were manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler.

DEMs and Intensity Images are then generated using proprietary software. In the bare earth surface model, above-ground features are excluded from the data set. Global Mapper is used as a final check of the bare earth dataset.

Software	Version
Applanix + POSPac	8.6
RIPROCESS	1.8.6
GeoCue	2020.1.22.1
Global Mapper	19.1;20.1
Microstation Connect	10.16.02.34
TerraModeler	21.008
TerraScan	21.016
StripAlign	2.21

Finally, proprietary software is used to perform statistical analysis of the LAS files.

3.3. LAS Classification Scheme

The classification classes are determined by Lidar Base Specifications 2022, Revision A and are an industry standard for the classification of lidar point clouds. All data starts the process as Class 1 (Unclassified), and then through automated classification routines, the classifications are determined using TerraScan macro processing.

The classes used in the dataset are as follows and have the following descriptions:

	Classification Name	Description
1	Processed, but Unclassified	Laser returns that are not included in the bare earth class, or any other project classification
2	Bare earth	Laser returns that are determined to be bare earth using automated and manual cleaning algorithms
7	Low Noise	Laser returns that are often associated with scattering from reflective surfaces, or artificial points below the bare earth surface
9	Water	Laser returns that are found inside of hydro features
11	Road Surface	Bare earth points that fall on roads
17	Bridge Deck	Laser returns falling on bridge decks
18	High Noise	Laser returns that are often associated with birds or artificial points above the bare earth surface
20	Ignored Ground	Bare earth points that fall within the given threshold of a collected hydro feature.
21	Snow	Bare earth points that fall on snow, where identifiable

Table 3. LAS Classifications

3.4. Classified LAS Processing

The bare earth surface is then manually reviewed to ensure correct classification on the Class 2 (Ground) points. After the bare- earth surface is finalized; it is then used to generate all hydro-breaklines through heads-up digitization.

All ground (ASPRS Class 2) lidar data inside of the Lake Pond and Double Line Drain hydro flattening breaklines were then classified to water (ASPRS Class 9) using proprietary tools. A buffer of 1.5 feet/0.5 meter was also used around each hydro flattened feature to classify these ground (ASPRS Class 2) points to Ignored ground (ASPRS Class 20). All Lake Pond Island and Double Line Drain Island features were checked to ensure that the ground (ASPRS Class 2) points were reclassified to the correct classification after the automated classification was completed.

Any noise that was identified either through manual review or automated routines was classified to the appropriate class (ASPRS Class 7 and/or ASPRS Class 18) followed by flagging with the withheld bit.

All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Global Mapper is used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for all point cloud data. NV5 Geospatial's proprietary software was used to perform final statistical analysis of the classes in the LAS files, on a per tile level to verify final classification metrics and full LAS header information.

3.5. Hydro-Flattened Breakline Processing

Using heads-up digitization, all Lake-Ponds, Double Line Drains, and Islands are manually collected that are within the project size specification. This includes Lake-Ponds greater than 2 acres in size, Double Line Drains with greater than a 100 foot nominal width, and Islands greater than 1 acre in size within a collected hydro feature. Lidar intensity imagery and bare-earth surface models are used to ensure appropriate and complete collection of these features.

Elevation values are assigned to all collected hydro features via NV5 Geospatial's proprietary software. This software sets Lake-Ponds to an appropriate, single elevation to allow for the generation of hydro-flattened digital elevation models (DEM). Double Line Drain elevations are assigned based on lidar elevations and surrounding terrain feature to ensure all breaklines match the lidar within acceptable tolerances. Some deviation is expected between breakline and lidar elevations due to monotonicity, connectivity, and flattening rules that are enforced on the breaklines. Once complete, horizontal placement, and vertical variances are reviewed, all breaklines are evaluated for topological consistency and data integrity using a combination of proprietary tools and manual review of hydro-flattened DEMs.

Breaklines are combined into one seamless shapefile, clipped to the project boundary, and imported into an Esri file geodatabase for delivery.

3.6. Hydro-Flattened Raster DEM Processing

Hydro-Flattened DEMs (topographic) represent a lidar-derived product illustrating the grounded terrain and associated breaklines (as described above) in raster form. NV5 Geospatial's proprietary software was used to take all input sources (bare earth lidar points, bridge and hydro breaklines, etc.) and create a Triangulated Irregular Network (TIN) on a tile-by-tile basis. Data extending past the tile edge is incorporated in this process so that proper triangulation can occur. From the TIN, linear interpolation is used to calculate the cell values for the raster product. The raster product is then clipped back to the tile edge so that no overlapping cells remain across the project area. A 32-bit floating point GeoTIFF DEM was generated for each tile with a pixel size of 0.5-meter. NV5 Geospatial's proprietary software was used to write appropriate horizontal and vertical projection information as well as applicable header values into the file during product generation. Each DEM is reviewed in Global Mapper to check for any surface anomalies and to ensure a seamless dataset. NV5 Geospatial ensures there are no void or no-data values (-999999) in each derived DEM. This is achieved by using propriety software checking all cell values that fall within the project boundary. NV5 Geospatial uses a proprietary tool called FOCUS on Delivery to check all formatting requirements of the DEMs against what is required before final delivery.

3.7. Swath Separation Raster Processing

Swath Separation Images are rasters that represent the interswath alignment between flight lines and provide a qualitative evaluation of the positional quality of the point cloud. NV5 Geospatial proprietary software generated 1-meter raster images in GeoTIFF format using last returns, excluding points flagged with the withheld bit, and using a point-in-cell algorithm. Images are generated with a 75% intensity opacity and (4) absolute 8-cm intervals, see below for interval coloring. Intensity images are linearly scaled to a value range specific to the project area to standardize the images and reduce differences between individual tiles. Appropriate horizontal projection information as well as applicable header values are written to the file during product generation. NV5 Geospatial uses a proprietary tool called FOCUS on Delivery to check all formatting requirements of the images against what is required before final delivery.

0-8cm
8-16cm
16-24cm
>24cm

3.8. Maximum Surface Height Raster Processing

Maximum Surface Height rasters (topographic) represent a lidar-derived product illustrating natural and builtup features. NV5 Geospatial's proprietary software was used to take all first-return classified lidar points, excluding those flagged with a withheld bit, and create a raster on a tile-by-tile basis. Data extending past the tile edge is incorporated in this process so that proper gridding can occur. The raster product is then clipped back to the tile edge so that no overlapping cells remain across the project area. A 32-bit floating point GeoTIFF was generated for each tile with a pixel size of 1-meter. NV5 Geospatial's proprietary software was used to write appropriate horizontal and vertical projection information as well as applicable header values into the file during product generation. Each maximum surface height raster is reviewed in Global Mapper to check for any anomalies and to ensure a seamless dataset. NV5 Geospatial uses a proprietary tool called FOCUS on Delivery to check all formatting requirements of the DEMs against what is required before final delivery.

Southeast Alaska Landslides Work Unit 300221 Tile Layout

Figure 5. Lidar Tile Layout

Page 15 of 21

Southeast Alaska Landslides Work Unit 300221 Tile Layout

Figure 6. Lidar Tile Layout

Southeast Alaska Landslides Lidar Project - Work Unit 300221

Page 16 of 21

4. Project Coverage Verification

A proprietary tool (FOCUS on Flight) produces grid-based polygons of each flightline, depicting exactly where lidar points exist. These swath polygons are reviewed against the project boundary to verify adequate project coverage. Please refer to Figures 7 and 8.

Southeast Alaska Landslides Work Unit 300221 Lidar Coverage

Figure 7. Lidar Coverage

Southeast Alaska Landslides Lidar Project - Work Unit 300221

Page 18 of 21

Southeast Alaska Landslides Work Unit 300221 Lidar Coverage

Figure 8. Lidar Coverage

Southeast Alaska Landslides Lidar Project - Work Unit 300221

Page 19 of 21

5. Geometric Accuracy

5.1. Horizontal Accuracy

Lidar horizontal accuracy is a function of Global Navigation Satellite System (GNSS) derived positional error, flying altitude, and INS derived attitude error. The obtained RMSE, value is multiplied by a conversion factor of 1.7308 to yield the horizontal component of the National Standards for Spatial Data Accuracy (NSSDA) reporting standard where a theoretical point will fall within the obtained radius 95% of the time. Based on a flying altitude of 2085 meters, an IMU error of 0.002 decimal degrees, and a GNSS positional error of 0.019 meters, this project was compiled to meet 0.23 meter horizontal accuracy at the 95% confidence level. A summary is shown below.

Horizontal Accuracy		
RMSE _r	0.06 ft	
	0.02 m	
ACC _r	0.11 ft	
	0.03 m	

5.2. Relative Vertical Accuracy

Relative vertical accuracy refers to the internal consistency of the data set as a whole: the ability to place an object in the same location given multiple flight lines, GPS conditions, and aircraft attitudes. When the lidar system is well calibrated, the swath-to-swath vertical divergence is low (<0.10 meters). The relative vertical accuracy was computed by comparing the ground surface model of each individual flight line with its neighbors in overlapping regions. The average (mean) line to line relative vertical accuracy for the Southeast Alaska Landslides project was 0.074 feet (0.023 meters). A summary is shown below.

Relative Vertical Accuracy			
Sample	54 flight line surfaces		
Average	0.074 ft		
	0.023 m		
Median	0.075 ft		
	0.023 m		
RMSE	0.077 ft		
	0.023 m		
Standard Deviation (1σ)	0.010 ft		
	0.003 m		
1.00-	0.019 ft		
1.960	0.006 m		

Total Compared Points (n = 1,609,120,056)

Project Report Appendices

The following section contains the appendices as listed in

the Southeast Alaska Landslides Lidar Project Report.

Appendix A

Flight Logs

Southeast Alaska Landslides Lidar Project - Work Unit 300221 Pa

Page xxiii of xxiii

May 10, 2023