

Dewberry & Davis LLC 1000 N. Ashley Drive, Suite 801 Tampa, FL 33602-3718 813.225.1325 813.225.1385 fax www.dewberry.com

Eastern Shore Virginia QL2 LiDAR BAA

Report Produced for U.S. Geological Survey

USGS Contract: G10PC00013

Task Order: G15PD00284

Report Date: 02/11/2016

SUBMITTED BY:

Dewberry 1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

SUBMITTED TO: U.S. Geological Survey 1400 Independence Road Rolla, MO 65401 573.308.3810

Table of Contents

Executive Summary
The Project Team
Survey Area
Date of Survey
Coordinate Reference System
LiDAR Vertical Accuracy
Project Deliverables
Project Tiling Footprint
LiDAR Acquisition Report
LiDAR Acquisition Details7
LiDAR System parameters7
Acquisition Status Report and Flightlines8
LiDAR Control
Airborn GPS Kinematic10
Generation and Calibration of Laser Points (raw data)10
Boresight and Relative accuracy11
Preliminary Vertical Accuracy Assessment12
LiDAR Processing & Qualitative Assessment
Initial Processing13
Final Swath Vertical Accuracy Assessment13
Inter-Swath (Between Swath) Relative Accuracy15
Intra-Swath (Within a Single Swath) Relative Accuracy16
Horizontal Alignment17
Point Density and Spatial Distribution17
Data Classification and Editing18
LiDAR Qualitative Assessment
Visual Review
Data Voids20
Bridge Removal Artifacts 20
Culverts
Dirt Mounds23
Elevation Changes within Tidal Water Bodies24
Flightline Ridges
Temporal Changes
Formatting

LiDAR Positional Accuracy
Background
Survey Vertical Accuracy Checkpoints
Vertical Accuracy Test Procedures
NVA
VVA
Vertical Accuracy Results
Horizontal Accuracy Test Procedures
Horizontal Accuracy Results
Breakline Production & Qualitative Assessment Report
Breakline Production Methodology
Breakline Qualitative Assessment
Breakline Checklist
Data Dictionary41
Horizontal and Vertical Datum41
Coordinate System and Projection41
Inland Ponds and Lakes41
Tidal Waters
DEM Production & Qualitative Assessment
DEM Production Methodology44
DEM Qualitative Assessment
DEM Vertical Accuracy Results
DEM Checklist
Appendix A: Survey Report
Appendix B: Complete List of Delivered Tiles
Appendix C: List of Water Tiles
Appendix D: GPS Processing

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 4 of 157

Executive Summary

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR) technology for the USGS Eastern Shore, Virginia Project Area.

The LiDAR data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data were formatted according to tiles with each tile covering an area of 5,000 ft by 5,000 ft. A total of 1375 LAS tiles and 1310 DEMs were produced for the project encompassing an area of approximately 994 sq. miles. Sixty-five tiles are water tiles where no topographic ground is present. DEMs were not produced for all water tiles.

THE PROJECT TEAM

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all LiDAR products, breakline production, Digital Elevation Model (DEM) production, and quality assurance.

Dewberry's Gary Simpson completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the LiDAR-derived surface model. He also verified the GPS base station coordinates used during LiDAR data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project.

Leading Edge Geomatics completed LiDAR data acquisition and data calibration for the project area.

SURVEY AREA

The project area addressed by this report falls within the Virginia counties of Northampton and Accomack.

DATE OF SURVEY

The LiDAR aerial acquisition was conducted from April 11, 2015 to April 24, 2015.

COORDINATE REFERENCE SYSTEM

Data produced for the project were delivered in the following reference system.

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))

Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)

Coordinate System: Virginia State Plane South

Units: Horizontal units are in US Survey feet, Vertical units are in US Survey feet. Geiod Model: Geoid12A (Geoid 12A was used to convert ellipsoid heights to

orthometric heights).

LIDAR VERTICAL ACCURACY

For the Eastern Shore Virginia LiDAR Project, the tested $RMSE_z$ of the classified LiDAR data for checkpoints in non-vegetated terrain equaled **6.4 cm (0.21 ft)** compared with the 10 cm (0.33 ft) specification; and the NVA of the classified LiDAR data computed using $RMSE_z \times 1.9600$ was equal to **12.5 cm (0.41 ft)**, compared with the 19.6 cm (0.64 ft) specification.

For the Eastern Shore LiDAR Project, the tested VVA of the classified LiDAR data computed using the 95th percentile was equal to 17.7 cm (0.58 ft), compared with the 29.4 cm (0.96 ft) specification.

Additional accuracy information and statistics for the classified LiDAR data, raw swath data, and bare earth DEM data are found in the following sections of this report.

PROJECT DELIVERABLES

The deliverables for the project are listed below.

- 1. Raw Point Cloud Data (Swaths)
- 2. Classified Point Cloud Data (Tiled)
- 3. Bare Earth Surface (Raster DEM IMG Format)
- 4. Intensity Images (8-bit gray scale, tiled, GeoTIFF format)
- 5. Breakline Data (File GDB)
- 6. Independent Survey Checkpoint Data (Report, Photos, & Points)
- 7. Calibration Points
- 8. Metadata
- 9. Project Report (Acquisition, Processing, QC)
- 10. Project Extents, Including a shapefile derived from the LiDAR Deliverable
- 11. Other Ancillary Data (Areas identified as temporally changed)

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 6 of 157

PROJECT TILING FOOTPRINT

One thousand three hundred seventy-five (1375) LAS tiles and one thousand three hundred ten (1310) DEM tiles were delivered for the project. Sixty five (65) tiles contained all water and were removed from DEM processing as these tiles do not contain any topographic data. Dewberry extended the client provided boundary where tiles had ground to include thirty four (34) extra tiles. Each tile's extent is 5,000 feet by 5,000 feet (see Appendix B for a complete listing of delivered tiles and Appendix C for a list of water tiles that were not included in the DEM).

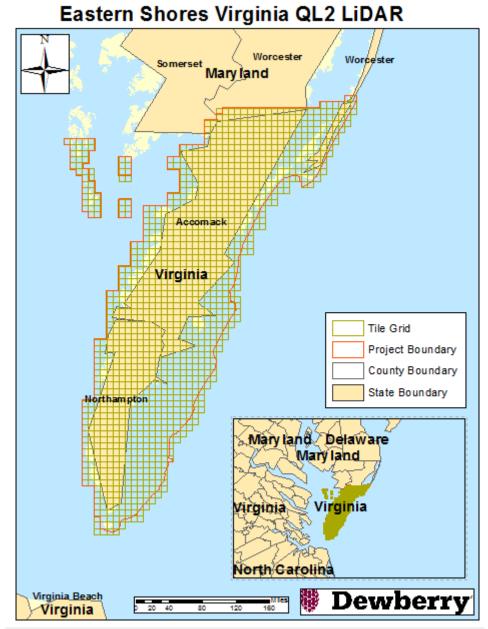


Figure 1 - Project Map

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 7 of 157

LiDAR Acquisition Report

Dewberry elected to subcontract the LiDAR Acquisition and Calibration activities to Leading Edge Geomatics (LEG). LEG was responsible for providing LiDAR acquisition, calibration and delivery of LiDAR data files to Dewberry.

Dewberry received calibrated swath data from LEG on August 31, 2015.

LIDAR ACQUISITION DETAILS

Leading Edge Geomatics planned 181 passes total for the entire project area and a series of parallel flight lines with cross flightlines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, Leading Edge Geomatics followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, includes the following criteria:

- A digital flight line layout using Track Air flight design software for direct integration into the aircraft flight navigation system.
- Planned flight lines; flight line numbers; and coverage area.
- LiDAR coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.
- Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally, LEG will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission.

LEG monitored weather and atmospheric conditions and conducted LiDAR missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. LiDAR systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. LEG accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition.

Within 72-hours prior to the planned day(s) of acquisition, LEG closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis.

Leading Edge Geomatics' LiDAR sensors are calibrated at a designated site located in downtown Fredericton, New Brunswick and are periodically checked and adjusted to minimize corrections at project sites. Both systems were calibrated before departing for the project area.

LIDAR SYSTEM PARAMETERS

Leading Edge Geomatics operated two Cessna 172 (Tail # C-FMNB and C-GUNB) each outfitted with a Riegl 680i LiDAR system during the collection of the entire project. Table 1 illustrates LEG's system parameters for LiDAR acquisition on this project.

Item	Parameter
System	Riegl 680i
Altitude (AGL meters)	1000
Approx. Flight Speed (knots)	100
Scanner Pulse Rate (kHz)	200
Scan Frequency (hz)	78
Pulse Duration of the Scanner (nanoseconds)	5
Pulse Width of the Scanner (m)	0.8994
Swath width (m)	1155
Central Wavelength of the Sensor Laser (nanometers)	1064
Did the Sensor Operate with Multiple Pulses in The Air? (yes/no)	No
Beam Divergence (milliradians)	5.0
Nominal Swath Width on the Ground (m)	1155
Swath Overlap (%)	50
Total Sensor Scan Angle (degree)	60
Computed Down Track spacing (m) per beam	0.66
Computed Cross Track Spacing (m) per beam	0.66
Nominal Pulse Spacing (single swath), (m) Nominal Pulse Density (single swath) (ppsm), (m)	0.66
Aggregate NPS (m) (if ANPS was designed to be met through single coverage, ANPS and NPS will be equal) Aggregate NPD (m) (if ANPD was designed to	0.53
be met through single coverage, ANPD and NPD will be equal)	3.45
Maximum Number of Returns per Pulse	7

 Table 1: LEG's LiDAR System Parameters

ACQUISITION STATUS REPORT AND FLIGHTLINES

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. The Acquisition Manager contacted air traffic control and coordinated flight pattern requirements. LiDAR acquisition began immediately upon notification that control base stations were in place. During flight operations, the flight crew monitored weather and atmospheric conditions. LiDAR missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of PDOPs, and performed the first Q/C review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines impacted by unfavorable conditions were marked as invalid and re-flown immediately or at an optimal time.

Figure 2 shows the combined trajectory of the flightlines.

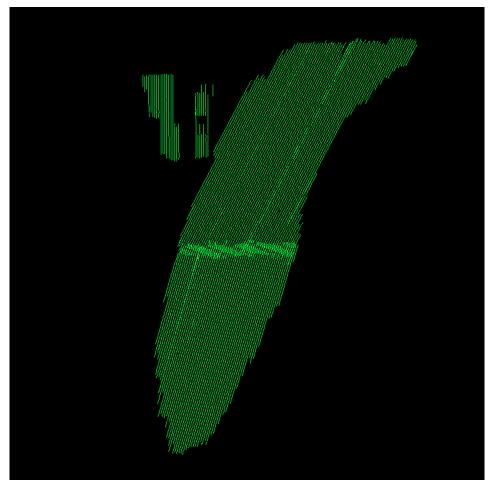


Figure 2: Trajectories as flown by LEG

LIDAR CONTROL

Seven active base stations from Leica Smartnet were employed as well as three existing NGS monuments and one newly established base station were used to control the LiDAR acquisition for the Eastern Shore VA LiDAR project area. The coordinates of all used base stations are provided in the table below. All control and calibration points are also provided in shapefile format as part of the final deliverables.

Name	NAD83(2011) S	tate Plane VA South	Ellipsoid Ht (meters)	Orthometric Ht (NAVD88, Geoid12A,	
	Easting X (ft)	Northing Y (ft)	Empsolu III (meters)	ft)	
LOYG	12173127.9778	4179657.87	-21.772	91.9320	
LOYM	12018715.5239	4006085.1738	6.099	117.2294	
LOYW	12251869.1056	3726623.3987	-22.492	97.7099	
LOYX	12007914.0974	3629210.1275	2.198	117.9719	
LS03	12226769.4158	3456648.5533	-22.006	102.4152	
LS09	12390532.8985	3982774.1816	-17.442	101.1909	
VAHP	12094608.6656	3552986.7166	-22.683	97.0186	

Accomac Reset	12300004.0789	3796950.0510	-23.118	96.8955
Jerry McCready	12245554.5854	3889314.6319	-35.442	83.0352
Nelson	12335638.4318	3901413.8731	-26.809	92.5438
REBAR1	12229779.9442	3642235.0442	-27.753	93.4894

Table 2 – Base Stations used to control LiDAR acquisition

AIRBORN GPS KINEMATIC

Airborne GPS data was processed using the PosPac kinematic On-The-Fly (OTF) software suite using Applanix Smartbase processing. Flights were flown with a minimum of 6 satellites in view (13° above the horizon) and with a PDOP of better than 4.

For all flights, the GPS data can be classified as excellent, with GPS residuals of 3cm average or better but no larger than 10cm being recorded.

GENERATION AND CALIBRATION OF LASER POINTS (RAW DATA)

The initial step of calibration is to verify availability and status of all needed GPS and laser data against field notes and compile any data if not complete.

Subsequently the mission points are output using Riegl's RiProcess application. System calibration was conducted prior to the aircraft departing for the project and the initial calibration values are used to position the point cloud. If a calibration error greater than specification is observed within the mission, the roll, pitch and yaw corrections that need to be applied are calculated. The missions with the new calibration values are regenerated and validated internally once again to ensure quality.

Data collected by the LiDAR unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

On a project level, a supplementary coverage check is carried out to ensure no data voids unreported by Field Operations are present.

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 11 of 157

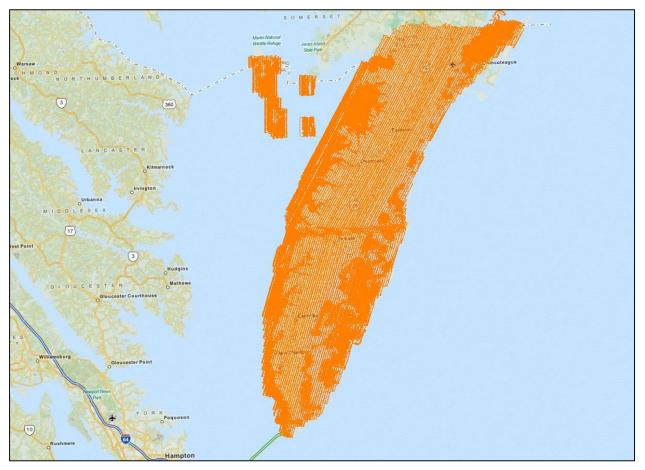


Figure 3 – LiDAR Swath output showing complete coverage.

BORESIGHT AND RELATIVE ACCURACY

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the LiDAR unit or GPS. Roll, pitch and yaw are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement.

For this project the specifications used are as follow: Relative accuracy <= 6 cm maximum difference within individual swaths and <=8 cm RMSDz within swath overlap (between adjacent swaths).

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 12 of 157

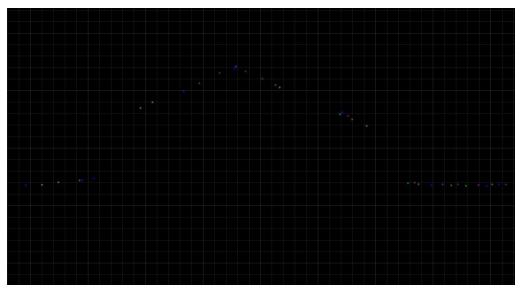


Figure 4 – Profile view colored by flightline showing correct roll and pitch adjustments.

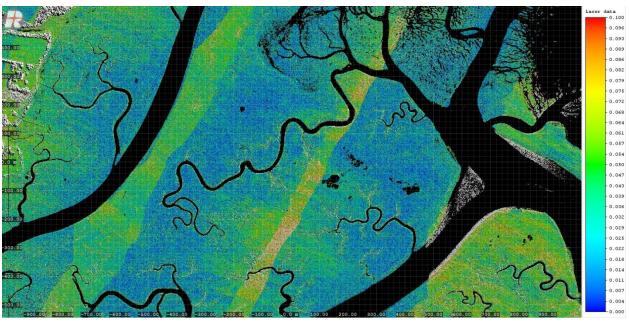


Figure 5 – QC block colored by elevation differences to ensure accuracy at swath edges.

A different set of QC blocks are generated for final review after all transformations have been applied.

PRELIMINARY VERTICAL ACCURACY ASSESSMENT

A preliminary $RMSE_z$ error check is performed by Leading Edge Geomatics at this stage of the project life cycle in the raw LiDAR dataset against GPS static and kinematic data and compared to $RMSE_z$ project specifications. The LiDAR data is examined in open, flat areas away from breaks. Ground control points are collected by RTK survey and compared against the LiDAR ground points and statistics are generated. 23% of the flight lines flown for the project were directly tested against independently collected RTK control.

Prior to delivery to Dewberry, the elevation data was verified internally to ensure it met fundamental accuracy requirements (vertical accuracy NSSDA $RMSE_z = 10 \text{ cm}$ (NSSDA Accuracy_z 95% = 19.6 cm) or better in open, non-vegetated terrain) when compared to static and kinematic GPS checkpoints. Below is a summary for the test:

The calibrated Virginia LiDAR dataset was tested to 0.133 m (0.438 ft) vertical accuracy at 95% confidence level based on consolidated $RMSE_z$ (0.068m x 1.9600) when compared to 287 RTK collected static check points.

The following are the final statistics for the GPS static checkpoints used by LEG to internally verify vertical accuracy.

Average dz	+0.055 m
Root mean square	0.068 m
Std deviation	0.0402 m

Overall the calibrated LiDAR data products collected by LEG meet or exceed the requirements set out in the Statement of Work. The quality control requirements of LEG quality management program were adhered to throughout the acquisition stage for this project to ensure product quality.

LiDAR Processing & Qualitative Assessment

INITIAL PROCESSING

Once Dewberry receives the calibrated swath data from the acquisition provider, Dewberry performs several validations on the dataset prior to starting full-scale production on the project. These validations include vertical accuracy of the swath data, inter-swath (between swath) relative accuracy validation, intra-swath (within a single swath) relative accuracy validation, verification of horizontal alignment between swaths, and confirmation of point density and spatial distribution. This initial assessment allows Dewberry to determine if the data are suitable for full-scale production. Addressing issues at this stage allows the data to be corrected while imposing the least disruption possible on the overall production workflow and overall schedule.

Final Swath Vertical Accuracy Assessment

Once Dewberry received the calibrated swath data from LEG, Dewberry tested the vertical accuracy of the non-vegetated terrain swath data prior to additional processing. Dewberry tested the vertical accuracy of the swath data using the fifty-nine (59) non-vegetated (open terrain and urban) independent survey check points. The vertical accuracy is tested by comparing survey checkpoints in non-vegetated terrain to a triangulated irregular network (TIN) that is created from the raw swath points. Only checkpoints in non-vegetated terrain can be tested against raw swath data because the data has not undergone classification techniques to remove vegetation, buildings, and other artifacts from the ground surface. Checkpoints are always compared to interpolated surfaces from the LiDAR point cloud because it is unlikely that a survey checkpoint will be located at the location of a discrete LiDAR point. Project specifications require a NVA of 19.6 cm (0.64 ft) based on the RMSE_z (10 cm/0.33 ft) x 1.96. The dataset for the Eastern Shore VA LiDAR Project satisfies this criteria. This raw LiDAR swath data set was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 0.33 ft (10 cm)

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 14 of 157

 $RMSE_z$ Vertical Accuracy Class. Actual NVA accuracy was found to be $RMSE_z = 0.20$ ft (6.1 cm), equating to +/- 0.39 ft (11.9 cm) at 95% confidence level. The table below shows all calculated statistics for the raw swath data.

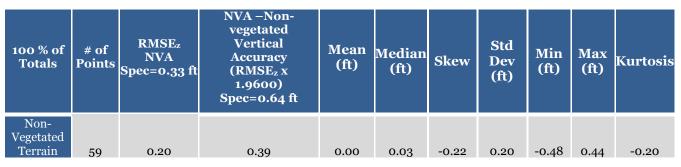


Table 3: NVA at 95% Confidence Level for Raw Swaths

One checkpoint (NVA-54) was removed from the raw swath vertical accuracy testing due to its location underneath a power line. Only non-vegetated terrain checkpoints are used to test the raw swath data because the raw swath data has not been classified to remove vegetation, structures, and other above ground features from the ground classification. While NVA-54 is located in urban terrain, the overhead power lines are modeled by the LiDAR point cloud. These high points caused erroneous high values during the swath vertical accuracy testing so this point was removed from the raw swath accuracy calculations. Once the data underwent the classification process, the power lines were removed from the final ground classification and this point could be used in the final vertical accuracy testing for the fully classified LiDAR data. Table 4, below, provides the coordinates for this checkpoint. Table 5, below, provides the usable vertical accuracy results of this checkpoint from the fully classified LiDAR. Figure 6, below, shows a 3D model of the LiDAR point cloud and the location of the checkpoint beneath a power line.

Point ID	NAD83(2011) Sta	NAVD88 (Geoid 12A)	
	Easting X (ft)	Survey Z (ft)	
NVA-54	12226073.01	3628990.53	32.54

Table 4: Checkpoint removed from raw swath vertical accuracy testing.

Point	NAD83 (2011) VA State Plane South		NAVD88 (Geoid 12A)			
ID	Easting X (ft)	Northing Y (ft)	Z-Survey (ft)	Z-LiDAR (ft)	DeltaZ	AbsDeltaZ
NVA-54	12226073.01	3628990.53	32.54	32.26	-0.28	0.28

Table 5: Final tested vertical accuracy for NVA-54 after ground classification.

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 15 of 157

Figure 6 – Urban Terrain checkpoint NVA-54, shown as blue dot, is located underneath power line features. This point was removed from raw swath vertical accuracy testing because above ground features, including power lines, have not yet been classified separately from the ground.

Inter-Swath (Between Swath) Relative Accuracy

Dewberry verified inter-swath or between swath relative accuracy of the dataset by creating Delta-Z (DZ) orthos. According to the SOW, USGS LiDAR Base Specifications v1.2, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet inter-swath relative accuracy of 8 cm RMSDz or less with maximum differences less than 16 cm. These measurements are to be taken in non-vegetated and flat open terrain using single or only returns from all classes. Measurements are calculated in the DZ orthos on 1-meter pixels or cell sizes. Areas in the dataset where overlapping flight lines are within 8 cm of each other within each pixel are colored green, areas in the dataset where overlapping flight lines have elevation differences in each pixel between 8 cm -12 cm are colored yellow, and areas in the dataset where overlapping flight lines have elevation differences in each pixel greater than 12 cm are colored red. Pixels that do not contain points from overlapping flight lines are colored according to their intensity values. Areas of vegetation and steep slopes (slopes with 12 cm or more of valid elevation change across 1 linear meter) are expected to appear vellow or red in the DZ orthos. If the project area is heavily vegetated, Dewberry may also create DZ Orthos from the initial ground classification only, while keeping all other parameters consistent. This allows Dewberry to review the ground classification relative accuracy beneath vegetation and to ensure flight line ridges or other issues do not exist in the final classified data.

Flat, open areas are expected to be green in the DZ orthos. Large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data, especially when these yellow/red sections follow the flight lines and not the terrain or areas of vegetation. The DZ orthos for Eastern Shore Virginia are shown in the figure below; this project meets inter-swath relative accuracy specifications.

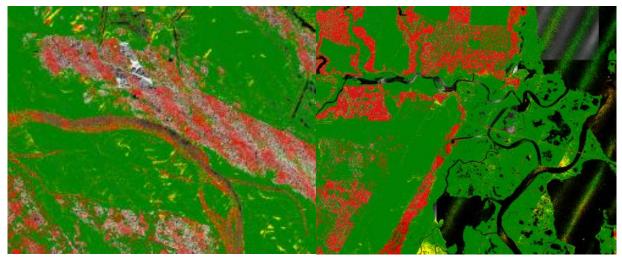


Figure 7– Single return DZ Orthos for the Eastern Shore Virginia Lidar Project. Inter-swath relative accuracy passes specifications.

Intra-Swath (Within a Single Swath) Relative Accuracy

Dewberry verifies the intra-swath or within swath relative accuracy by using Quick Terrain Modeler (QTM) scripting and visual reviews. QTM scripting is used to calculate the RMSD_z of all points within each 1-meter pixel/cell size of each swath. Dewberry analysts then identify planar surfaces acceptable for repeatability testing and analysts review the QTM results in those areas. According to the SOW, USGS LiDAR Base Specifications v1.2, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet intra-swath relative accuracy of 6 cm RMSDz or less. The image below shows two examples of the intra-swath relative accuracy of Eastern Shore Virginia; this project meets intra-swath relative accuracy specifications.

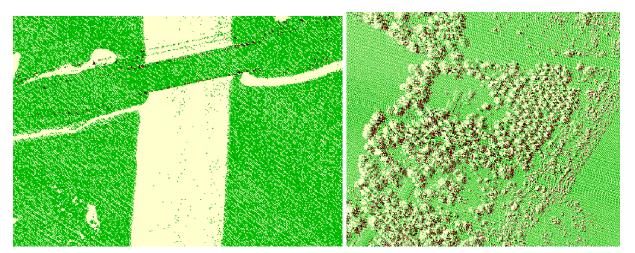


Figure 8–Intra-swath relative accuracy. The left image shows a portion of the dataset; flat, open areas are colored green as they are within 6 cm RMSDz whereas sloped terrain is colored red because it exceeds 6 cm RMSDz, as expected, due to actual slope/terrain change. The right image is a close-up of a flat area. With the exception of f trees (shown in red as the RMSDz in vegetated areas will

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 17 of 157

exceed 6 cm) this open flat area is acceptable for repeatability testing. Intra-swath relative accuracy passes specifications.

Horizontal Alignment

To ensure horizontal alignment between adjacent or overlapping flight lines, Dewberry uses QTM scripting and visual reviews. QTM scripting is used to create files similar to DZ orthos for each swath but this process highlights planar surfaces, such as roof tops. In particular, horizontal shifts or misalignments between swaths on roof tops and other elevated planar surfaces are highlighted. Visual reviews of these features, including additional profile verifications, are used to confirm the results of this process. The image below shows an example of the horizontal alignment between swaths for Eastern Shore Virginia; no horizontal alignment issues were identified.

Figure 9– Horizontal Alignment. Two separate flight lines differentiated by color (Red/Green) are shown in this profile. There is no visible offset between these two flight lines. No horizontal alignment issues were identified.

Point Density and Spatial Distribution

The required Aggregate Nominal Point Spacing (ANPS) for this project is no greater than 0.71 meters, which equates to an Aggregate Nominal Point Density (ANPD) of 2 points per square meter or greater. Density calculations were performed using first return data only located in the geometrically usable center portion (typically ~90%) of each swath. By utilizing statistics, the project area was determined to have an ANPS of 0.53 meters or an ANPD of 3.45 points per square meter which satisfies the project requirements.

The spatial distribution of points must be uniform and free of clustering. This specification is tested by creating a grid with cell sizes equal to the design NPS*2. QTM scripting is then used to calculate the number of first return points of each swath within each grid cell. At least 90% of the cells must contain 1 LiDAR point, excluding acceptable void areas such as water or low NIR reflectivity features, i.e. some asphalt and roof composition materials. This project passes spatial distribution requirements, as shown in the image below.

Dewberry

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 18 of 157



Figure 10– Spatial Distribution. The 2*NPS grid shows all tiles contain at least one LiDAR point. All no data pixels are within water bodies and are acceptable data voids.

DATA CLASSIFICATION AND EDITING

Once the calibration, absolute swath vertical accuracy, and relative accuracy of the data was confirmed, Dewberry utilized a variety of software suites for data processing. The data was processed using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classifies any obvious low outliers in the dataset to class 7 and high outliers in the dataset to class 18. Points along flight line edges that are geometrically unusable are identified as withheld and classified to a separate class so that they will not be used in the initial ground algorithm. After points that could negatively affect the ground are removed from class 1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model.

This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining

points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model.

Each tile was then imported into Terrascan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing conducted by Dewberry. Dewberry analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. Bridge decks are classified to class 17 using bridge breaklines compiled by Dewberry. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled by Dewberry to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. During this water classification routine, points that are within 1x NPS or less of the hydrographic features are moved to class 10, an ignored ground due to breakline proximity. Overage points are then identified in Terrascan and GeoCue is used to set the overlap bit for the overage points and the withheld bit is set on the withheld points previously identified in Terrascan before the ground classification routine was performed.

The LiDAR tiles were classified to the following classification schema:

- Class 1 = Unclassified, used for all other features that do not fit into the Classes 2, 7, 9, 10, 17, or 18, including vegetation, buildings, etc.
- Class 2 = Bare-Earth Ground (bare earth points identified as Model Key Points are flagged with the Model Key Point bit)
- Class 7 = Low Noise
- Class 9 = Water, points located within collected breaklines
- Class 10 = Ignored Ground due to breakline proximity
- Class 17 = Bridge Decks
- Class 18 = High Noise

After manual classification, the LAS tiles were peer reviewed and then underwent a final QA/QC. After the final QA/QC and corrections, the LAS files were then converted from LAS v1.2 to LAS v1.4 using GeoCue software. At this time, all headers, appropriate point data records, and variable length records, including spatial reference information, are updated in GeoCue software and then verified using proprietary Dewberry tools.

LiDAR Qualitative Assessment

Dewberry's qualitative assessment utilizes a combination of statistical analysis and interpretative methodology or visualization to assess the quality of the data for a bare-earth digital terrain model (DTM). This includes creating pseudo image products such as LiDAR orthos produced from the intensity returns, Triangular Irregular Network (TIN)'s, Digital Elevation Models (DEM) and 3-dimensional models as well as reviewing the actual point cloud data. This process looks for

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 20 of 157

anomalies in the data, areas where man-made structures or vegetation points may not have been classified properly to produce a bare-earth model, and other classification errors. This report will present representative examples where the LiDAR and post processing had issues as well as examples of where the LiDAR performed well.

VISUAL REVIEW

The following sections describe common types of issues identified in LiDAR data and the results of the visual review for Eastern Shore VA LiDAR project.

Data Voids

The LAS files are used to produce density grids using the commercial software package QT Modeler (QTM) which creates a 3-dimensional data model derived from Class 2 (ground) points in the LAS files. Grid spacing is based on the project density deliverable requirement for unobscured areas. Acceptable voids (areas with no LiDAR returns in the LAS files) that are present in the majority of LiDAR projects include voids caused by bodies of water. No unacceptable voids are present in the Eastern Shore Virginia LiDAR project.

Bridge Removal Artifacts

The DEM surface models are created from TINs or Terrains. TIN and Terrain models create continuous surfaces from the inputs. Because a continuous surface is being created, the TIN or Terrain will use interpolation to continue the surface beneath the bridge where no LiDAR data was acquired. Locations where bridges were removed will generally contain less detail in the bare-earth surface because these areas are interpolated.

4	أكانتك مسندهما		
· · · · · · · · ·		·····	

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 21 of 157

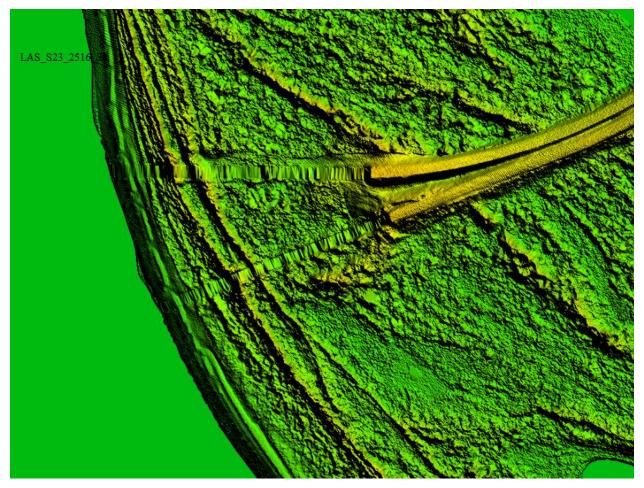


Figure 11 – Tile number DEM_S23_2516_30. The DEM in the bottom view shows an area where a bridge has been removed from ground. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This results in less detail where the surface must be interpolated. The profile in the top view shows the LiDAR points of this particular feature colored by class. All bridge points have been removed from ground (orange) and are bridge deck (brown).

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 22 of 157

Culverts

Bridges have been removed from the bare earth surface while culverts remain in the bare earth surface. In instances where it is difficult to determine if the feature is a culvert or bridge, such as with some small bridges, Dewberry erred on assuming they would be culverts especially if they are on secondary or tertiary roads. Below is an example of a culvert that has been left in the ground surface.

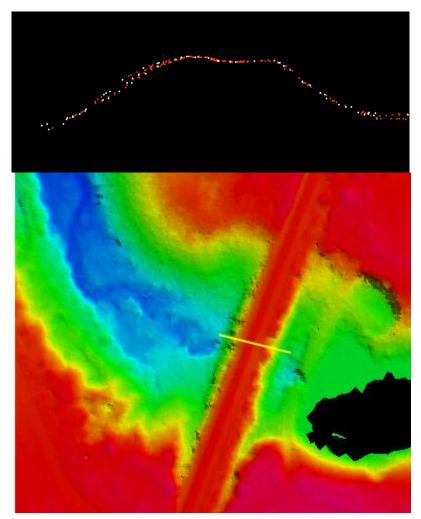


Figure 12– Tile number DEM_S23_2426_20. Profile with points colored by class (class 1=white, class 2=orange, model key point=red) is shown in the top view and the DEM is shown in the bottom view. This culvert remains in the bare earth surface. Bridges have been removed from the bare earth surface and classified to class 17.

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 23 of 157

Dirt Mounds

Irregularities in the natural ground exist and may be misinterpreted as artifacts that should be removed. Hills and dirt mounds are present throughout the project area. These features are correctly included in the ground.

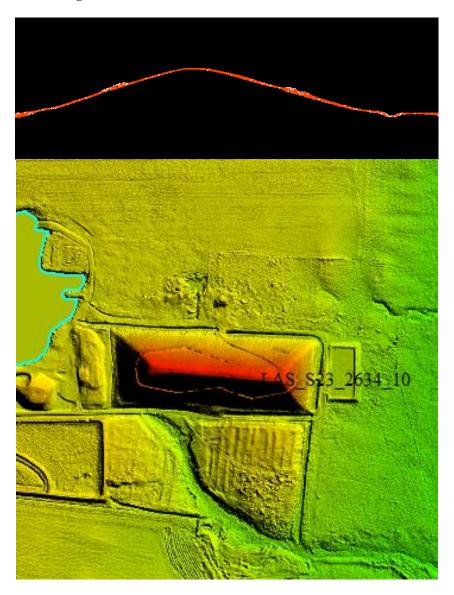


Figure 13 - Tile LAS_S23_2634_10. Profile with the points colored by class (unclassified points are white, ground points are orange) is shown in the top view and a DEM of the surface is shown in the bottom view. These features are correctly included in the ground classification.

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 24 of 157

Elevation Changes within Tidal Water Bodies

While water bodies are flattened in the final DEMs, tidal areas can have changes in elevation due to tidal fluctuations. Dewberry has reviewed the DEMs to ensure that these changes in elevation due to tidal fluctuations are shown from bank to bank. These changes are often shown as steps to reduce the presence of artifacts. An example is shown below.

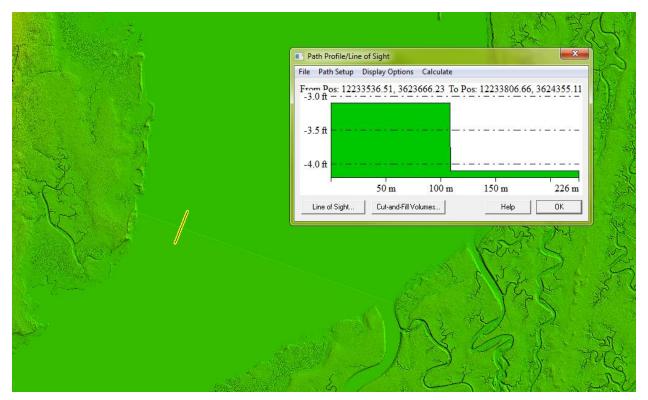


Figure 14 – Tiles DEM_S23_2632_10 and DEM_S23_2632_40. Elevation change in a tidal water body due to tidal fluctuations has been stair stepped. The steps are flat from bank to bank.

Dewberry

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 25 of 157

Flightline Ridges

Ridges occur when there is a difference between the elevations of adjoining flight lines or swaths. Some flightline ridges are visible in the final DEMs but they do not exceed the project specifications and the overall relative accuracy requirements for the project area have been met. An example of a visible ridge that is within tolerance is shown below.

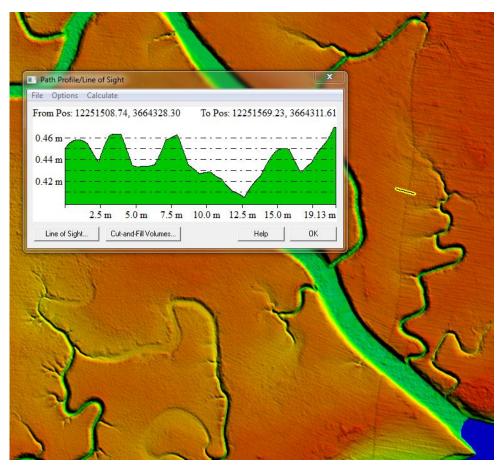


Figure 15– Tile number DEM_S23_2656_10. The flight line ridge is less than 8 cm. Overall, the Eastern Shore Virginia LiDAR data meets the project specifications for 8 cm RMSDz relative accuracy requirement.

Temporal Changes

Because the Eastern Shore Virginia LiDAR project includes data from the Sandy Topobathy project, there are some temporal differences between the areas collected at different times. The majority of temporal differences are found along water or hydrographic features, but some changes were noted on terrestrial features as well. The most common temporal changes observed were along hydrographic features, most notably along the eastern coastal side that included the Sandy data. In that area, adjoining flight lines were from different collection time windows and individual flight lines may have been flown at different tide stages.

The temporal differences between the Sandy data and the data collected by LEG also appear in many water bodies that were too small for the Eastern Shore hydro flattening requirements. . In these small water features, Sandy topobathy data that was classified as bathy bottom was reclassified to ground in order to match this project's classification schema (per USGS guidance). . Sandy was collected using a green sensor which can penetrate the water surface

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 26 of 157

and reach the bottom of water bodies, where LEG used a NIR sensor which generally cannot penetrate the water surface. Overlapping bathy bottom (now ground) points from the Sandy data and points classified as ground along the water surface from LEG data give these areas a rough texture in the DEMs.

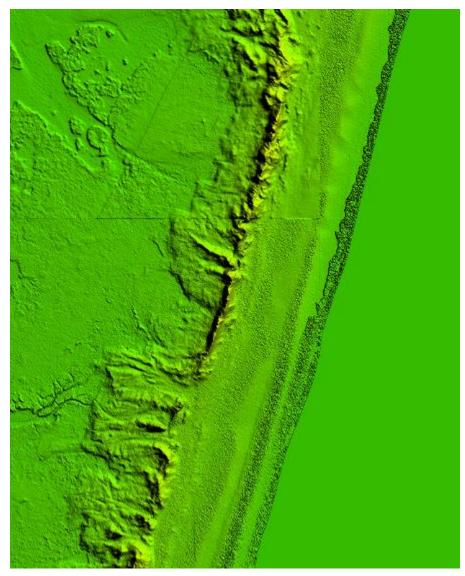


Figure 16- Tile number DEM_S23_3729_40 shows a temporal ridge due to temporal changes between the Sandy/LEG datasets and textured tidal areas due to different overlapping grounds in the Sandy/LEG datasets caused by LIDAR sensor differences.

Dewberry

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 27 of 157

Figure 17- This image is an example from DEM_S23_3728_10 showing textured ground in a river smaller than the minimum project requirements for hydro flattening. This textured ground is caused by overlapping bathy bottom (now ground due to reclassification of Sandy data to meet the Eastern Shore classification schema) points mixed in with the LEG NIR points that are along the water surface.

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 28 of 157

Figure 18- Tile DEM_S23_3729_30 shows a temporal difference where the Eastern Shore LEG data meets the Sandy data. The straight vertical line between the hydro flattened area and the terrestrial area is the dividing line between the Sandy topobathy data and the data collected by LEG. This area was submerged in the area collected by LEG and was not submerged in the Sandy data.

FORMATTING

After the final QA/QC is performed and all corrections have been applied to the dataset, all LiDAR files are updated to the final format requirements and the final formatting, header information, point data records, and variable length records are verified using Dewberry proprietary tools. The table below lists some of the main LiDAR header fields that are updated and verified.

Classified LiDAR Formatting			
Validation Requirement Pass/Fail			
LAS Version	1.4	Pass	

Point Data Format	Format 6	Pass
Coordinate Reference System	NAD83 (2011) State Plane Virginia South, US Survey feet and NAVD88 (Geoid 12A), US Survey feet	Pass
Global Encoder Bit	Should be set to 17 for Adjusted GPS Time	Pass
Time Stamp	Adjusted GPS Time (unique timestamps)	Pass
System ID	Should be set to the processing system/software and is set to NIIRS10 for GeoCue software	Pass
Multiple Returns	The sensor shall be able to collect multiple returns per pulse and the return numbers are recorded	Pass
Intensity	16 bit intensity values are recorded for each pulse	Pass
Classification	Required Classes include: Class 1: Unclassified Class 2: Ground (includes model key point bit) Class 7: Low Noise Class 9: Water Class 10: Ignored Ground Class 17: Bridge Decks Class 18: High Noise	Pass
Overlap and Withheld Points	Overlap (Overage) and Withheld points are set to the Overlap and Withheld bits	Pass
Scan Angle	Recorded for each pulse	Pass
XYZ Coordinates	Unique Easting, Northing, and Elevation coordinates are recorded for each pulse	Pass

LiDAR Positional Accuracy

BACKGROUND

Dewberry quantitatively tested the dataset by testing the vertical accuracy of the LiDAR. The vertical accuracy is tested by comparing the discreet measurement of the survey checkpoints to that of the interpolated value within the three closest LiDAR points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the LiDAR data is actually tested. However there is an increased level of confidence with LiDAR data due to the relative accuracy. This relative accuracy in turn is based on how well one LiDAR point "fits" in comparison to the next contiguous LiDAR measurement, and is verified as

part of the initial processing. If the relative accuracy of a dataset is within specifications and the dataset passes vertical accuracy requirements at the location of survey checkpoints, the vertical accuracy results can be applied to the whole dataset with high confidence due to the passing relative accuracy.

Dewberry also tests the horizontal accuracy of LiDAR datasets when checkpoints are photoidentifiable in the intensity imagery. Photo-identifiable checkpoints in intensity imagery typically include checkpoints located at the ends of paint stripes on concrete or asphalt surfaces or checkpoints located at 90 degree corners of different reflectivity, e.g. a sidewalk corner adjoining a grass surface. The XY coordinates of checkpoints, as defined in the intensity imagery, are compared to surveyed XY coordinates for each photo-identifiable checkpoint. These differences are used to compute the tested horizontal accuracy of the LiDAR. As not all projects contain photo-identifiable checkpoints, the horizontal accuracy of the LiDAR cannot always be tested.

SURVEY VERTICAL ACCURACY CHECKPOINTS

For the vertical accuracy assessment, one hundred thirteen (113) check points were surveyed for the project and are located within bare earth/open terrain, grass/weeds/crops, brush/low trees, and forested/fully grown land cover categories. Please see appendix A to view the survey report which details and validates how the survey was completed for this project.

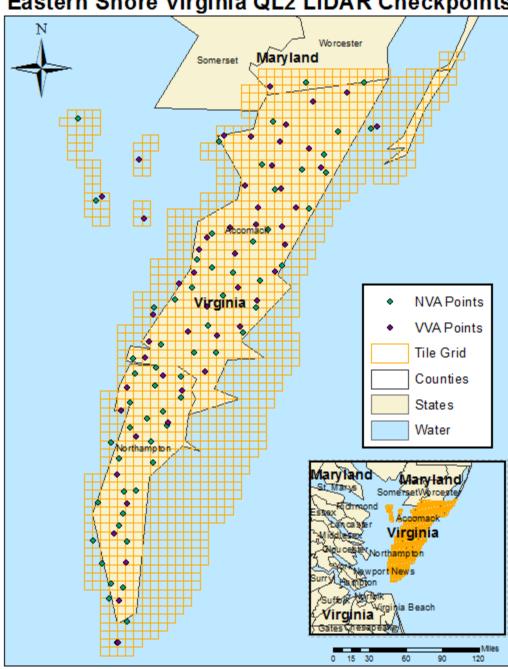
Checkpoints were evenly distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

Point ID	NAD83(201	NAVD88 (Geoid 12A)	
	Easting X (ft)	Northing Y (ft)	Elevation (ft)
NVA-1	12196414.01	3884364.651	1.339
NVA-2	12207349.4	3834754.755	3.4
NVA-10	12307410.12	3856666.261	1.986
NVA-12	12336260.66	3830310.758	15.683
NVA-14	12277689.67	3814839.19	3.29
NVA-15	12311495.71	3817405.053	41.106
NVA-16	12320051.31	3795915.182	4.25
NVA-17	12302530.6	3809832.272	38.898
NVA-18	12277752.73	3794462.14	13.767
NVA-19	12268180.43	3799251.427	4.438
NVA-21	12306616.78	3786617.331	18.905
NVA-22	12304276.41	3770432.922	8.151
NVA-24	12265368.17	3782487.624	9.538
NVA-26	12242395.7	3770064.715	3.58
NVA-29	12280088.9	3742835.676	8.541
NVA-30	12266728.44	3742757.88	32.977
NVA-31	12246774.66	3747788.886	22.639
NVA-32	12229848.1	3739447.722	2.877
NVA-34	12258548.61	3715952.41	28.943
NVA-36	12230736.5	3730286.178	4.388

All checkpoints surveyed for vertical accuracy testing purposes are listed in the following table.

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 31 of 157

NVA-37	12243200.41	3723008.043	23.504
NVA-41	12228145.56	3712527.147	18.859
NVA-44	12241632.84	3676363.976	28.837
NVA-45	12216293.66	3688645.459	10.567
NVA-46	12221336.04	3678925.913	17.969
NVA-49	12224380.96	3659206.754	28.065
NVA-53	12210752.83	3615608.025	7.971
NVA-55	12216133.33	3603594.973	34.74
NVA-56	12223934.22	3601143.623	26.158
NVA-60	12281896.39	3870410.577	5.572
NVA-3	12334426.97	3906508.754	20.499
NVA-4	12369437.32	3906210.864	31.448
NVA-5	12373394.91	3878728.478	4.061
NVA-6	12353618.26	3876879.63	32.149
NVA-7	12314423.94	3882489.387	6.346
NVA-8	12345098.85	3862707.771	32.21
NVA-9	12346680.11	3852015.627	16.79
NVA-11	12331979.08	3853514.729	46.074
NVA-13	12315462.53	3841739.518	22.503
NVA-20	12290033.72	3791572.158	42.809
NVA-23	12283996.66	3777497.908	49.834
NVA-25	12255263.66	3774938.485	5.846
NVA-25 NVA-27	12275043.71		41.386
NVA-2/ NVA-28		3759251.252 3754969.311	
NVA-28 NVA-33	12296139.1		7.603
	12258997.98	3728527.241	36.707
NVA-35	12243354.19	3734016.408	3.685
NVA-38	12247956.65	3707433.084	34.406
NVA-39	12250334.48	3698943.637	31.473
NVA-40	12238260.51	3703313.748	20.839
NVA-42	12228154.32	3697406.637	17.692
NVA-43	12240646.92	3689370.087	38.612
NVA-47	12231449.38	3659656.001	33.422
NVA-48	12208510.7	3652516.165	7.497
NVA-50	12223921.46	3645687.163	37.852
NVA-51	12221305.89	3638302.328	34.492
NVA-52	12205446.95	3629616.668	6.562
NVA-54	12226073.01	3628990.534	32.537
NVA-57	12214970.71	3594092.821	8.201
NVA-58	12226011.25	3580164.399	4.476
NVA-59	12220288.01	3567530.256	11.877
VVA-1	12210869.02	3837260.505	4.135
VVA-2	12236321.16	3824165.676	3.116
VVA-3	12233408.01	3859989.622	1.099
VVA-4	12338668.43	3894495.05	20.771
VVA-7	12377291.99	3879672.008	0.6
VVA-9	12312473.53	3903657.646	2.338
VVA-14	12297561.5	3843886.826	3.343
VVA-18	12305072.33	3830869.906	10.257
VVA-22	12321485.89	3808493.47	16.842
VVA-23	12291371.66	3803110.679	28.619
VVA-25	12269736.36	3805351.042	2.027
VVA-28	12292884.15	3782116.367	39.068
VVA-31	12241977.85	3766097.419	1.751



Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 32 of 157

VVA-32	12274513.98	3770795.67	44.902
VVA-37	12236722.14	3740061.662	9.355
VVA-39	12259551.45	3719746.021	35.052
VVA-42	12222679.06	3708229.622	13.831
VVA-45	12220150.12	3669478.605	14.623
VVA-47	12218067.08	3633610.889	19.259
VVA-49	12221502.61	3593117.253	29.833
VVA-50	12220156.54	3567729.962	8.009
VVA-5	12322375.94	3880672.953	12.56
VVA-8	12358846.02	3900342.753	34.53
VVA-11	12318748.36	3870457.619	8.074
VVA-12	12335835.7	3866204.032	38.718
VVA-13	12313785.22	3856334.676	2.943
VVA-15	12343159.59	3854836.177	36.85
VVA-16	12327955.78	3830528.774	38.172
VVA-17	12319036.17	3842443.411	34.005
VVA-19	12288047.43	3818747.39	4.534
VVA-20	12303792.13	3820309.494	33.22
VVA-29	12266605.35	3791388.973	7.142
VVA-34	12280632.57	3753003.122	14.68
VVA-35	12262785.3	3755704.689	38.762
VVA-40	12247952.03	3729283.816	27.815
VVA-43	12250914.5	3700751.503	29.751
VVA-46	12226217.62	3651851.475	36.3
VVA-6	12301163.36	3873369.638	3.217
VVA-10	12284958.32	3874257.928	2.035
VVA-21	12319528.03	3819093.11	39.17
VVA-24	12274428.18	3812682.652	1.626
VVA-26	12315572.41	3791983.98	13.646
VVA-27	12304941.06	3774212.276	6.103
VVA-30	12257694.47	3784904.872	4.161
VVA-33	12294155.26	3758794.49	7.203
VVA-36	12239523.07	3749853.325	6.545
VVA-38	12273452.75	3731273.35	4.065
VVA-41	12226095.56	3721904.738	14.083
VVA-44	12231685.78	3692139.913	18.025
VVA-48	12225556.14	3616330.009	31.776
BLT34	12219946.44	3567822.742	3.471
TWC34	12220365.83	3567544.088	4.321
OT34	12220092.62	3567671.947	5.515

Table 6: Eastern Shore VA LiDAR surveyed accuracy checkpoints

The figure below shows the location of the QA/QC checkpoints used to test the positional accuracy of the dataset.

Eastern Shore Virginia QL2 LiDAR Checkpoints

Figure 19 - Location of QA/QC Checkpoints

VERTICAL ACCURACY TEST PROCEDURES

NVA (Non-vegetated Vertical Accuracy) is determined with check points located only in nonvegetated terrain, including open terrain (grass, dirt, sand, and/or rocks) and urban areas, where

there is a very high probability that the LiDAR sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The NVA determines how well the calibrated LiDAR sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSE_z) of the checkpoints x 1.9600. For the Eastern Shore LiDAR project, vertical accuracy must be 0.64 ft (19.6 cm) or less based on an RMSE_z of 0.33 ft (10 cm) x 1.9600.

VVA (Vegetated Vertical Accuracy) is determined with all checkpoints in vegetated land cover categories, including tall grass, weeds, crops, brush and low trees, and fully forested areas, where there is a possibility that the LiDAR sensor and post-processing may yield elevation errors that do not follow a normal error distribution. VVA at the 95% confidence level equals the 95th percentile error for all checkpoints in all vegetated land cover categories combined. The Eastern Shore VA LiDAR Project VVA standard is 0.96 ft (29.4 cm) based on the 95th percentile. The VVA is accompanied by a listing of the 5% outliers that are larger than the 95th percentile used to compute the VVA; these are always the largest outliers that may depart from a normal error distribution. Here, Accuracy_z differs from VVA because Accuracy_z assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas VVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

The relevant testing criteria are summarized in Table 7.

Quantitative Criteria	Measure of Acceptability
Non-Vegetated Vertical Accuracy (NVA) in open terrain and urban land cover categories using ${ m RMSE}_z$ *1.9600	0.64 ft (based on RMSEz (0.33 ft cm) * 1.9600)
Vegetated Vertical Accuracy (VVA) in all vegetated land cover categories combined at the 95% confidence level	0.96 ft (based on combined 95 th percentile)

Table 7 – Acceptance Criteria

The primary QA/QC vertical accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications.
- 2. Next, Dewberry interpolated the bare-earth LiDAR DTM to provide the z-value for every checkpoint.
- 3. Dewberry then computed the associated z-value differences between the interpolated z-value from the LiDAR data and the ground truth survey checkpoints and computed NVA, VVA, and other statistics.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

VERTICAL ACCURACY RESULTS

The table below summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the fully classified LiDAR LAS files.

Land Cover Category	# of Points	Accuracy (RMSE _z x	VVA – Vegetated Vertical Accuracy (95th Percentile) Spec=0.96 ft	
NVA	61.00	0.41		
VVA	52.00		0.58	

Table 8 – Tested NVA and VVA

This LiDAR dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 0.33 ft (10 cm) RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be $RMSE_z = 0.21$ ft (6. 40 cm), equating to +/- 0.41 ft (12.5 cm) at 95% confidence level. Actual VVA accuracy was found to be +/- 0.58 ft (17.7 cm) at the 95th percentile.

The figure below illustrates the magnitude of the differences between the QA/QC checkpoints and LiDAR data. This shows that the majority of LiDAR elevations were within +/- 0.20 ft of the checkpoints elevations, but there were some outliers where LiDAR and checkpoint elevations differed by up to +88 cm.

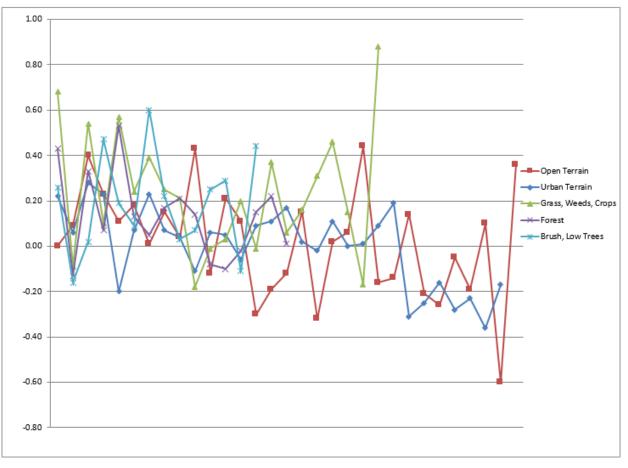


Figure 20 – Magnitude of elevation discrepancies per land cover category

Table 9 lists the 5% outliers that are larger than the VVA 95th percentile.

Point ID	• ·	1) VA State Plane South	NAVD88 (Geoid 12A)	DeltaZ	AbsDeltaZ	
	Easting X (ft)	Northing Y (ft)	Z-Survey (ft)	Z-LiDAR (ft)			
VVA-1	12210869.02	3837260.51	4.14	4.82	0.69	0.69	
VVA-30	12257694.47	3784904.87	4.16	4.76	0.60	0.60	
TWC34	12220365.83	3567544.09	4.32	5.20	0.88	0.88	

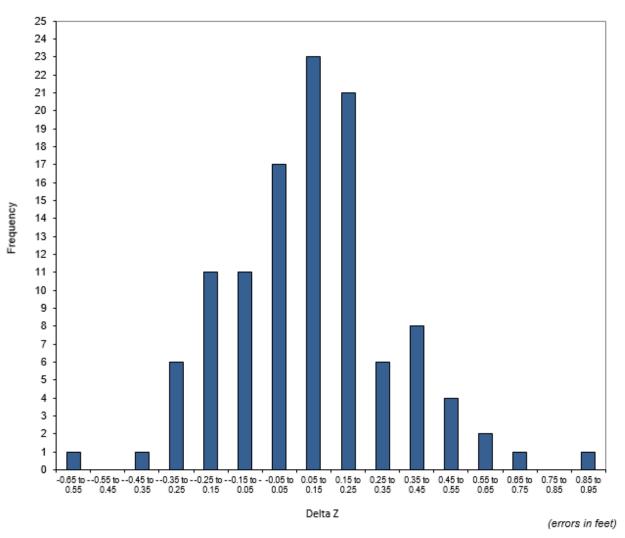

Table 9 - 5% Outliers

Table 10 provides overall descriptive statistics.

100 % of Totals	# of Points	RMSEz (ft) NVA Spec=0.33 ft	Mean (ft)	Median (ft)	Skew	Std Dev (ft)	Kurtosis	Min (ft)	Max (ft)
Open					-				
Terrain	31	0.24	0.02	0.04	-0.27	0.24	0.23	-0.60	0.44
Urban	30	0.17	0.00	0.04	-0.45	0.18	-0.70	-0.36	0.28
NVA	61	0.21	0.01	0.04	-0.28	0.21	0.19	-0.60	0.44
Tall Weeds and Crops	22	N/A	0.23	0.21	0.58	0.27	0.04	-0.18	0.88
Brush Lands and Trees	14	N/A	0.19	0.21	0.23	0.22	-0.43	-0.16	0.60
Forested and Fully Grown	16	N/A	0.13	0.13	0.62	0.19	0.06	-0.13	0.53
VVA	52	N/A	0.19	0.17	0.66	0.24	0.28	-0.18	0.88

 Table 10 – Overall Descriptive Statistics

The figure below illustrates a histogram of the associated elevation discrepancies between the QA/QC checkpoints and elevations interpolated from the LiDAR triangulated irregular network (TIN). The frequency shows the number of discrepancies within each band of elevation differences. Although the discrepancies vary between a low of -0.60 feet and a high of +0.88 feet, the histogram shows that the majority of the discrepancies are skewed on the positive side. The vast majority of points are within the ranges of -0.25 feet to +0.25 feet.

Checkpoints Error Distribution

Figure 21 - Histogram of Elevation Discrepancies with errors in feet

Based on the vertical accuracy testing conducted by Dewberry, the LiDAR dataset for the Eastern Shore VA LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

HORIZONTAL ACCURACY TEST PROCEDURES

Horizontal accuracy testing requires well-defined checkpoints that can be identified in the dataset. Elevation datasets, including LiDAR datasets, do not always contain well-defined checkpoints suitable for horizontal accuracy assessment. However, the ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) recommends at least half of the NVA vertical check points should be located at the ends of paint stripes or other point features visible on the LiDAR intensity image, allowing them to double as horizontal check points.

Dewberry reviews all NVA checkpoints to determine which, if any, of these checkpoints are located on photo-identifiable features in the intensity imagery. This subset of checkpoints are then used for horizontal accuracy testing.

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 38 of 157

The primary QA/QC horizontal accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications and tried to locate half of the NVA checkpoints on features photo-identifiable in the intensity imagery.
- 2. Next, Dewberry identified the well-defined features in the intensity imagery.
- 3. Dewberry then computed the associated xy-value differences between the coordinates of the well-defined feature in the LiDAR intensity imagery and the ground truth survey checkpoints.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. Horizontal accuracy was assessed using NSSDA methodology where horizontal accuracy is calculated at the 95% confidence level. This report provides the results of the horizontal accuracy testing.

HORIZONTAL ACCURACY RESULTS

Seventeen checkpoints were determined to be photo-identifiable in the intensity imagery and were used to test the horizontal accuracy of the LiDAR dataset. As only seventeen (17) checkpoints were photo-identifiable, the results are not statistically significant enough to report as a final tested value, but the results of the testing are still shown in the table below.

Using NSSDA methodology (endorsed by the ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014)), horizontal accuracy at the 95% confidence level (called ACCURACYr) is computed by the formula RMSEr * 1.7308 or RMSExy * 2.448.

No horizontal accuracy requirements or thresholds were provided for this project. However, LiDAR datasets are generally calibrated by methods designed to ensure a horizontal accuracy of 1 meter or less.

# of Points	RMSE _x (Spec=1.34 ft)	RMSEy (Spec=1.34 ft)	RMSEr (Spec=1.9 ft)	ACCURACYr (RMSEr x 1.7308) Spec=3.28 ft
17	0.83	0.91	1.23	2.13

Table 11-Tested horizontal accuracy at the 95% confidence level

Actual positional accuracy of this dataset was found to be RMSEx = 0.83 ft (25.3 cm) and RMSEy = 0.91 ft (27.7 cm) which equates to +/- 2.13 ft (64.9 cm) at 95% confidence level.

Breakline Production & Qualitative Assessment Report

BREAKLINE PRODUCTION METHODOLOGY

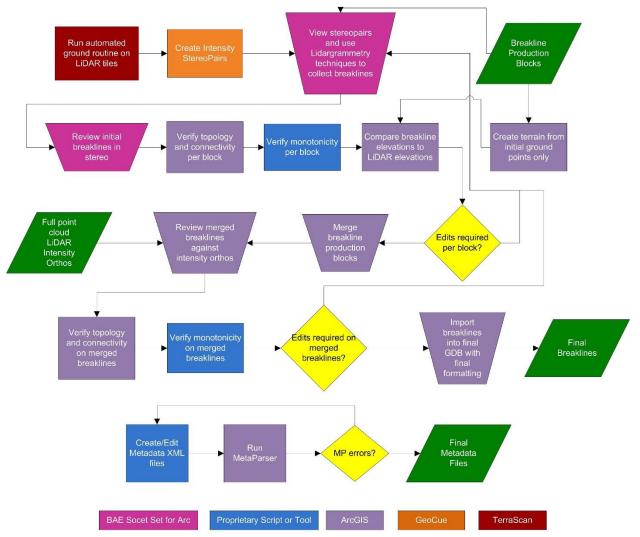
Dewberry used GeoCue software to develop LiDAR stereo models of the Eastern Shore VA LiDAR Project area so the LiDAR derived data could be viewed in 3-D stereo using Socet Set softcopy

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 39 of 157

photogrammetric software. Using LiDARgrammetry procedures with LiDAR intensity imagery, Dewberry used the stereo models developed by Dewberry to stereo-compile the two types of hard breaklines in accordance with the project's Data Dictionary.

Water bodies are reviewed in stereo and the lowest elevation is applied to the entire water body. Tidal breaklines may show tidal fluctuations but as much ground as possible is modeled in the dataset.

BREAKLINE QUALITATIVE ASSESSMENT


Dewberry completed breakline qualitative assessments according to a defined workflow. The following workflow diagram represents the steps taken by Dewberry to provide a thorough qualitative assessment of the breakline data.

Completeness and horizontal placement is verified through visual reviews against LiDAR intensity imagery. Automated checks are applied on all breakline features to validate topology, including the 3D connectivity of features, enforced monotonicity on linear hydrographic breaklines, and flatness on water bodies.

The next step is to compare the elevation of the breakline vertices against the ground elevation extracted from the ESRI Terrain built from the LiDAR ground points, keeping in mind that a discrepancy is expected because of the hydro-enforcement applied to the breaklines and because of the interpolated imagery used to acquire the breaklines. A given tolerance is used to validate if the elevations differ too much from the LiDAR.

After all corrections and edits to the breakline features, the breaklines are imported into the final GDB and verified for correct formatting.

Elevation Data Processing-Breaklines

Figure 22- Breakline QA/QC workflow

BREAKLINE CHECKLIST

The following table represents a portion of the high-level steps in Dewberry's Production and QA/QC checklist that were performed for this project.

Pass/Fail	Validation Step
Pass	Use intensity imagery, stereo pairs, and terrains to collect breaklines according to project specifications.
Pass	In areas of heavy vegetation or where the exact shoreline is hard to delineate, it is better to err on placing the breakline <i>slightly</i> inside or seaward of the shoreline (breakline can be inside shoreline by 1x-2x NPS).

Pass	After each producer finishes breakline collection for a block, each producer must perform a completeness check, breakline variance check, and all automated checks on their block before calling that block complete and ready for the final merge and QC
Pass	After breaklines are completed for production blocks, all production blocks should be merged together and all checks-completeness, breakline variance, and automated checks-should be performed on the final, merged GDB. Ensure correct snapping-horizontal (x,y) and vertical (z)-between all production blocks.
Pass	Check entire dataset for missing features that were not captured, but should be to meet baseline specifications or for consistency. Features should be collected consistently across tile bounds. Check that the horizontal placement of breaklines is correct. Breaklines should be compared to full point cloud intensity imagery and terrains
Pass	Breaklines are correctly edge-matched to adjoining datasets in completion, coding, and horizontal placement.
Pass	Using a terrain created from LiDAR ground (all ground including 2, 8, and 10) and water points (class 9), compare breakline Z values to interpolated LiDAR elevations.
Pass	Perform all Topology and Data Integrity Checks
Pass	Perform hydro-flattening and hydro-enforcement checks including monotonicity and flatness from bank to bank on linear hydrographic features and flatness of water bodies. Tidal waters should preserve as much ground as possible and can include variations or be non-monotonic.

 Table 12-A subset of the high-level steps from Dewberry's Production and QA/QC checklist performed for this project.

DATA DICTIONARY

The following data dictionary was used for this project.

Horizontal and Vertical Datum

The horizontal datum shall be North American Datum of 1983 (2011), Units in US Survey feet. The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88), Units in US Survey feet Geoid12a shall be used to convert ellipsoidal heights to orthometric heights.

Coordinate System and Projection

All data shall be projected to State Plane Virginia South, Horizontal Units in US Survey feet and Vertical Units in US Survey feet.

Inland Ponds and Lakes

Feature Dataset: BREAKLINES Feature Type: Polygon Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: PONDS_AND_LAKES Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

Description

This polygon feature class will depict closed water body features that are at a constant elevation.

Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
------------	--------------	-------------------------	------------------	--------	-----------	-------	--------	----------------

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 42 of 157

OBJECTID	Object ID					Assigned by Software
SHAPE	Geometry					Assigned by Software
SHAPE_LENGTH	Double	Yes		0	0	Calculated by Software
SHAPE_AREA	Double	Yes		0	0	Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Ponds and Lakes	Land/Water boundaries of constant elevation water bodies such as lakes, reservoirs, ponds, etc. Features shall be defined as closed polygons and contain an elevation value that reflects the best estimate of the water elevation at the time of data capture. Water body features will be captured for features 2 acres in size or greater. "Donuts" will exist where there are islands within a closed water body feature.	Water bodies shall be captured as closed polygons with the water feature to the right. <u>The compiler shall take care</u> to ensure that the z-value remains consistent for all vertices placed on the water body. Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually. An Island within a Closed Water Body Feature that is 1 acre in size or greater will also have a "donut polygon" compiled. These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly- indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 43 of 157

Tidal Waters

Feature Dataset: BREAKLINES Feature Type: Polygon Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: TIDAL_WATERS Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

Description

This polygon feature class will outline the land / water interface at the time of LiDAR acquisition.

Table Definition

Field Name	Data Type	Allow Null Values	Volue	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
SHAPE	Geometry							Assigned by Software
SHAPE_LENGTH	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
TIDAL_WATERS	The coastal breakline will delineate the land water interface using LiDAR data as reference. In flight line boundary areas with tidal variation the coastal shoreline may show stair stepping as no feathering is allowed. Stair stepping is allowed to show as much ground as the collected data permits.	The feature shall be extracted at the apparent land/water interface, as determined by the LiDAR intensity data, to the extent of the tile boundaries. Differences caused by tidal variation are acceptable and breaklines delineated should reflect that change with no feathering. Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water. Breaklines shall snap and merge seamlessly with linear hydrographic features.

DEM Production & Qualitative Assessment

DEM PRODUCTION METHODOLOGY

Dewberry utilized ESRI software and Global Mapper for the DEM production and QC process. ArcGIS software is used to generate the products and the QC is performed in both ArcGIS and Global Mapper. The figure below shows the entire process necessary for bare earth DEM production, starting from the LiDAR swath processing.

The final bare-earth LiDAR points are used to create a terrain. The final 3D breaklines collected for the project are also enforced in the terrain. The terrain is then converted to raster format using linear interpolation. For most projects, a single terrain/DEM can be created for the whole project. For very large projects, multiple terrains/DEMs may be created. The DEM(s) is reviewed for any issues requiring corrections, including remaining LiDAR mis-classifications, erroneous breakline elevations, poor hydro-flattening or hydro-enforcement, and processing artifacts. After corrections are applied, the DEM(s) is then split into individual tiles following the project tiling scheme. The tiles are verified for final formatting and then loaded into Global Mapper to ensure no missing or corrupt tiles and to ensure seamlessness across tile boundaries.

Figure 23-DEM Production Workflow

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 46 of 157

DEM QUALITATIVE ASSESSMENT

Dewberry performed a comprehensive qualitative assessment of the bare earth DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. This process was performed in ArcGIS software with the use of a tool set Dewberry has developed to verify that the raster extents match those of the tile grid and contain the correct projection information. The DEM data was reviewed at a scale of 1:5000 to review for artifacts caused by the DEM generation process and to review the hydro-flattened features. To perform this review Dewberry creates HillShade models and overlays a partially transparent colorized elevation model to review for these issues. All corrections are completed using Dewberry's proprietary correction workflow. Upon completion of the corrections, the DEM data is loaded into Global Mapper for its second review and to verify corrections. Once the DEMs are tiled out, the final tiles are again loaded into Global Mapper to ensure coverage, extents, and that the final tiles are seamless.

The image below show an example of a bare earth DEM.

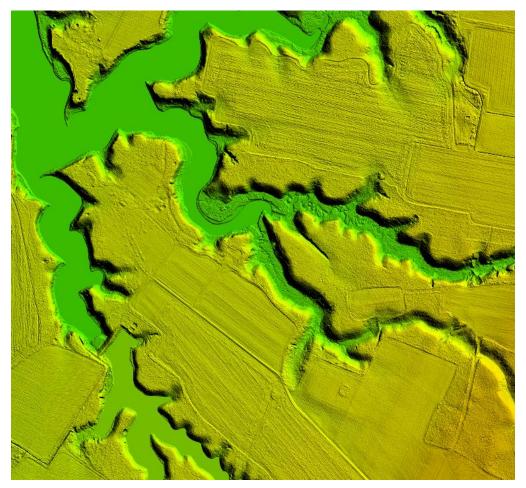


Figure 24-Tile DEM_S23_2627_40. The bare earth DEM

DEM VERTICAL ACCURACY RESULTS

The same 113 checkpoints that were used to test the vertical accuracy of the LiDAR were used to validate the vertical accuracy of the final DEM products as well. Accuracy results may vary between the source LiDAR and final DEM deliverable. DEMs are created by averaging several LiDAR points within each pixel which may result in slightly different elevation values at each survey checkpoint when compared to the source LAS, which does not average several LiDAR points together but may interpolate (linearly) between two or three points to derive an elevation value. The vertical accuracy of the DEM is tested by extracting the elevation of the pixel that contains the x/y coordinates of the checkpoint and comparing these DEM elevations to the surveyed elevations.

Table 13 summarizes the tested vertical accuracy results from a comparison of the surveyed checkpoints to the elevation values present within the final DEM dataset.

Land Cover Category	# of Points	Accuracy (RMSE _z x	VVA – Vegetated Vertical Accuracy (95th Percentile) Spec=0.96 ft		
NVA	61.00	0.40			
VVA	52.00		0.60		

Table 13 - DEM tested NVA and VVA

This DEM dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 0.33 ft (10 cm) RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be $RMSE_z = 0.20$ ft (6.10 cm), equating to +/- 0.40 ft (12.19 cm) at 95% confidence level. Actual VVA accuracy was found to be +/- 0.60 ft (18.28 cm) at the 95th percentile.

Table 14 lists the 5% outliers that are larger than the VVA 95th percentile.

Point) VA State Plane outh	NAVD88 (G	eoid 12A)	DeltaZ	AbsDeltaZ	
ID	Easting X (ft) Northing Y (ft)		Z-Survey (ft)	Z-LiDAR (ft)	DertaZ	ADSDCITaZ	
VVA-1	12210869.02	3837260.51	4.14	4.83	0.700	0.700	
VVA-7	12377291.990	3879672.010	0.600	1.220	0.620	0.620	
TWC34	12220365.83	3567544.09	4.32	5.19	0.870	0.870	

Table 14 - 5% Outliers

Table 15 provides overall descriptive statistics.

100 % of Totals	# of Points	RMSEz (ft) NVA Spec=0.33 ft	Mean (ft)	Median (ft)	Skew	Std Dev (ft)	Kurtosis	Min (ft)	Max (ft)
Open Terrain	31	0.23	0.01	0.03	-0.33	0.23	0.14	-0.58	0.41
Urban	30	0.17	-0.01	0.04	-0.55	0.18	-0.58	-0.38	0.28
NVA	61	0.20	0.00	0.045	-0.35	0.20	0.06	-0.58	0.41
Tall Weeds/Crops	22	N/A	0.24	0.22	0.36	0.29	-0.11	-0.29	0.87
Brush Lands and Trees	14	N/A	0.18	0.20	0.03	0.21	-0.70	-0.15	0.53

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 48 of 157

Forested and Fully Grown	16	N/A	0.13	0.12	0.59	0.19	0.43	-0.16	0.56	
VVA	52	N/A	0.19	0.18	0.52	0.24	0.24	-0.29	0.87	

Table 15 – Overall Descriptive Statistics

Based on the vertical accuracy testing conducted by Dewberry, the DEM dataset for the Eastern Shore VA LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

DEM CHECKLIST

The following table represents a portion of the high-level steps in Dewberry's bare earth DEM Production and QA/QC checklist that were performed for this project.

Pass/Fai l	Validation Step					
Pass	Masspoints (LAS to multipoint) are created from ground points only (class 2 and class 8 if model key points created, but no class 10 ignored ground points or class 9 water points					
Pass	Create a terrain for each production block using the final bare earth LiDAR points and final breaklines.					
Pass	Convert terrains to rasters using project specifications for grid type, formatting, and cell size					
Pass	Create hillshades for all DEMs					
Pass	Manually review bare-earth DEMs in ArcMap with hillshades to check for issues					
Pass	DEMs should be hydro-flattened or hydro-enforced as required by project specifications					
Pass	DEMs should be seamless across tile boundaries					
Pass	Water should be flowing downhill without excessive water artifacts present					
Pass	Water features should NOT be floating above surrounding					
Pass	Bridges should NOT be present in bare-earth DEMs.					
Pass	Any remaining bridge saddles where below bridge breaklines were not used need to be fixed by adding below bridge breaklines and re-processing.					
Pass	All qualitative issues present in the DEMs as a result of LiDAR processing and editing issues must be marked for corrections in the LiDAR These DEMs will need to be recreated after the LiDAR has been corrected.					
Pass	Calculate DEM Vertical Accuracy including NVA, VVA, and other statistics					
Pass	Split the DEMs into tiles according to the project tiling scheme					
Pass	Verify all properties of the tiled DEMs, including coordinate reference system information, cell size, cell extents, and that compression has not been applied to the tiled DEMs					
Pass	Load all tiled DEMs into Global Mapper to verify complete coverage to the (buffered) project boundary and that no tiles are corrupt.					

Table 16-A subset of the high-level steps from Dewberry's bare earth DEM Production and QA/QC checklist performed for this project.

Appendix A: Survey Report

1. INTRODUCTION

1.1 Project Summary

Dewberry Consultants LLC is under contract to the United States Geological Survey to provide 110 Check Points in the State of Virginia. Under the above referenced USGS Task Order, Dewberry is tasked to complete the quality assurance of LiDAR products. As part of this work Dewberry staff will complete Check Point surveys that will be used to evaluate vertical and horizontal accuracy. The ground survey was conducted May 11 to May 15, 2015.

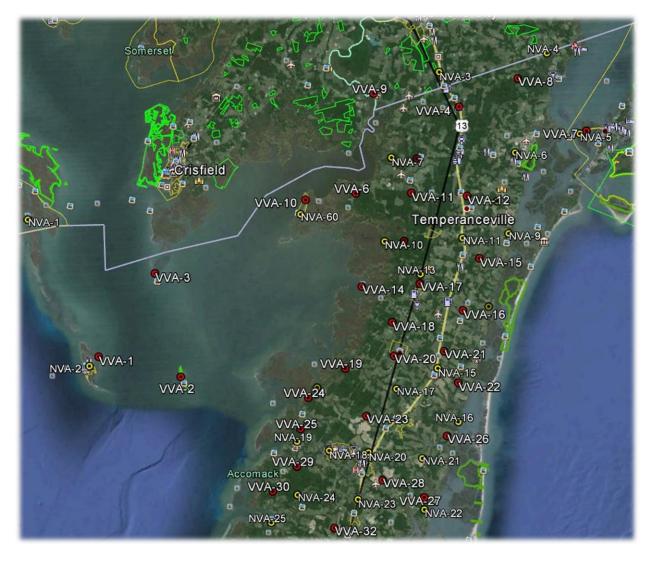
Existing NGS Control Points were located and surveyed to check the accuracy of the RTK/GPS survey equipment with the results shown in Section 2.4 of this Report.

As an internal QA/QC procedure and to verify that the Check Points meet the 95% confidence level approximately 50% of the points were re-observed and are shown in Section 5 of this report.

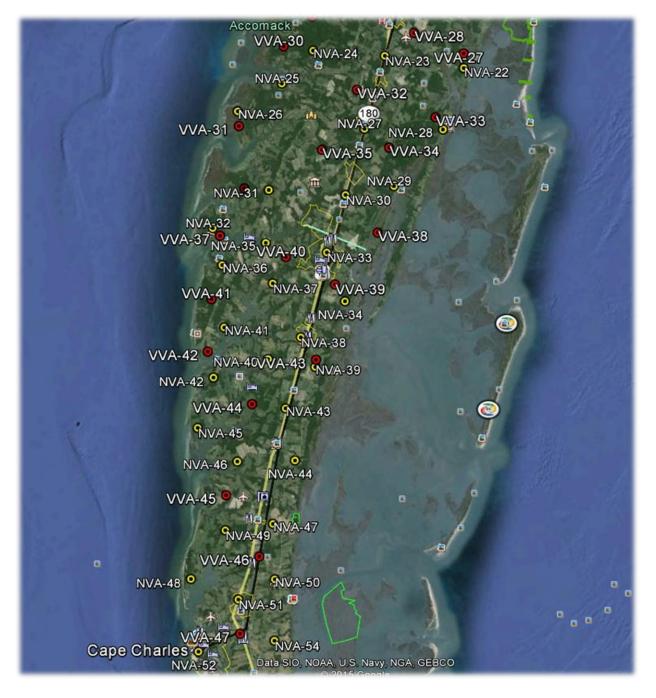
Final horizontal coordinates are referenced to UTM Zone 18, NAD83 in feet. Final Vertical elevations are referenced to NAVD88 in feet using Geoid model 2012A (Geoid12A).

1.2 Points of Contact

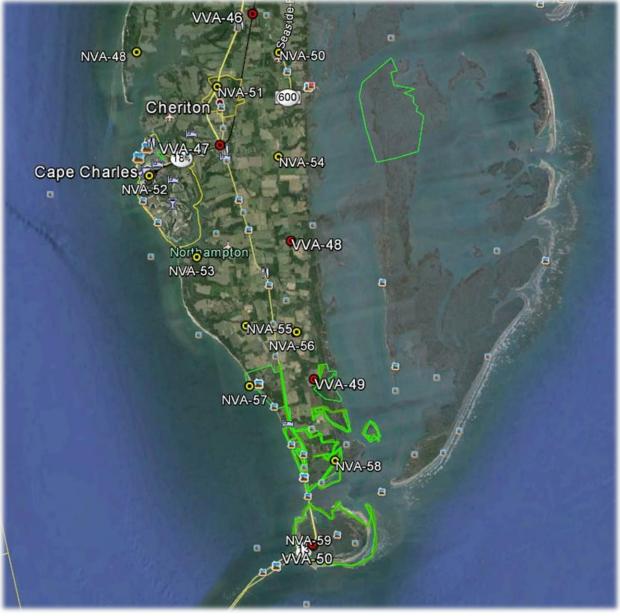
Questions regarding the technical aspects of this report should be addressed to:


Dewberry Consultants LLC

Gary D. Simpson, L.S. Senior Associate 10003 Derekwood Lane Suite 204 Lanham, Maryland 20706 (301) 364-1855 direct (301) 731-0188 fax


1.3 Project Area

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 50 of 157



Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 51 of 157

Dewberry

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 52 of 157

2. PROJECT DETAILS

2.1 Survey Equipment

In performing the GPS observations Trimble R-10 GNSS receiver/antenna attached to a two meter fixed height pole with a Trimble TSC3 Data Collector to collect GPS raw data were used to perform the field surveys.

2.2 Survey Point Detail

The 110 LiDAR Check Points were well distributed throughout the project area.

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 53 of 157

A sketch was made for each location and a nail was set at the point where possible or at an identifiable point. The Check Point locations are detailed on the "Control Point Documentation Report" sheets attached to this report.

2.3 Network Design

The GPS survey performed by Dewberry Consultants LLC office located in Lanham, MD was tied to a Real Time Network (RTN) managed by KEYNET GPS, Inc. The network is a series of "real-time" continuously operating, high precision GPS reference stations. All of the reference stations have been linked together using Trimble GPSNet software, creating a Virtual Reference Station System (VRS).

The Trimble NetR5 Reference Station is a multi-channel, multi-frequency GNSS (Global Navigation Satellite System) receiver designed for use as a stand-alone reference station or as part of a GNSS infrastructure solution. Trimble R-Track technology in the NetR5 receiver supports the modernized GPS L2C and L5 signals as well as GLONASS L1/L2 signals.

2.4 Field Survey Procedures and Analysis

Dewberry field surveyors used Trimble R-10 GNSS receivers, which is a geodetic quality dual frequency GPS receiver, to collect data at each surveyed location.

All locations were occupied once with approximately 50% of the locations being reobserved. All re-observations matched the initially derived station positions within the allowable tolerance of \pm 5cm or within the 95% confidence level. Each occupation which utilized the VRS network was occupied for approximately three (3) minutes in duration and measured to 180 epochs.

Each occupation which utilized OPUS (if used) was occupied between 18 and 20 minutes.

Field GPS observations are detailed on the "Ground Control Point Documentation Reports" submitted as part of this report.

There (3) existing NGS monuments listed in the NSRS database and one (1) aerial acquisition firm control point were located as an additional QA/QC method to check the accuracy of the VRS network as well as being the primary project control monuments designated as W 420, NELSON, ACCOMAC RESET and REBAR 1. The results are as follows:

	As Surveyed (ft)		Published (ft)			Differences (ft)			
NGS PT. ID	Northing(ft)	Easting(ft)	Elev.(ft)	Northing(ft)	Easting(ft)	Elev.(ft)	ΔN	ΔΕ	Δ Elev.
W420	N/A	N/A	3.08	N/A	N/A	3.13	N/A	N/A	0.05
NELSON	13799401.38	1484775.42	31.28	13799401.40	1484775.50	31.27	0.02	0.07	0.01
ACCOMAC									
RESET	13696368.85	1445299.97	N/A	13696368.85	1445299.92	44.25	0.01	0.05	N/A
REBAR 1	13544408.85	1369407.22	30.46	13544408.79	1369407.28	N/A	0.06	0.06	N/A

The above results indicate that the VRS network is providing positional values within the 5cm parameters for this survey.

2.5 Adjustment

The survey data was collected using Virtual Reference Stations (VRS) methodology within a Virtual Reference System (VRS).

The system is designed to provide a true Network RTK performance, the RTKNet software enables high-accuracy positioning in real time across a geographic region. The RTKNet software package uses real-time data streams from the KEYNET system user and generates correction models for high-accuracy RTK GPS corrections throughout the network. Therefore, corrections were applied to the points as they were being collected, thus negating the need for a post process adjustment.

2.6 Data Processing Procedures

After field data is collected the information is downloaded from the data collectors into the office software. The Software program used is called TBC or Trimble Business Center.

Downloaded data is run through the TBC program to obtain the following reports; points report, point comparison report and a point detail report. The reports are reviewed for point accuracy and precision.

After review of the point data an "ASCII" or "txt" file which is the industry standard is created. Point files are loaded into our CADD program (Carlson Survey 2014) to make a visual check of the point data (Pt. #, Coordinates, Elev. and Description). The data can now be imported into the final product.

POINT #	NORTHING (ft)	EASTING (ft)	ELEV. (ft)				
	NVA CHECK POINTS						
NVA-1	13787544.72	1345061.37	1.34				
NVA-2	13737576.97	1354141.25	3.40				
NVA-3	13804535.78	1483754.54	20.50				
NVA-4	13802938.37	1518716.14	31.45				
NVA-5	13775338.62	1521649.52	4.06				
NVA-6	13774225.72	1501825.31	32.15				
NVA-7	13781284.79	1462880.68	6.35				
NVA-8	13760385.06	1492788.87	32.21				
NVA-9	13749645.45	1493971.62	16.79				
NVA-10	13755749.08	1454915.20	1.99				
NVA-11	13751688.65	1479341.61	46.07				
NVA-12	13728349.88	1482757.49	15.68				
NVA-13	13740538.80	1462405.07	22.50				

3. FINAL COORDINATES

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 55 of 157

NVA-14	13715068.25	1423672.01	3.29
NVA-15	13716376.57	1457539.03	41.11
NVA-16	13694591.10	1465288.41	4.25
NVA-17	13709144.25	1448301.98	38.90
NVA-18	13694709.28	1422978.56	13.77
NVA-19	13699849.12	1413593.59	4.44
NVA-20	13691366.38	1435139.99	42.81
NVA-21	13685801.16	1451522.49	18.91
NVA-22	13669719.87	1448584.00	8.15
NVA-23	13677530.24	1428586.66	49.83
NVA-24	13683206.34	1410161.85	9.54
NVA-25	13676039.67	1399787.10	5.85
NVA-26	13671648.26	1386750.83	3.58
NVA-27	13659633.88	1418965.56	41.39
NVA-28	13654573.59	1439881.17	7.60
NVA-29	13643047.34	1423396.80	8.54
NVA-30	13643465.21	1410046.59	32.98
NVA-31	13649231.57	1390298.90	22.64
NVA-32	13641526.45	1373079.19	2.88
NVA-33	13629535.20	1401795.83	36.71
NVA-34	13616989.25	1400880.55	28.94
NVA-35	13635649.31	1386370.80	3.69
NVA-36	13632340.72	1373626.86	4.39
NVA-37	13624607.26	1385808.85	23.50
NVA-38	13608870.92	1389982.92	34.41
NVA-39	13600301.49	1392043.70	31.47
NVA-40	13605115.06	1380143.36	20.84
NVA-41	13614694.74	1370379.71	18.86
NVA-42	13599588.29	1369827.79	17.69
NVA-43	13591096.27	1382010.54	38.61
NVA-44	13578066.06	1382513.43	28.84
NVA-45	13591275.12	1357653.54	10.57
NVA-46	13581277.83	1362330.87	17.97
NVA-47	13561751.38	1371720.52	33.42
NVA-48	13555468.16	1348538.92	7.50
NVA-49	13561564.46	1364642.16	28.07
NVA-50	13548074.67	1363682.22	37.85
NVA-51	13540793.69	1360795.58	34.49

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 56 of 157

0 0I 157			
NVA-52	13532703.53	1344629.83	6.56
NVA-53	13518511.52	1349412.03	7.97
NVA-54	13531314.14	1365213.32	32.54
NVA-55	13506310.57	1354342.76	34.74
NVA-56	13503572.78	1362045.54	26.16
NVA-57	13496860.40	1352829.53	8.20
NVA-58	13482536.60	1363344.19	4.48
NVA-59	13470126.21	1357158.95	11.88
NVA-60	13770426.82	1429938.34	5.57
	VVA CHECI	C POINTS	
VVA-1	13739949.46	1357750.56	4.14
VVA-2	13725921.77	1382691.12	3.12
VVA-3	13761818.33	1381112.05	1.10
VVA-4	13792377.41	1487545.35	20.77
VVA-5	13779174.95	1470756.86	12.56
VVA-6	13772667.10	1449295.26	3.22
VVA-7	13776136.53	1525577.46	0.60
VVA-8	13797469.73	1507918.44	34.53
VVA-9	13802503.13	1461718.62	2.34
VVA-10	13774156.44	1433140.04	2.04
VVA-11	13769105.05	1466753.75	8.07
VVA-12	13764221.50	1483665.24	38.72
VVA-13	13755181.12	1461271.37	2.94
VVA-14	13743348.53	1444602.19	3.34
VVA-15	13752593.71	1490559.47	36.85
VVA-16	13728875.89	1474469.29	38.17
VVA-17	13741109.30	1466001.15	34.01
VVA-18	13730066.09	1451622.03	10.26
VVA-19	13718587.96	1434164.42	4.53
VVA-20	13719563.99	1449951.12	33.22
VVA-21	13717764.78	1465625.79	39.17
VVA-22	13707103.33	1467188.27	16.84
VVA-23	13702843.64	1436904.84	28.62
VVA-24	13713034.97	1420333.73	1.63
VVA-25	13705884.89	1415374.41	2.03
VVA-26	13690830.08	1460668.19	13.65
VVA-27	13673470.77	1449388.20	6.10
VVA-28	13681814.29	1437636.66	39.07

Dewberry

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 57 of 157

VVA-29	13692053.05	1411728.08	7.14
VVA-30	13685906.03	1402585.45	4.16
VVA-31	13667700.33	1386186.14	1.75
VVA-32	13671186.54	1418864.70	44.90
VVA-33	13658468.55	1438041.21	7.20
VVA-34	13653184.58	1424317.10	14.68
VVA-35	13656545.62	1406587.62	38.76
VVA-36	13651563.07	1383130.93	6.55
VVA-37	13641884.77	1379969.41	9.36
VVA-38	13631742.52	1416338.33	4.07
VVA-39	13620741.99	1402023.09	35.05
VVA-40	13630700.74	1390788.65	27.82
VVA-41	13624139.43	1368679.46	14.08
VVA-42	13610604.02	1364759.03	13.83
VVA-43	13602086.11	1392690.19	29.75
VVA-44	13594195.65	1373160.63	18.03
VVA-45	13571983.39	1360795.94	14.62
VVA-46	13554148.09	1366204.57	36.30
VVA-47	13536226.63	1357386.05	19.26
VVA-48	13518684.74	1364228.13	31.78
VVA-49	13495644.01	1359319.15	29.83
VVA-50	13470330.59	1357035.00	8.01

4. GPS OBSERVATIONS

	VIRGINIA EASTERN SHORE LIDAR QA					
			TIME OF	RE-OBSERV.	RE-OBSERV.	
POINT ID	OBSERV. DATE	JULIAN DATE	DAY (PST)	DATE	TIME	
NVA-1	5/12/2015	132	17:12	N/A	N/A	
NVA-2	5/12/2015	132	10:10	N/A	N/A	
NVA-3	5/11/2015	131	6:40	5/11/2015	17:29	
NVA-4	5/11/2015	131	16:20	N/A	N/A	
NVA-5	5/13/2015	133	12:27	N/A	N/A	
NVA-6	5/13/2015	133	12:46	N/A	N/A	
NVA-7	5/11/2015	131	7:35	N/A	N/A	
NVA-8	5/13/2015	133	14:34	N/A	N/A	
NVA-9	5/13/2015	133	15:13	N/A	N/A	
NVA-10	5/11/2015	131	8:35	5/11/2015	19:26	

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 58 of 157

NVA-11	5/11/2015	131	9:15	5/11/2015	20:51
NVA-12	5/13/2015	133	17:12	5/14/2015	7:09
NVA-13	5/11/2015	131	10:45	5/14/2015	20:19
NVA-14	5/14/2015	134	10:39	N/A	N/A
NVA-15	5/11/2015	131	10:15	N/A	N/A
NVA-16	5/13/2015	133	18:31	5/14/2015	19:56
NVA-17	5/11/2015	131	12:20	5/14/2015	5:08
NVA-18	5/14/2015	134	12:03	N/A	N/A
NVA-19	5/14/2015	134	11:41	N/A	N/A
NVA-20	5/13/2015	133	20:06	5/14/2015	18:58
NVA-21	5/13/2015	133	19:10	5/14/2015	19:16
NVA-22	5/13/2015	133	19:40	N/A	N/A
NVA-23	5/14/2015	134	16:06	5/14/2015	18:10
NVA-24	5/14/2015	134	13:12	5/14/2015	18:33
NVA-25	5/14/2015	134	13:38	N/A	N/A
NVA-26	5/14/2015	134	14:19	5/15/2015	6:12
NVA-27	5/14/2015	134	15:29	5/15/2015	6:49
NVA-28	5/14/2015	134	17:01	N/A	N/A
NVA-29	5/14/2015	134	15:12	5/15/2015	7:51
NVA-30	5/14/2015	134	14:44	5/15/2015	7:19
NVA-31	5/13/2015	133	12:25	5/13/2015	20:29
NVA-32	5/13/2015	133	13:09	5/13/2015	20:51
NVA-33	5/13/2015	133	16:30	N/A	N/A
NVA-34	5/13/2015	133	17:25	5/14/2015	5:21
NVA-35	5/13/2015	133	14:22	5/13/2015	21:09
NVA-36	5/13/2015	133	14:55	5/13/2015	21:23
NVA-37	5/13/2015	133	14:39	N/A	N/A
NVA-38	5/13/2015	133	17:44	5/14/2015	5:41
NVA-39	5/13/2015	133	19:42	5/14/2015	6:28
NVA-40	5/13/2015	133	18:28	N/A	N/A
NVA-41	5/13/2015	133	15:43	5/13/2015	22:10
NVA-42	5/13/2015	133	18:45	5/14/2015	7:01
NVA-43	5/13/2015	133	19:28	5/14/2015	22:15
NVA-44	5/14/2015	134	7:45	N/A	N/A
NVA-45	5/13/2015	133	19:00	N/A	N/A
NVA-46	5/14/2015	134	8:18	5/14/2015	21:59
NVA-47	5/14/2015	134	9:24	5/14/2015	20:49
NVA-48	5/14/2015	134	10:25	N/A	N/A

Dewberry

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 59 of 157

NVA-49	5/14/2015	134	9:52	5/14/2015	21:10
NVA-50	5/14/2015	134	11:26	5/14/2015	20:07
NVA-51	5/14/2015	134	12:19	5/14/2015	19:49
NVA-52	5/14/2015	134	12:50	5/14/2015	19:33
NVA-53	5/14/2015	134	15:12	N/A	N/A
NVA-54	5/14/2015	134	14:05	5/14/2015	18:51
NVA-55	5/14/2015	134	15:40	N/A	N/A
NVA-56	5/14/2015	134	16:05	N/A	N/A
NVA-57	5/14/2015	134	16:36	N/A	N/A
NVA-58	5/14/2015	134	17:30	N/A	N/A
NVA-59	5/14/2015	134	18:23	N/A	N/A
NVA-60	5/11/2015	131	13:45	5/11/2015	18:51
VVA-1	5/12/2015	132	9:50	N/A	N/A
VVA-2	5/12/2015	132	11:35	N/A	N/A
VVA-3	5/12/2015	132	14:10	N/A	N/A
VVA-4	5/11/2015	131	6:56	5/11/2015	17:11
VVA-5	5/11/2015	131	7:22	N/A	N/A
VVA-6	5/11/2015	131	7:50	5/11/2015	18:15
VVA-7	5/13/2015	133	12:13	N/A	N/A
VVA-8	5/11/2015	131	16:45	N/A	N/A
VVA-9	5/11/2015	131	14:20	5/11/2015	17:43
VVA-10	5/11/2015	131	13:30	5/11/2015	18:39
VVA-11	5/11/2015	131	13:10	N/A	N/A
VVA-12	5/13/2015	133	14:19	5/14/2015	7:59
VVA-13	5/11/2015	131	12:55	N/A	N/A
VVA-14	5/14/2015	134	8:49	N/A	N/A
VVA-15	5/13/2015	133	15:27	5/14/2015	7:29
VVA-16	5/13/2015	133	15:54	5/14/2015	6:42
VVA-17	5/11/2015	131	12:45	5/11/2015	20:10
VVA-18	5/14/2015	134	9:37	N/A	N/A
VVA-19	5/14/2015	134	10:00	N/A	N/A
VVA-20	5/13/2015	133	17:02	5/14/2015	5:33
VVA-21	5/13/2015	133	16:37	5/14/2015	5:49
VVA-22	5/13/2015	133	17:25	5/14/2015	6:09
VVA-23	5/13/2015	133	17:46	N/A	N/A
VVA-24	5/14/2015	134	11:00	N/A	N/A
VVA-25	5/14/2015	134	11:24	N/A	N/A
VVA-26	5/13/2015	133	18:51	5/14/2015	19:31

Dewberry

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 60 of 157

VVA-27	5/13/2015	133	19:27	N/A	N/A
VVA-28	5/13/2015	133	16:31	5/14/2015	18:59
VVA-29	5/14/2015	134	12:26	N/A	N/A
VVA-30	5/14/2015	134	12:54	N/A	N/A
VVA-31	5/14/2015	134	13:58	5/15/2015	6:31
VVA-32	5/14/2015	134	15:49	5/14/2015	17:46
VVA-33	5/13/2015	133	10:48	N/A	N/A
VVA-34	5/13/2015	133	11:13	N/A	N/A
VVA-35	5/13/2015	133	11:50	N/A	N/A
VVA-36	5/13/2015	133	12:52	5/13/2015	20:10
VVA-37	5/13/2015	133	13:20	N/A	N/A
VVA-38	5/13/2015	133	16:56	N/A	N/A
VVA-39	5/13/2015	133	17:14	N/A	N/A
VVA-40	5/13/2015	133	13:54	N/A	N/A
VVA-41	5/13/2015	133	15:24	5/13/2015	21:46
VVA-42	5/13/2015	133	16:03	5/14/2015	6:10
VVA-43	5/13/2015	133	18:10	N/A	N/A
VVA-44	5/13/2015	133	19:16	N/A	N/A
VVA-45	5/14/2015	134	8:52	5/14/2015	21:29
VVA-46	5/14/2015	134	10:57	5/14/2015	20:31
VVA-47	5/14/2015	134	13:36	5/14/2015	19:13
VVA-48	5/14/2015	134	14:32	N/A	N/A
VVA-49	5/14/2015	134	17:01	N/A	N/A
VVA-50	5/14/2015	134	17:59	N/A	N/A

5. POINT COMPARISON

LiDAR QA						
POINT ID	POINT CK	DELTA NORTH (ft)	DELTA EAST (ft)	VERT. DIFF (ft)		
NVA-3	NVA-3CK	0.00	0.01	0.00		
NVA-10	NVA-10CK	0.02	0.03	0.10		
NVA-11	NVA-11CK	0.02	0.00	0.03		
NVA-12	NVA-12CK	0.01	0.01	0.04		
NVA-13	NVA-13CK	0.01	0.01	0.01		
NVA-16	NVA-16CK	0.03	0.01	0.01		
NVA-17	NVA-17CK	0.01	0.03	0.04		
NVA-20	NVA-20CK	0.02	0.00	0.00		
NVA-21	NVA-21CK	0.01	0.00	0.05		
NVA-23	NVA-23CK	0.02	0.02	0.04		

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 61 of 157

NVA-24	NVA-24CK	0.01	0.01	0.01
NVA-26	NVA-26CK	0.01	0.01	0.03
NVA-27	NVA-27CK	0.02	0.04	0.02
NVA-29	NVA-29CK	0.01	0.00	0.03
NVA-30	NVA-30CK	0.01	0.03	0.01
NVA-31	NVA-31CK	0.01	0.01	0.03
NVA-32	NVA-32CK	0.02	0.00	0.01
NVA-34	NVA-34CK	0.01	0.01	0.03
NVA-35	NVA-35CK	0.00	0.00	0.00
NVA-36	NVA-36CK	0.03	0.03	0.01
NVA-38	NVA-38CK	0.02	0.02	0.04
NVA-39	NVA-39CK	0.01	0.00	0.05
NVA-41	NVA-41CK	0.00	0.00	0.03
NVA-42	NVA-42CK	0.01	0.03	0.00
NVA-43	NVA-43CK	0.00	0.02	0.01
NVA-46	NVA-46CK	0.03	0.04	0.04
NVA-47	NVA-47CK	0.01	0.03	0.03
NVA-49	NVA-49CK	0.04	0.04	0.05
NVA-50	NVA-50CK	0.07	0.06	0.04
NVA-51	NVA-51CK	0.04	0.05	0.05
NVA-52	NVA-52CK	0.06	0.04	0.07
NVA-54	NVA-54CK	0.07	0.07	0.04
NVA-60	NVA-60CK	0.01	0.00	0.01
VVA-4	VVA-4CK	0.00	0.01	0.01
VVA-6	VVA-6CK	0.01	0.01	0.02
VVA-9	VVA-9CK	0.00	0.02	0.05
VVA-10	VVA-10CK	0.01	0.00	0.03
VVA-12	VVA-12CK	0.00	0.00	0.00
VVA-15	VVA-15CK	0.01	0.02	0.01
VVA-16	VVA-16CK	0.02	0.03	0.01
VVA-17	VVA-17CK	0.03	0.03	0.01
VVA-20	VVA-20CK	0.04	0.01	0.04
VVA-21	VVA-21CK	0.01	0.01	0.04
VVA-22	VVA-22CK	0.00	0.01	0.02
VVA-26	VVA-26CK	0.01	0.01	0.04
VVA-28	VVA-28CK	0.00	0.01	0.03
VVA-31	VVA-31CK	0.00	0.03	0.03
VVA-32	VVA-32CK	0.02	0.02	0.02

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 62 of 157

VVA-36	VVA-36CK	0.02	0.02	0.05
VVA-41	VVA-41CK	0.01	0.04	0.06
VVA-42	VVA-42CK	0.02	0.03	0.04
VVA-45	VVA-45CK	0.03	0.05	0.06
VVA-46	VVA-46CK	0.09	0.08	0.09
VVA-47	VVA-47CK	0.05	0.09	0.05

Appendix B: Complete List of Delivered Tiles

LAS_S23_1888_40	LAS_S23_3725_10	LAS_S23_2687_20	LAS_S23_2745_10
LAS_S23_1896_10	LAS_S23_3725_20	LAS_S23_2688_10	LAS_S23_2745_20
LAS_S23_1896_20	LAS_S23_3726_10	LAS_S23_2688_20	LAS_S23_2746_10
LAS_S23_1897_10	LAS_S23_3726_20	LAS_S23_2689_10	LAS_S23_2746_20
LAS_S23_1897_20	LAS_S23_3727_10	LAS_S23_2689_20	LAS_S23_2747_10
LAS_S23_1898_10	LAS_S23_3727_20	LAS_S23_2780_10	LAS_S23_2747_20
LAS_S23_1895_30	LAS_S23_3728_10	LAS_S23_2780_20	LAS_S23_2748_10
LAS_S23_1896_40	LAS_S23_3728_20	LAS_S23_2781_10	LAS_S23_2748_20
LAS_S23_1896_30	LAS_S23_3729_10	LAS_S23_2781_20	LAS_S23_2749_10
LAS_S23_1897_40	LAS_S23_3729_20	LAS_S23_2782_10	LAS_S23_2749_20
LAS_S23_1897_30	LAS_S23_3820_10	LAS_S23_2782_20	LAS_S23_2547_30
LAS_S23_1898_40	LAS_S23_3820_20	LAS_S23_2783_10	LAS_S23_2548_40
LAS_S23_2600_10	LAS_S23_3821_10	LAS_S23_2783_20	LAS_S23_2548_30
LAS_S23_2600_20	LAS_S23_3821_20	LAS_S23_2784_10	LAS_S23_2549_40
LAS_S23_2601_10	LAS_S23_3822_10	LAS_S23_2784_20	LAS_S23_2549_30
LAS_S23_2601_20	LAS_S23_3822_20	LAS_S23_2785_10	LAS_S23_2640_40
LAS_S23_2602_10	LAS_S23_3823_10	LAS_S23_2785_20	LAS_S23_2640_30
LAS_S23_2602_20	LAS_S23_3823_20	LAS_S23_2786_10	LAS_S23_2641_40
LAS_S23_2603_10	LAS_S23_3824_10	LAS_S23_2786_20	LAS_S23_2641_30
LAS_S23_2603_20	LAS_S23_3824_20	LAS_S23_2787_10	LAS_S23_2642_40
LAS_S23_2604_10	LAS_S23_3825_10	LAS_S23_2787_20	LAS_S23_2642_30
LAS_S23_2604_20	LAS_S23_3825_20	LAS_S23_2788_10	LAS_S23_2643_40
LAS_S23_2605_10	LAS_S23_3826_10	LAS_S23_2788_20	LAS_S23_2643_30
LAS_S23_2605_20	LAS_S23_3826_20	LAS_S23_2789_10	LAS_S23_2644_40
LAS_S23_2606_10	LAS_S23_3827_10	LAS_S23_2789_20	LAS_S23_2644_30
LAS_S23_2606_20	LAS_S23_3827_20	LAS_S23_2880_10	LAS_S23_2645_40
LAS_S23_2802_20	LAS_S23_3828_10	LAS_S23_2880_20	LAS_S23_2645_30
LAS_S23_2803_10	LAS_S23_3828_20	LAS_S23_2881_10	LAS_S23_2646_40
LAS_S23_2803_20	LAS_S23_3829_10	LAS_S23_2881_20	LAS_S23_2646_30
LAS_S23_2804_10	LAS_S23_3829_20	LAS_S23_2882_10	LAS_S23_2647_40
LAS_S23_2804_20	LAS_S23_3920_10	LAS_S23_2882_20	LAS_S23_2647_30
LAS_S23_2805_10	LAS_S23_3920_20	LAS_S23_2883_10	LAS_S23_2648_40
LAS_S23_2805_20	LAS_S23_3723_30	LAS_S23_2883_20	LAS_S23_2648_30
LAS_S23_2806_20	LAS_S23_3724_40	LAS_S23_2884_10	LAS_S23_2649_40
LAS_S23_2807_10	LAS_S23_3724_30	LAS_S23_2884_20	LAS_S23_2649_30
LAS_S23_2807_20	LAS_S23_3725_40	LAS_S23_2885_10	LAS_S23_2740_40
LAS_S23_2808_10	LAS_S23_3726_30	LAS_S23_2885_20	LAS_S23_2740_30
LAS_S23_2600_40	LAS_S23_3727_40	LAS_S23_2886_10	LAS_S23_2741_40
LAS_S23_2600_30	LAS_S23_3727_30	LAS_S23_2886_20	LAS_S23_2741_30
LAS_S23_2601_40	LAS_S23_3728_40	LAS_S23_2887_10	LAS_S23_2742_40

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 64 of 157

LAS_S23_2601_30	LAS_S23_3728_30	LAS_S23_2887_20	LAS_S23_2742_30
LAS_S23_2602_40	LAS_S23_3729_40	LAS_S23_2684_30	LAS_S23_2743_40
LAS_S23_2602_30	LAS_S23_3729_30	LAS_S23_2685_40	LAS_S23_2743_30
LAS_S23_2603_40	LAS_S23_3820_40	LAS_S23_2685_30	LAS_S23_2744_40
LAS_S23_2603_30	LAS_S23_3820_30	LAS_S23_2686_40	LAS_S23_2744_30
LAS_S23_2604_40	LAS_S23_3821_40	LAS_S23_2686_30	LAS_S23_2745_40
LAS_S23_2604_30	LAS_S23_3821_30	LAS_S23_2687_40	LAS_S23_2745_30
LAS_S23_2605_40	LAS_S23_3822_40	LAS_S23_2687_30	LAS_S23_2746_40
LAS_S23_2605_30	LAS_S23_3822_30	LAS_S23_2688_40	LAS_S23_2746_30
LAS_S23_2606_40	LAS_S23_3823_40	LAS_S23_2688_30	LAS_S23_2747_40
LAS_S23_2606_30	LAS_S23_3823_30	LAS_S23_2689_40	LAS_S23_2747_30
LAS_S23_2802_40	LAS_S23_3824_40	LAS_S23_2689_30	LAS_S23_2748_40
LAS_S23_2802_30	LAS_S23_3824_30	LAS_S23_2780_40	LAS_S23_2748_30
LAS_S23_2803_40	LAS_S23_3825_40	LAS_S23_2780_30	LAS_S23_2749_40
LAS_S23_2803_30	LAS_S23_3825_30	LAS_S23_2781_40	LAS_S23_2749_30
LAS_S23_2804_40	LAS_S23_3826_40	LAS_S23_2781_30	LAS_S23_2558_10
LAS_S23_2804_30	LAS_S23_3826_30	LAS_S23_2782_40	LAS_S23_2558_20
LAS_S23_2805_40	LAS_S23_3827_40	LAS_S23_2782_30	LAS_S23_2559_10
LAS_S23_2805_30	LAS_S23_3827_30	LAS_S23_2783_40	LAS_S23_2559_20
LAS_S23_2807_30	LAS_S23_3828_40	LAS_S23_2783_30	LAS_S23_2650_10
LAS_S23_2808_40	LAS_S23_3828_30	LAS_S23_2784_40	LAS_S23_2650_20
LAS_S23_2516_10	LAS_S23_3829_40	LAS_S23_2784_30	LAS_S23_2651_10
LAS_S23_2516_20	LAS_S23_3829_30	LAS_S23_2785_40	LAS_S23_2651_20
LAS_S23_2517_10	LAS_S23_3920_40	LAS_S23_2785_30	LAS_S23_2652_10
LAS_S23_2517_20	LAS_S23_3920_30	LAS_S23_2786_40	LAS_S23_2652_20
LAS_S23_2518_10	LAS_S23_3739_10	LAS_S23_2786_30	LAS_S23_2653_10
LAS_S23_2518_20	LAS_S23_3739_20	LAS_S23_2787_40	LAS_S23_2653_20
LAS_S23_2519_10	LAS_S23_3830_10	LAS_S23_2787_30	LAS_S23_2654_10
LAS_S23_2519_20	LAS_S23_3830_20	LAS_S23_2788_40	LAS_S23_2654_20
LAS_S23_2610_10	LAS_S23_3831_10	LAS_S23_2788_30	LAS_S23_2655_10
LAS_S23_2610_20	LAS_S23_3831_20	LAS_S23_2789_40	LAS_S23_2655_20
LAS_S23_2611_10	LAS_S23_3832_10	LAS_S23_2789_30	LAS_S23_2656_10
LAS_S23_2611_20	LAS_S23_3832_20	LAS_S23_2880_40	LAS_S23_2656_20
LAS_S23_2612_10	LAS_S23_3833_10	LAS_S23_2880_30	LAS_S23_2657_10
LAS_S23_2612_20	LAS_S23_3833_20	LAS_S23_2881_40	LAS_S23_2657_20
LAS_S23_2613_10	LAS_S23_3834_10	LAS_S23_2881_30	LAS_S23_2658_10
LAS_S23_2613_20	LAS_S23_3834_20	LAS_S23_2882_40	LAS_S23_2658_20
LAS_S23_2614_10	LAS_S23_3835_10	LAS_S23_2882_30	LAS_S23_2659_10
LAS_S23_2614_20	LAS_S23_3835_20	LAS_S23_2883_40	LAS_S23_2659_20
LAS_S23_2615_10	LAS_S23_3836_10	LAS_S23_2883_30	LAS_S23_2750_10
LAS_S23_2615_20	LAS_S23_3836_20	LAS_S23_2884_40	LAS_S23_2750_20
LAS_S23_2616_10	LAS_S23_3837_10	LAS_S23_2884_30	LAS_S23_2751_10

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 65 of 157

LAS_S23_2616_20	LAS_S23_3837_20	LAS_S23_2885_40	LAS_S23_2751_20
LAS_S23_2617_10	LAS_S23_3838_10	LAS_S23_2885_30	LAS_S23_2752_10
LAS_S23_2617_20	LAS_S23_3838_20	LAS_S23_2886_40	LAS_S23_2752_20
LAS_S23_2618_10	LAS_S23_3839_10	LAS_S23_2886_30	LAS_S23_2753_10
LAS_S23_2618_20	LAS_S23_3839_20	LAS_S23_2887_40	LAS_S23_2753_20
LAS_S23_2619_10	LAS_S23_3930_10	LAS_S23_2887_30	LAS_S23_2754_10
LAS_S23_2619_20	LAS_S23_3930_20	LAS_S23_2695_20	LAS_S23_2754_20
LAS_S23_2710_10	LAS_S23_3830_40	LAS_S23_2696_10	LAS_S23_2755_10
LAS_S23_2710_20	LAS_S23_3830_30	LAS_S23_2696_20	LAS_S23_2755_20
LAS_S23_2711_10	LAS_S23_3831_40	LAS_S23_2697_10	LAS_S23_2756_10
LAS_S23_2711_20	LAS_S23_3831_30	LAS_S23_2697_20	LAS_S23_2756_20
LAS_S23_2812_10	LAS_S23_3832_40	LAS_S23_2698_10	LAS_S23_2757_10
LAS_S23_2812_20	LAS_S23_3832_30	LAS_S23_2698_20	LAS_S23_2757_20
LAS_S23_2813_10	LAS_S23_3833_40	LAS_S23_2699_10	LAS_S23_2758_10
LAS_S23_2813_20	LAS_S23_3833_30	LAS_S23_2699_20	LAS_S23_2758_20
LAS_S23_2516_40	LAS_S23_3834_40	LAS_S23_2790_10	LAS_S23_2759_10
LAS_S23_2516_30	LAS_S23_3834_30	LAS_S23_2790_20	LAS_S23_2759_20
LAS_S23_2517_40	LAS_S23_3835_40	LAS_S23_2791_10	LAS_S23_2850_10
LAS_S23_2517_30	LAS_S23_3835_30	LAS_S23_2791_20	LAS_S23_2850_20
LAS_S23_2518_40	LAS_S23_3836_40	LAS_S23_2792_10	LAS_S23_2851_10
LAS_S23_2518_30	LAS_S23_3836_30	LAS_S23_2792_20	LAS_S23_2851_20
LAS_S23_2519_40	LAS_S23_3837_40	LAS_S23_2793_10	LAS_S23_2852_10
LAS_S23_2519_30	LAS_S23_3837_30	LAS_S23_2793_20	LAS_S23_2852_20
LAS_S23_2610_40	LAS_S23_3838_40	LAS_S23_2794_10	LAS_S23_2558_30
LAS_S23_2610_30	LAS_S23_3838_30	LAS_S23_2794_20	LAS_S23_2559_40
LAS_S23_2611_40	LAS_S23_3839_40	LAS_S23_2795_10	LAS_S23_2559_30
LAS_S23_2611_30	LAS_S23_3839_30	LAS_S23_2795_20	LAS_S23_2650_40
LAS_S23_2612_40	LAS_S23_3930_40	LAS_S23_2796_10	LAS_S23_2650_30
LAS_S23_2612_30	LAS_S23_3930_30	LAS_S23_2796_20	LAS_S23_2651_40
LAS_S23_2613_40	LAS_S23_3841_10	LAS_S23_2797_10	LAS_S23_2651_30
LAS_S23_2613_30	LAS_S23_3841_20	LAS_S23_2797_20	LAS_S23_2652_40
LAS_S23_2614_40	LAS_S23_3842_10	LAS_S23_2798_10	LAS_S23_2652_30
LAS_S23_2614_30	LAS_S23_3842_20	LAS_S23_2798_20	LAS_S23_2653_40
LAS_S23_2615_40	LAS_S23_3843_10	LAS_S23_2799_10	LAS_S23_2653_30
LAS_S23_2615_30	LAS_S23_3843_20	LAS_S23_2799_20	LAS_S23_2654_40
LAS_S23_2616_40	LAS_S23_3844_10	LAS_S23_2890_10	LAS_S23_2654_30
LAS_S23_2616_30	LAS_S23_3844_20	LAS_S23_2890_20	LAS_S23_2655_40
LAS_S23_2617_40	LAS_S23_3845_10	LAS_S23_2891_10	LAS_S23_2655_30
LAS_S23_2617_30	LAS_S23_3845_20	LAS_S23_2891_20	LAS_S23_2656_40
LAS_S23_2618_40	LAS_S23_3846_10	LAS_S23_2892_10	LAS_S23_2656_30
LAS_S23_2618_30	LAS_S23_3846_20	LAS_S23_2892_20	LAS_S23_2657_40
LAS_S23_2619_40	LAS_S23_3847_10	LAS_S23_2893_10	LAS_S23_2657_30

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 66 of 157

LAS_S23_2619_30	LAS_S23_3847_20	LAS_S23_2893_20	LAS_S23_2658_40
LAS_S23_2710_40	LAS_S23_3848_10	LAS_S23_2894_10	LAS_S23_2658_30
LAS_S23_2710_30	LAS_S23_3848_20	LAS_S23_2894_20	LAS_S23_2659_40
LAS_S23_2711_40	LAS_S23_3849_10	LAS_S23_2895_10	LAS_S23_2659_30
LAS_S23_2711_30	LAS_S23_3849_20	LAS_S23_2895_20	LAS_S23_2750_40
LAS_S23_2526_10	LAS_S23_3940_10	LAS_S23_2896_10	LAS_S23_2750_30
LAS_S23_2526_20	LAS_S23_3940_20	LAS_S23_2896_20	LAS_S23_2751_40
LAS_S23_2527_10	LAS_S23_3842_40	LAS_S23_2897_10	LAS_S23_2751_30
LAS_S23_2527_20	LAS_S23_3842_30	LAS_S23_2897_20	LAS_S23_2752_40
LAS_S23_2528_10	LAS_S23_3843_40	LAS_S23_2697_40	LAS_S23_2752_30
LAS_S23_2528_20	LAS_S23_3843_30	LAS_S23_2697_30	LAS_S23_2753_40
LAS_S23_2529_10	LAS_S23_3844_40	LAS_S23_2698_40	LAS_S23_2753_30
LAS_S23_2529_20	LAS_S23_3844_30	LAS_S23_2698_30	LAS_S23_2754_40
LAS_S23_2620_10	LAS_S23_3845_40	LAS_S23_2699_40	LAS_S23_2754_30
LAS_S23_2620_20	LAS_S23_3845_30	LAS_S23_2699_30	LAS_S23_2755_40
LAS_S23_2621_10	LAS_S23_3846_40	LAS_S23_2790_40	LAS_S23_2755_30
LAS_S23_2621_20	LAS_S23_3846_30	LAS_S23_2790_30	LAS_S23_2756_40
LAS_S23_2622_10	LAS_S23_3847_40	LAS_S23_2791_40	LAS_S23_2756_30
LAS_S23_2622_20	LAS_S23_3847_30	LAS_S23_2791_30	LAS_S23_2757_40
LAS_S23_2623_10	LAS_S23_3848_40	LAS_S23_2792_40	LAS_S23_2757_30
LAS_S23_2623_20	LAS_S23_3848_30	LAS_S23_2792_30	LAS_S23_2758_40
LAS_S23_2624_10	LAS_S23_3849_40	LAS_S23_2793_40	LAS_S23_2758_30
LAS_S23_2624_20	LAS_S23_3849_30	LAS_S23_2793_30	LAS_S23_2759_40
LAS_S23_2625_10	LAS_S23_3940_40	LAS_S23_2794_40	LAS_S23_2759_30
LAS_S23_2625_20	LAS_S23_3940_30	LAS_S23_2794_30	LAS_S23_2850_40
LAS_S23_2626_10	LAS_S23_3853_10	LAS_S23_2795_40	LAS_S23_2850_30
LAS_S23_2626_20	LAS_S23_3853_20	LAS_S23_2795_30	LAS_S23_2851_40
LAS_S23_2627_10	LAS_S23_3854_10	LAS_S23_2796_40	LAS_S23_2851_30
LAS_S23_2627_20	LAS_S23_3854_20	LAS_S23_2796_30	LAS_S23_2852_40
LAS_S23_2628_10	LAS_S23_3855_10	LAS_S23_2797_40	LAS_S23_2852_30
LAS_S23_2628_20	LAS_S23_3855_20	LAS_S23_2797_30	LAS_S23_2569_10
LAS_S23_2629_10	LAS_S23_3856_10	LAS_S23_2798_40	LAS_S23_2569_20
LAS_S23_2629_20	LAS_S23_3856_20	LAS_S23_2798_30	LAS_S23_2660_10
LAS_S23_2720_10	LAS_S23_3857_10	LAS_S23_2799_40	LAS_S23_2660_20
LAS_S23_2720_20	LAS_S23_3857_20	LAS_S23_2799_30	LAS_S23_2661_10
LAS_S23_2721_10	LAS_S23_3858_10	LAS_S23_2890_40	LAS_S23_2661_20
LAS_S23_2721_20	LAS_S23_3858_20	LAS_S23_2890_30	LAS_S23_2662_10
LAS_S23_2722_10	LAS_S23_3859_10	LAS_S23_2891_40	LAS_S23_2662_20
LAS_S23_2722_20	LAS_S23_3859_20	LAS_S23_2891_30	LAS_S23_2663_10
LAS_S23_2723_10	LAS_S23_3950_10	LAS_S23_2892_40	LAS_S23_2663_20
LAS_S23_2723_20	LAS_S23_3950_20	LAS_S23_2892_30	LAS_S23_2664_10
LAS_S23_2724_10	LAS_S23_3853_30	LAS_S23_2893_40	LAS_S23_2664_20

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 67 of 157

LAS_S23_2724_20	LAS_S23_3854_40	LAS_S23_2893_30	LAS_S23_2665_10
LAS_S23_2725_10	LAS_S23_3854_30	LAS_S23_2894_40	LAS_S23_2665_20
LAS_S23_2725_20	LAS_S23_3855_40	LAS_S23_2894_30	LAS_S23_2666_10
LAS_S23_2526_40	LAS_S23_3855_30	LAS_S23_2895_40	LAS_S23_2666_20
LAS_S23_2526_30	LAS_S23_3856_40	LAS_S23_2895_30	LAS_S23_2667_10
LAS_S23_2527_40	LAS_S23_3856_30	LAS_S23_2896_40	LAS_S23_2667_20
LAS_S23_2527_30	LAS_S23_3857_40	LAS_S23_2896_30	LAS_S23_2668_10
LAS_S23_2528_40	LAS_S23_3857_30	LAS_S23_2897_40	LAS_S23_2668_20
LAS_S23_2528_30	LAS_S23_3858_40	LAS_S23_2897_30	LAS_S23_2669_10
LAS_S23_2529_40	LAS_S23_3858_30	LAS_S23_3608_10	LAS_S23_2669_20
LAS_S23_2529_30	LAS_S23_3859_40	LAS_S23_3608_20	LAS_S23_2760_10
LAS_S23_2620_40	LAS_S23_3859_30	LAS_S23_3609_10	LAS_S23_2760_20
LAS_S23_2620_30	LAS_S23_3950_40	LAS_S23_3609_20	LAS_S23_2761_10
LAS_S23_2621_40	LAS_S23_3950_30	LAS_S23_3700_10	LAS_S23_2761_20
LAS_S23_2621_30	LAS_S23_3864_10	LAS_S23_3700_20	LAS_S23_2762_10
LAS_S23_2622_40	LAS_S23_3864_20	LAS_S23_3701_10	LAS_S23_2762_20
LAS_S23_2622_30	LAS_S23_3865_10	LAS_S23_3701_20	LAS_S23_2763_10
LAS_S23_2623_40	LAS_S23_3865_20	LAS_S23_3702_10	LAS_S23_2763_20
LAS_S23_2623_30	LAS_S23_3866_10	LAS_S23_3702_20	LAS_S23_2764_10
LAS_S23_2624_40	LAS_S23_3866_20	LAS_S23_3703_10	LAS_S23_2764_20
LAS_S23_2624_30	LAS_S23_3867_10	LAS_S23_3703_20	LAS_S23_2765_10
LAS_S23_2625_40	LAS_S23_3867_20	LAS_S23_3704_10	LAS_S23_2765_20
LAS_S23_2625_30	LAS_S23_3868_10	LAS_S23_3704_20	LAS_S23_2766_10
LAS_S23_2626_40	LAS_S23_3868_20	LAS_S23_3705_10	LAS_S23_2766_20
LAS_S23_2626_30	LAS_S23_3869_10	LAS_S23_3705_20	LAS_S23_2767_10
LAS_S23_2627_40	LAS_S23_3869_20	LAS_S23_3706_10	LAS_S23_2767_20
LAS_S23_2627_30	LAS_S23_3960_10	LAS_S23_3706_20	LAS_S23_2768_10
LAS_S23_2628_40	LAS_S23_3960_20	LAS_S23_3707_10	LAS_S23_2768_20
LAS_S23_2628_30	LAS_S23_3864_30	LAS_S23_3707_20	LAS_S23_2769_10
LAS_S23_2629_40	LAS_S23_3865_40	LAS_S23_3708_10	LAS_S23_2769_20
LAS_S23_2629_30	LAS_S23_3865_30	LAS_S23_3708_20	LAS_S23_2860_10
LAS_S23_2720_40	LAS_S23_3866_40	LAS_S23_3709_10	LAS_S23_2860_20
LAS_S23_2720_30	LAS_S23_3866_30	LAS_S23_3709_20	LAS_S23_2861_10
LAS_S23_2721_40	LAS_S23_3867_40	LAS_S23_3800_10	LAS_S23_2861_20
LAS_S23_2721_30	LAS_S23_3867_30	LAS_S23_3800_20	LAS_S23_2862_10
LAS_S23_2722_40	LAS_S23_3868_40	LAS_S23_3801_10	LAS_S23_2862_20
LAS_S23_2722_30	LAS_S23_3868_30	LAS_S23_3801_20	LAS_S23_2660_40
LAS_S23_2723_40	LAS_S23_3869_40	LAS_S23_3802_10	LAS_S23_2660_30
LAS_S23_2723_30	LAS_S23_3869_30	LAS_S23_3802_20	LAS_S23_2661_40
LAS_S23_2724_40	LAS_S23_3960_40	LAS_S23_3803_10	LAS_S23_2661_30
LAS_S23_2724_30	LAS_S23_3960_30	LAS_S23_3803_20	LAS_S23_2662_40
LAS_S23_2725_40	LAS_S23_3875_10	LAS_S23_3804_10	LAS_S23_2662_30

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 68 of 157

LAS_S23_2725_30	LAS_S23_3875_20	LAS_S23_3804_20	LAS_S23_2663_40
LAS_S23_2536_20	LAS_S23_3876_10	LAS_S23_3805_10	LAS_S23_2663_30
LAS_S23_2537_10	LAS_S23_3876_20	LAS_S23_3805_20	LAS_S23_2664_40
LAS_S23_2537_20	LAS_S23_3877_10	LAS_S23_3806_10	LAS_S23_2664_30
LAS_S23_2538_10	LAS_S23_3877_20	LAS_S23_3806_20	LAS_S23_2665_40
LAS_S23_2538_20	LAS_S23_3878_10	LAS_S23_3807_10	LAS_S23_2665_30
LAS_S23_2539_10	LAS_S23_3878_20	LAS_S23_3807_20	LAS_S23_2666_40
LAS_S23_2539_20	LAS_S23_3879_10	LAS_S23_3808_10	LAS_S23_2666_30
LAS_S23_2630_10	LAS_S23_3879_20	LAS_S23_3808_20	LAS_S23_2667_40
LAS_S23_2630_20	LAS_S23_3970_10	LAS_S23_3809_10	LAS_S23_2667_30
LAS_S23_2631_10	LAS_S23_3970_20	LAS_S23_3809_20	LAS_S23_2668_40
LAS_S23_2631_20	LAS_S23_3875_40	LAS_S23_3608_30	LAS_S23_2668_30
LAS_S23_2632_10	LAS_S23_3875_30	LAS_S23_3609_40	LAS_S23_2669_40
LAS_S23_2632_20	LAS_S23_3876_40	LAS_S23_3609_30	LAS_S23_2669_30
LAS_S23_2633_10	LAS_S23_3876_30	LAS_S23_3700_40	LAS_S23_2760_40
LAS_S23_2633_20	LAS_S23_3877_40	LAS_S23_3700_30	LAS_S23_2760_30
LAS_S23_2634_10	LAS_S23_3877_30	LAS_S23_3701_40	LAS_S23_2761_40
LAS_S23_2634_20	LAS_S23_3878_40	LAS_S23_3701_30	LAS_S23_2761_30
LAS_S23_2635_10	LAS_S23_3878_30	LAS_S23_3702_40	LAS_S23_2762_40
LAS_S23_2635_20	LAS_S23_3879_40	LAS_S23_3702_30	LAS_S23_2762_30
LAS_S23_2636_10	LAS_S23_3879_30	LAS_S23_3703_40	LAS_S23_2763_40
LAS_S23_2636_20	LAS_S23_3970_40	LAS_S23_3703_30	LAS_S23_2763_30
LAS_S23_2637_10	LAS_S23_3970_30	LAS_S23_3704_40	LAS_S23_2764_40
LAS_S23_2637_20	LAS_S23_3884_20	LAS_S23_3704_30	LAS_S23_2764_30
LAS_S23_2638_10	LAS_S23_3885_10	LAS_S23_3705_40	LAS_S23_2765_40
LAS_S23_2638_20	LAS_S23_3885_20	LAS_S23_3705_30	LAS_S23_2765_30
LAS_S23_2639_10	LAS_S23_3886_10	LAS_S23_3706_40	LAS_S23_2766_40
LAS_S23_2639_20	LAS_S23_3886_20	LAS_S23_3706_30	LAS_S23_2766_30
LAS_S23_2730_10	LAS_S23_3887_10	LAS_S23_3707_40	LAS_S23_2767_40
LAS_S23_2730_20	LAS_S23_3887_20	LAS_S23_3707_30	LAS_S23_2767_30
LAS_S23_2731_10	LAS_S23_3888_10	LAS_S23_3708_40	LAS_S23_2768_40
LAS_S23_2731_20	LAS_S23_3888_20	LAS_S23_3708_30	LAS_S23_2768_30
LAS_S23_2732_10	LAS_S23_3889_10	LAS_S23_3709_40	LAS_S23_2769_40
LAS_S23_2732_20	LAS_S23_3889_20	LAS_S23_3709_30	LAS_S23_2769_30
LAS_S23_2733_10	LAS_S23_3980_10	LAS_S23_3800_40	LAS_S23_2860_40
LAS_S23_2733_20	LAS_S23_3980_20	LAS_S23_3800_30	LAS_S23_2860_30
LAS_S23_2734_10	LAS_S23_3884_30	LAS_S23_3801_40	LAS_S23_2861_40
LAS_S23_2734_20	LAS_S23_3885_40	LAS_S23_3801_30	LAS_S23_2861_30
LAS_S23_2735_10	LAS_S23_3885_30	LAS_S23_3802_40	LAS_S23_2862_40
LAS_S23_2735_20	LAS_S23_3886_40	LAS_S23_3802_30	LAS_S23_2862_30
LAS_S23_2736_10	LAS_S23_3886_30	LAS_S23_3803_40	LAS_S23_2672_10
LAS_S23_2736_20	LAS_S23_3887_40	LAS_S23_3803_30	LAS_S23_2672_20

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 69 of 157

LAS_S23_2737_10	LAS_S23_3887_30	LAS_S23_3804_40	LAS_S23_2673_10
LAS_S23_2737_20	LAS_S23_3888_40	LAS_S23_3804_30	LAS_S23_2673_20
LAS_S23_2832_10	LAS_S23_3888_30	LAS_S23_3805_40	LAS_S23_2674_10
LAS_S23_2832_20	LAS_S23_3889_40	LAS_S23_3805_30	LAS_S23_2674_20
LAS_S23_2833_10	LAS_S23_3889_30	LAS_S23_3806_40	LAS_S23_2675_10
LAS_S23_2835_10	LAS_S23_3980_40	LAS_S23_3806_30	LAS_S23_2675_20
LAS_S23_2835_20	LAS_S23_3980_30	LAS_S23_3807_40	LAS_S23_2676_10
LAS_S23_2836_10	LAS_S23_3895_10	LAS_S23_3807_30	LAS_S23_2676_20
LAS_S23_2836_20	LAS_S23_3895_20	LAS_S23_3808_40	LAS_S23_2677_10
LAS_S23_2537_40	LAS_S23_3896_10	LAS_S23_3808_30	LAS_S23_2677_20
LAS_S23_2537_30	LAS_S23_3896_20	LAS_S23_3809_40	LAS_S23_2678_10
LAS_S23_2538_40	LAS_S23_3897_10	LAS_S23_3809_30	LAS_S23_2678_20
LAS_S23_2538_30	LAS_S23_3897_20	LAS_S23_3711_10	LAS_S23_2679_10
LAS_S23_2539_40	LAS_S23_3898_10	LAS_S23_3711_20	LAS_S23_2679_20
LAS_S23_2539_30	LAS_S23_3898_20	LAS_S23_3712_10	LAS_S23_2770_10
LAS_S23_2630_40	LAS_S23_3899_10	LAS_S23_3712_20	LAS_S23_2770_20
LAS_S23_2630_30	LAS_S23_3899_20	LAS_S23_3713_10	LAS_S23_2771_10
LAS_S23_2631_40	LAS_S23_3990_10	LAS_S23_3713_20	LAS_S23_2771_20
LAS_S23_2631_30	LAS_S23_3990_20	LAS_S23_3714_10	LAS_S23_2772_10
LAS_S23_2632_40	LAS_S23_3895_30	LAS_S23_3714_20	LAS_S23_2772_20
LAS_S23_2632_30	LAS_S23_3896_40	LAS_S23_3715_10	LAS_S23_2773_10
LAS_S23_2633_40	LAS_S23_3896_30	LAS_S23_3715_20	LAS_S23_2773_20
LAS_S23_2633_30	LAS_S23_3897_40	LAS_S23_3716_10	LAS_S23_2774_10
LAS_S23_2634_40	LAS_S23_3897_30	LAS_S23_3716_20	LAS_S23_2774_20
LAS_S23_2634_30	LAS_S23_3898_40	LAS_S23_3717_10	LAS_S23_2775_10
LAS_S23_2635_40	LAS_S23_3898_30	LAS_S23_3717_20	LAS_S23_2775_20
LAS_S23_2635_30	LAS_S23_3899_40	LAS_S23_3718_10	LAS_S23_2776_10
LAS_S23_2636_40	LAS_S23_3899_30	LAS_S23_3718_20	LAS_S23_2776_20
LAS_S23_2636_30	LAS_S23_3990_40	LAS_S23_3719_10	LAS_S23_2777_10
LAS_S23_2637_40	LAS_S23_3990_30	LAS_S23_3719_20	LAS_S23_2777_20
LAS_S23_2637_30	LAS_S23_3991_40	LAS_S23_3810_10	LAS_S23_2778_10
LAS_S23_2638_40	LAS_S23_4807_10	LAS_S23_3810_20	LAS_S23_2778_20
LAS_S23_2638_30	LAS_S23_4807_20	LAS_S23_3811_10	LAS_S23_2779_10
LAS_S23_2639_40	LAS_S23_4808_10	LAS_S23_3811_20	LAS_S23_2779_20
LAS_S23_2639_30	LAS_S23_4808_20	LAS_S23_3812_10	LAS_S23_2870_10
LAS_S23_2730_40	LAS_S23_4809_10	LAS_S23_3812_20	LAS_S23_2870_20
LAS_S23_2730_30	LAS_S23_4809_20	LAS_S23_3813_10	LAS_S23_2871_10
LAS_S23_2731_40	LAS_S23_4900_10	LAS_S23_3813_20	LAS_S23_2871_20
LAS_S23_2731_30	LAS_S23_4900_20	LAS_S23_3814_10	LAS_S23_2872_10
LAS_S23_2732_40	LAS_S23_4901_10	LAS_S23_3814_20	LAS_S23_2872_20
LAS_S23_2732_30	LAS_S23_4808_40	LAS_S23_3815_10	LAS_S23_2873_10
LAS_S23_2733_40	LAS_S23_4808_30	LAS_S23_3815_20	LAS_S23_2873_20

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 70 of 157

LAS_S23_2733_30	LAS_S23_4809_40	LAS_S23_3816_10	LAS_S23_2876_10
LAS_S23_2734_40	LAS_S23_4809_30	LAS_S23_3816_20	LAS_S23_2876_20
LAS_S23_2734_30	LAS_S23_4900_40	LAS_S23_3817_10	LAS_S23_2674_40
LAS_S23_2735_40	LAS_S23_4900_30	LAS_S23_3817_20	LAS_S23_2674_30
LAS_S23_2735_30	LAS_S23_4901_40	LAS_S23_3818_10	LAS_S23_2675_40
LAS_S23_2736_40	LAS_S23_4819_10	LAS_S23_3818_20	LAS_S23_2675_30
LAS_S23_2736_30	LAS_S23_4819_20	LAS_S23_3819_10	LAS_S23_2676_40
LAS_S23_2737_40	LAS_S23_4910_10	LAS_S23_3819_20	LAS_S23_2676_30
LAS_S23_2737_30	LAS_S23_4910_20	LAS_S23_3910_10	LAS_S23_2677_40
LAS_S23_2832_40	LAS_S23_4911_10	LAS_S23_3910_20	LAS_S23_2677_30
LAS_S23_2832_30	LAS_S23_4819_30	LAS_S23_3712_40	LAS_S23_2678_40
LAS_S23_2833_40	LAS_S23_4910_40	LAS_S23_3712_30	LAS_S23_2678_30
LAS_S23_2835_40	LAS_S23_4910_30	LAS_S23_3713_40	LAS_S23_2679_40
LAS_S23_2835_30	LAS_S23_4911_40	LAS_S23_3713_30	LAS_S23_2679_30
LAS_S23_2836_40	LAS_S23_4911_30	LAS_S23_3714_40	LAS_S23_2770_40
LAS_S23_2836_30	LAS_S23_4920_20	LAS_S23_3714_30	LAS_S23_2770_30
LAS_S23_2547_10	LAS_S23_4921_10	LAS_S23_3715_40	LAS_S23_2771_40
LAS_S23_2547_20	LAS_S23_4921_20	LAS_S23_3715_30	LAS_S23_2771_30
LAS_S23_2548_10	LAS_S23_3874_30x	LAS_S23_3716_40	LAS_S23_2772_40
LAS_S23_2548_20	LAS_S23_2846_20x	LAS_S23_3716_30	LAS_S23_2772_30
LAS_S23_2549_10	LAS_S23_2837_40x	LAS_S23_3717_40	LAS_S23_2773_40
LAS_S23_2549_20	LAS_S23_2847_10x	LAS_S23_3717_30	LAS_S23_2773_30
LAS_S23_2640_10	LAS_S23_1898_20x	LAS_S23_3718_40	LAS_S23_2774_40
LAS_S23_2640_20	LAS_S23_1898_30x	LAS_S23_3718_30	LAS_S23_2774_30
LAS_S23_2641_10	LAS_S23_2808_20x	LAS_S23_3719_40	LAS_S23_2775_40
LAS_S23_2641_20	LAS_S23_2808_30x	LAS_S23_3719_30	LAS_S23_2775_30
LAS_S23_2642_10	LAS_S23_3798_30x	LAS_S23_3810_40	LAS_S23_2776_40
LAS_S23_2642_20	LAS_S23_3799_40x	LAS_S23_3810_30	LAS_S23_2776_30
LAS_S23_2643_10	LAS_S23_3799_30x	LAS_S23_3811_40	LAS_S23_2777_40
LAS_S23_2643_20	LAS_S23_3800_40x	LAS_S23_3811_30	LAS_S23_2777_30
LAS_S23_2644_10	LAS_S23_3810_10x	LAS_S23_3812_40	LAS_S23_2778_40
LAS_S23_2644_20	LAS_S23_3810_40x	LAS_S23_3812_30	LAS_S23_2778_30
LAS_S23_2645_10	LAS_S23_3810_30x	LAS_S23_3813_40	LAS_S23_2779_40
LAS_S23_2645_20	LAS_S23_3911_10x	LAS_S23_3813_30	LAS_S23_2779_30
LAS_S23_2646_10	LAS_S23_3911_40x	LAS_S23_3814_40	LAS_S23_2870_40
LAS_S23_2646_20	LAS_S23_3921_10x	LAS_S23_3814_30	LAS_S23_2870_30
LAS_S23_2647_10	LAS_S23_3921_40x	LAS_S23_3815_40	LAS_S23_2871_40
LAS_S23_2647_20	LAS_S23_3931_10x	LAS_S23_3815_30	LAS_S23_2871_30
LAS_S23_2648_10	LAS_S23_3931_40x	LAS_S23_3816_40	LAS_S23_2872_40
LAS_S23_2648_20	LAS_S23_3941_10x	LAS_S23_3816_30	LAS_S23_2872_30
LAS_S23_2649_10	LAS_S23_3941_40x	LAS_S23_3817_40	LAS_S23_2873_40
LAS_S23_2649_20	LAS_S23_3951_10x	LAS_S23_3817_30	LAS_S23_2873_30

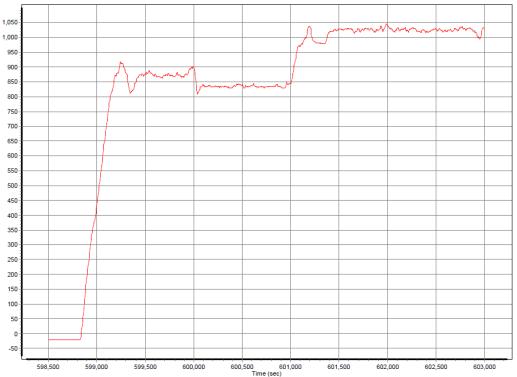
Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 71 of 157

LAS_S23_2740_10	LAS_S23_3951_40x	LAS_S23_3818_40	LAS_S23_2876_40
LAS_S23_2740_20	LAS_S23_3961_10x	LAS_S23_3818_30	LAS_S23_2876_30
LAS_S23_2741_10	LAS_S23_3961_40x	LAS_S23_3819_40	LAS_S23_2684_10
LAS_S23_2741_20	LAS_S23_3971_10x	LAS_S23_3819_30	LAS_S23_2684_20
LAS_S23_2742_10	LAS_S23_3971_40x	LAS_S23_3910_40	LAS_S23_2685_10
LAS_S23_2742_20	LAS_S23_3981_10x	LAS_S23_3910_30	LAS_S23_2685_20
LAS_S23_2743_10	LAS_S23_4912_40x	LAS_S23_3723_10	LAS_S23_2686_10
LAS_S23_2743_20	LAS_S23_4922_10x	LAS_S23_3723_20	LAS_S23_2686_20
LAS_S23_2744_10	LAS_S23_4922_40x	LAS_S23_3724_10	LAS_S23_2687_10
LAS_S23_2744_20	LAS_S23_2671_20x	LAS_S23_3724_20	

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 72 of 157

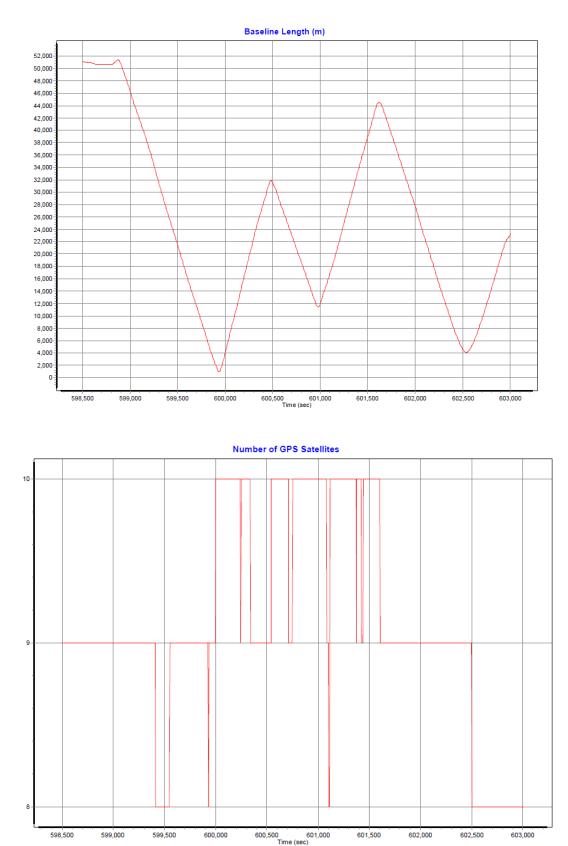
Appendix C: List of Water Tiles

LAS_S23_1888_40	LAS_S23_2695_20	LAS_S23_2710_20	LAS_S23_2835_30
LAS_S23_1896_10	LAS_S23_2696_10	LAS_S23_2711_10	LAS_S23_2749_10
LAS_S23_2600_10	LAS_S23_3608_10	LAS_S23_2711_20	LAS_S23_2749_20
LAS_S23_2600_20	LAS_S23_3608_30	LAS_S23_2812_10	LAS_S23_2749_30
LAS_S23_2601_10	LAS_S23_3711_10	LAS_S23_2725_10	LAS_S23_2851_10
LAS_S23_2606_10	LAS_S23_3723_10	LAS_S23_2725_20	LAS_S23_2851_20
LAS_S23_2606_20	LAS_S23_3723_30	LAS_S23_2736_20	LAS_S23_2852_10
LAS_S23_2802_20	LAS_S23_3726_30	LAS_S23_2737_10	LAS_S23_2852_20
LAS_S23_2806_20	LAS_S23_3842_40	LAS_S23_2737_20	LAS_S23_2558_30
LAS_S23_2807_10	LAS_S23_3853_30	LAS_S23_2832_10	LAS_S23_2569_10
LAS_S23_2606_30	LAS_S23_3864_10	LAS_S23_2832_20	LAS_S23_2873_10
LAS_S23_2802_40	LAS_S23_3864_30	LAS_S23_2833_10	LAS_S23_2873_20
LAS_S23_2805_40	LAS_S23_4819_30	LAS_S23_2835_10	LAS_S23_2876_20
LAS_S23_2805_30	LAS_S23_4922_40x	LAS_S23_2737_30	LAS_S23_2684_10
LAS_S23_2516_10	LAS_S23_2671_20x	LAS_S23_2833_40	LAS_S23_2684_30
LAS_S23_2516_20	LAS_S23_2517_20	LAS_S23_2835_40	LAS_S23_2518_10
LAS_S23_2517_10			

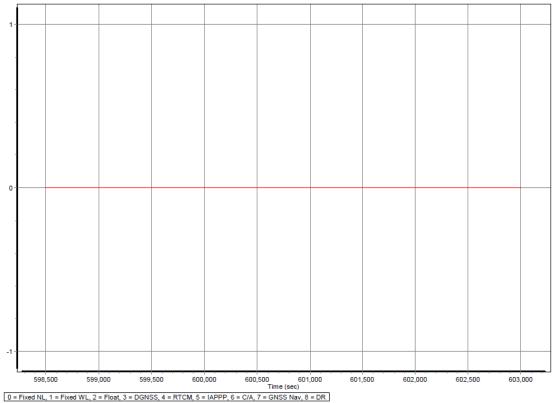

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 73 of 157

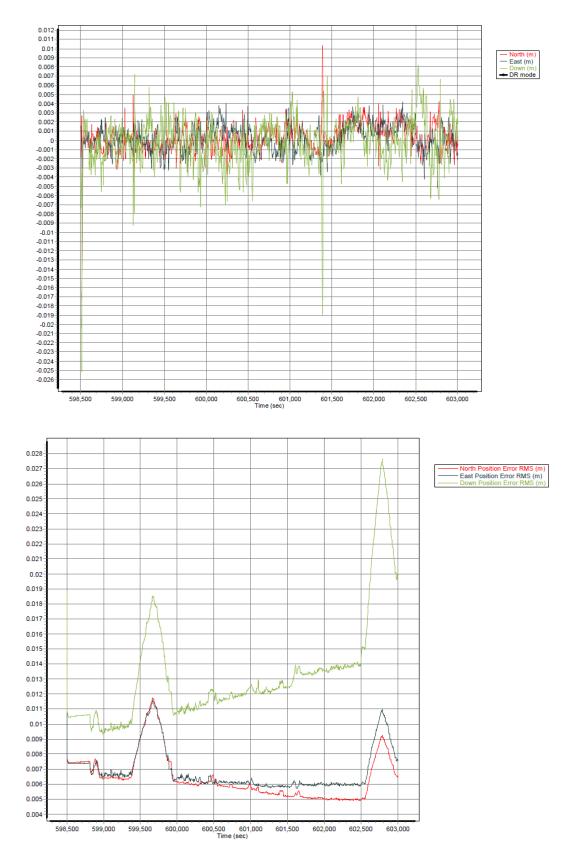
Appendix D: GPS Processing

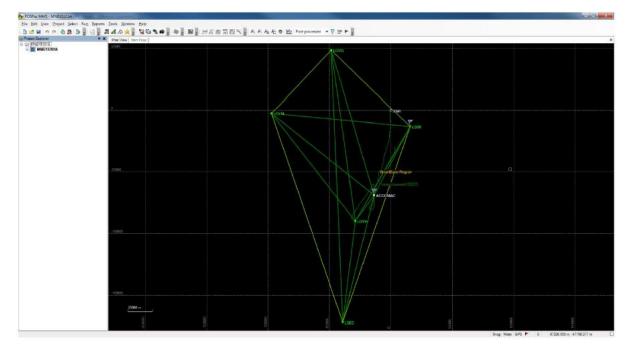
<u>MNB15101A</u>

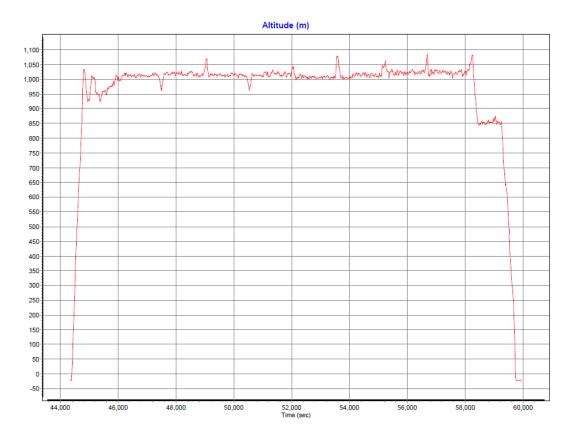

General Information Units	Timing Start 598500.166	Data	Incr. (sec)	
View Satellite Selection	End 603010.000	Output Record	0.005000	
GNSS-Inertial Processor	Entire time interval	IMU	0.005000	
Timing, Multipath and Baseli Initialization	Seconds of start week	Primary GNSS	1.000000	
Lever Arms and Mounting A	UTC Offset 16.000]		
Export Camera LiDAR SAR	Multipath Low	GPS Position Qu Scale Factor	uality 0.5 1.0 2.0 5.0	
	Algorithm Automatic	High Altitude	Mode	

Altitude (m)

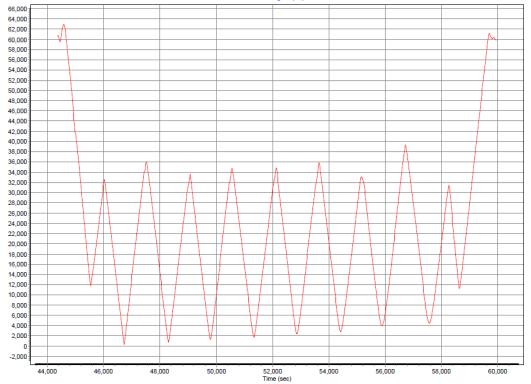



Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 74 of 157

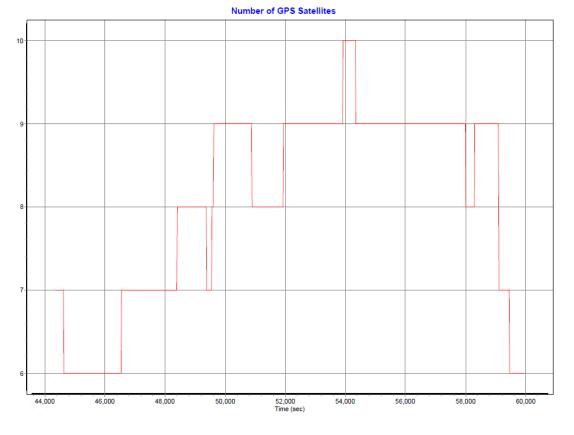




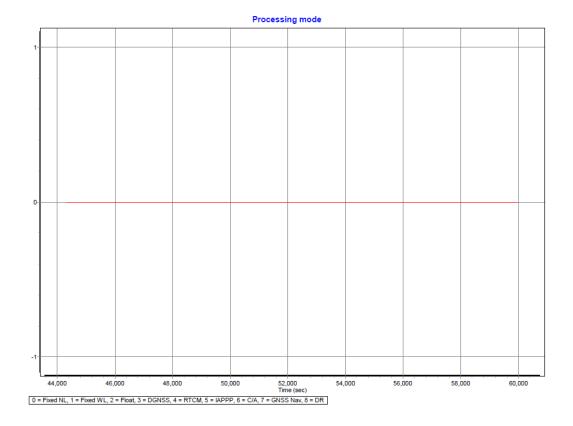
Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 77 of 157

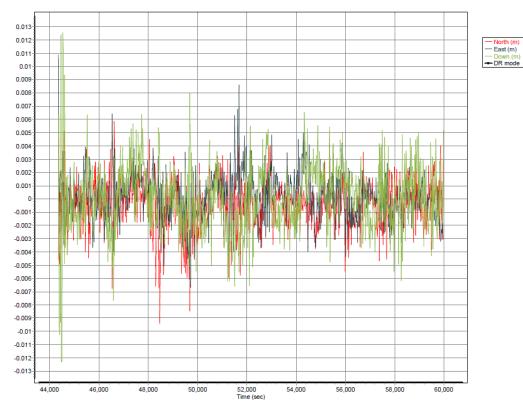


<u>MNB15102A</u>

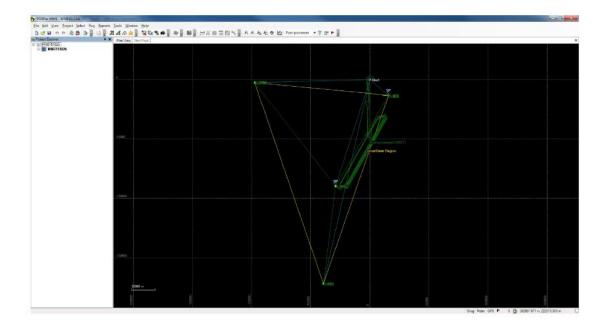

Project Settings				and the second second	
General Information	Reference to IMU Lever Arm		Reference to IMU Mounting Angles		
 Units View 	х	0.034 m	×	0.000 deg	
GNSS-Inertial Processor	Y	0.018 m	Y	0.000 deg	
Timing, Multipath and Baseli Initialization	Z	-0.155 m	Z	0.000 deg	
Lever Arms and Mounting A	Reference to Primary GNSS Lever Arm		Aircraft to Reference Mounting Angles		
Camera	х	-0.150 m	x	0.000 deg	
🗀 Lidar 🗀 Sar	Y	-0.061 m	Y	0.000 deg	
	Z	-0.992 m	Z	0.000 deg	
	Standard Deviation	J			
		<3cm 10cm 50cm 1m 10m			
· · · · · · · · · · · · · · · · · · ·					
				1	OK Cancel

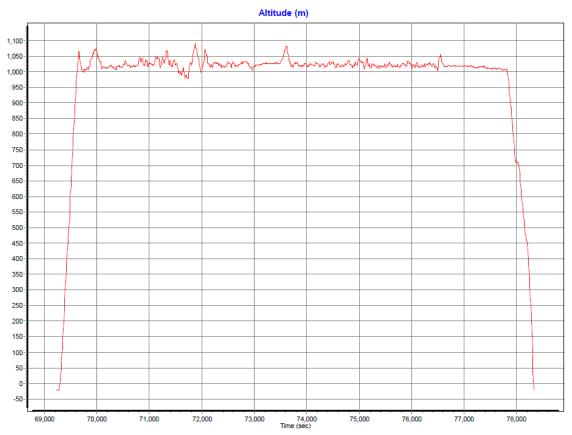
Baseline Length (m)

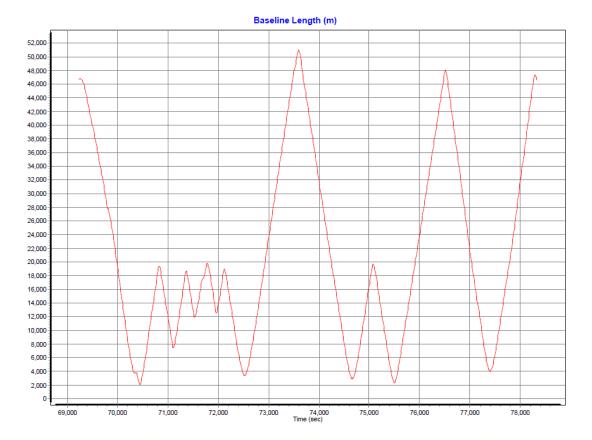


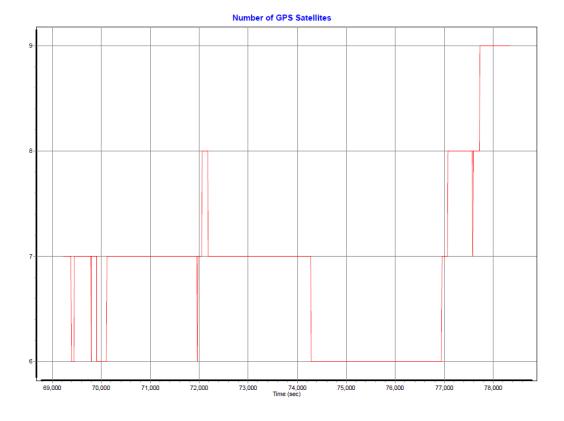


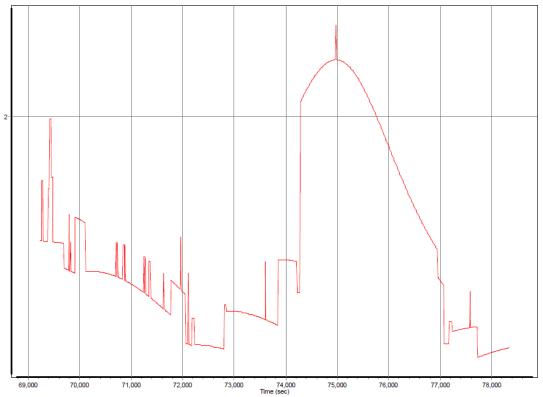
PDOP

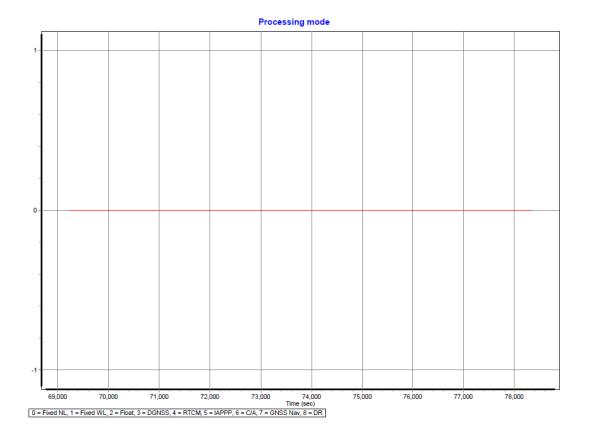


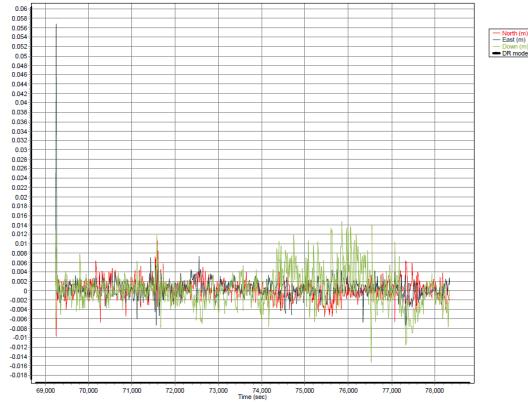


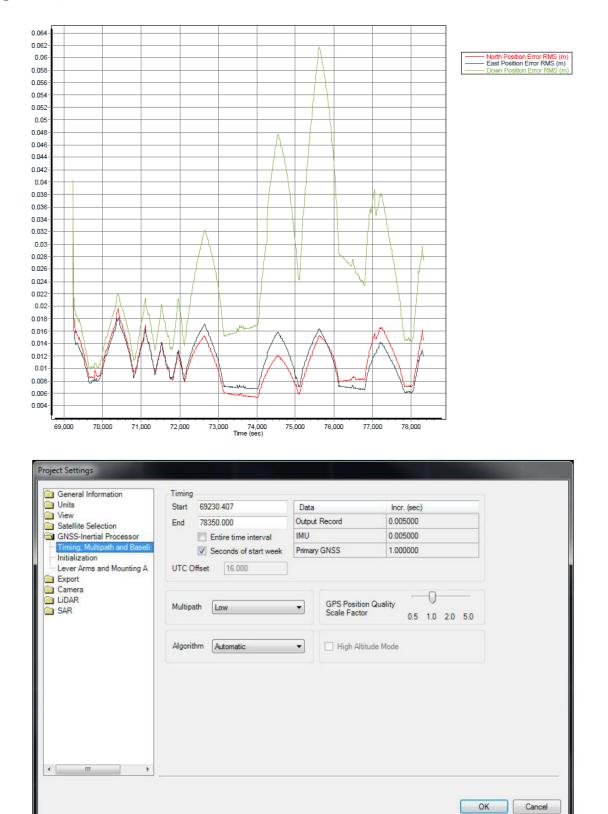


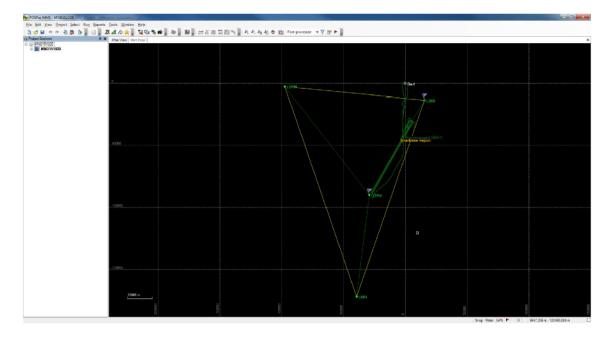

<u>MNB15102B</u>

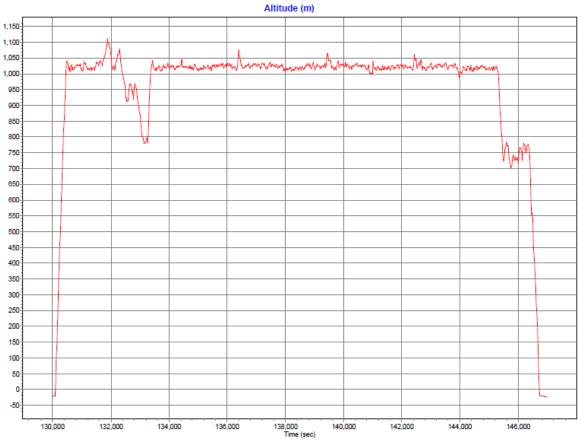


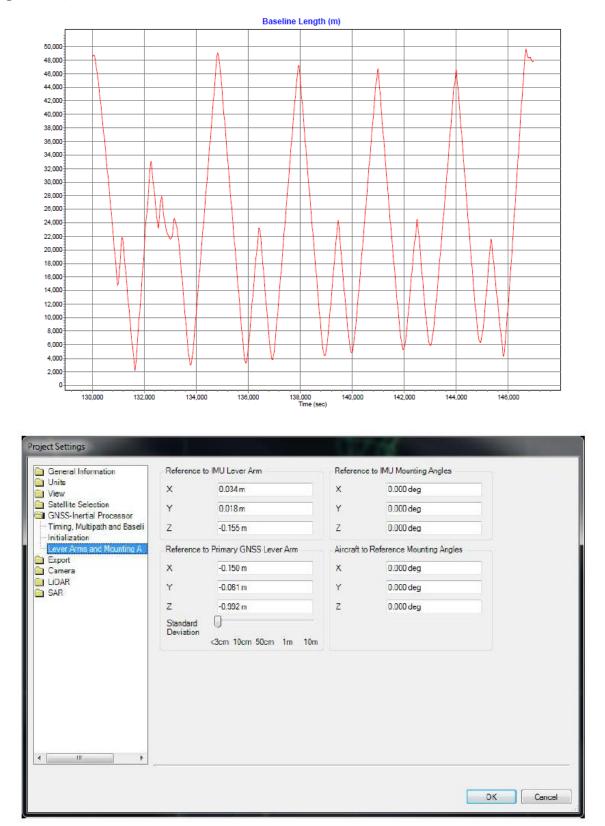



General Information	Reference t	o IMU Lever Arm	Referenc	e to IMU Mounting Angles	
 Units View 	х	0.034 m	х	0.000 deg	
GNSS-Inertial Processor	Y	0.018 m	Y	0.000 deg	
Timing, Multipath and Baseli Initialization	Z	-0.155 m	Z	0.000 deg	
Lever Arms and Mounting A	Reference t	o Primary GNSS Lever Arm	Aircraft to	Reference Mounting Angles	
Camera	х	-0.150 m	х	0.000 deg	
LIDAR SAR	Y	-0.061 m	Y	0.000 deg	
	Z	-0.992 m	Z	0.000 deg	
	Standard Deviation	<3cm 10cm 50cm 1m 10m			
< <u> </u>					
					OK Cancel

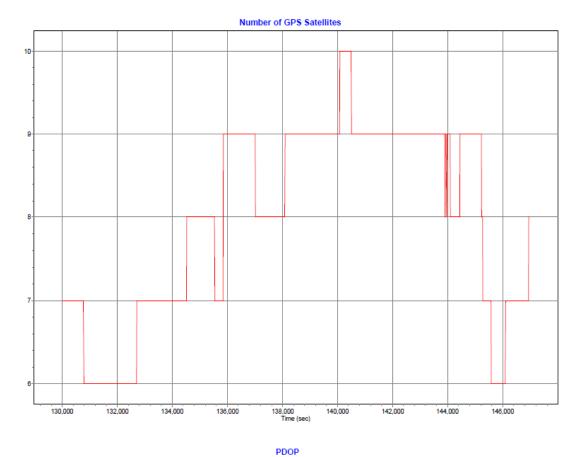


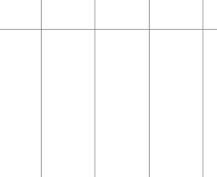


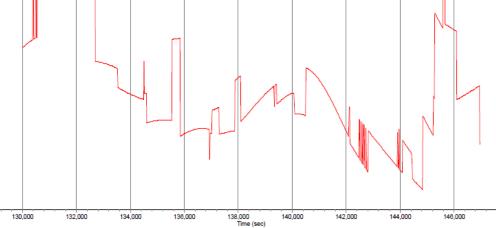


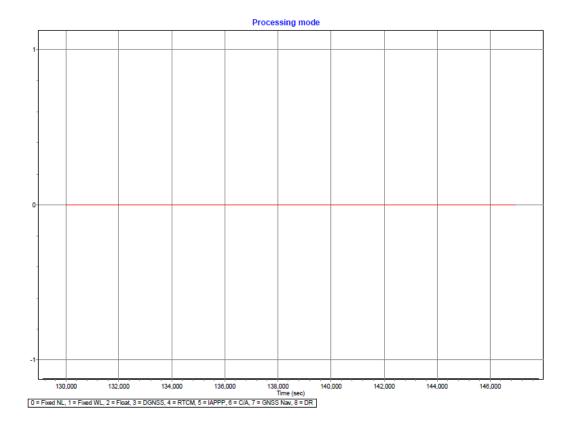


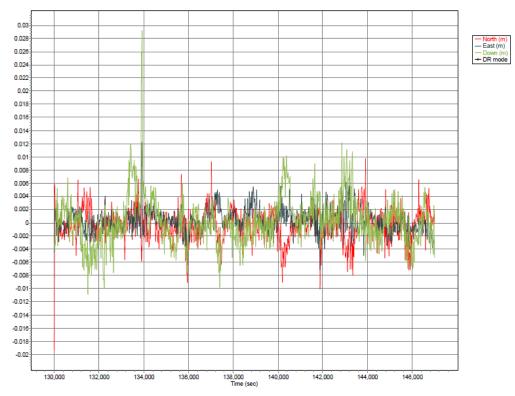
Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 87 of 157

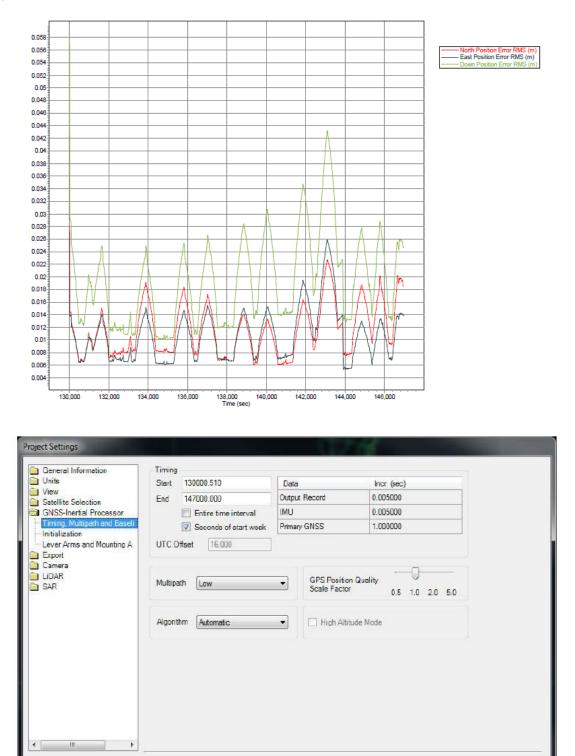


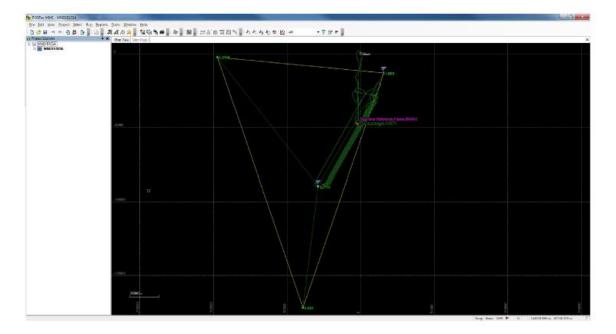

<u>MNB15103A</u>

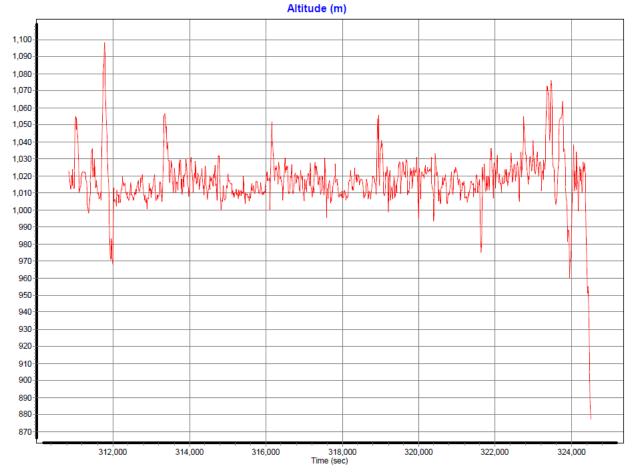



2



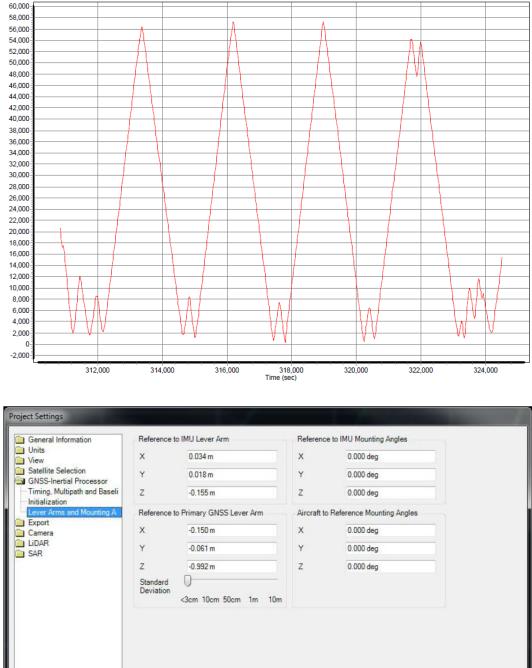






OK Cancel

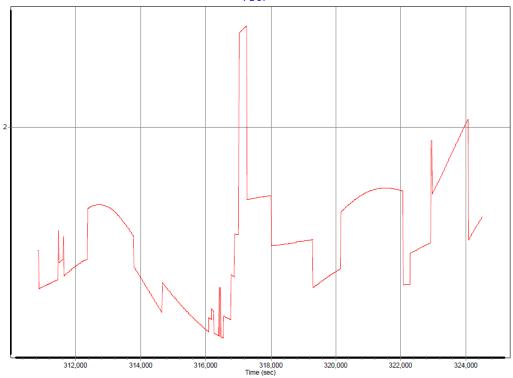
<u>MNB15105A</u>



٠ 🗌

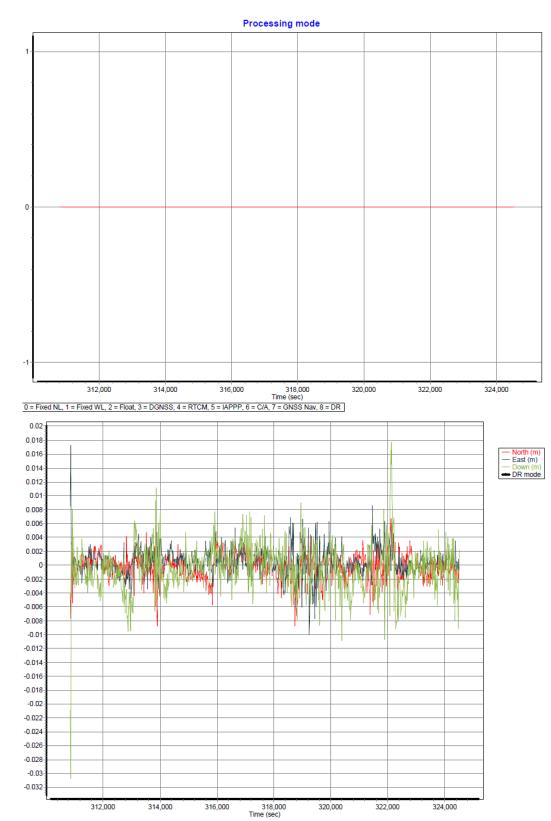
III

Baseline Length (m)



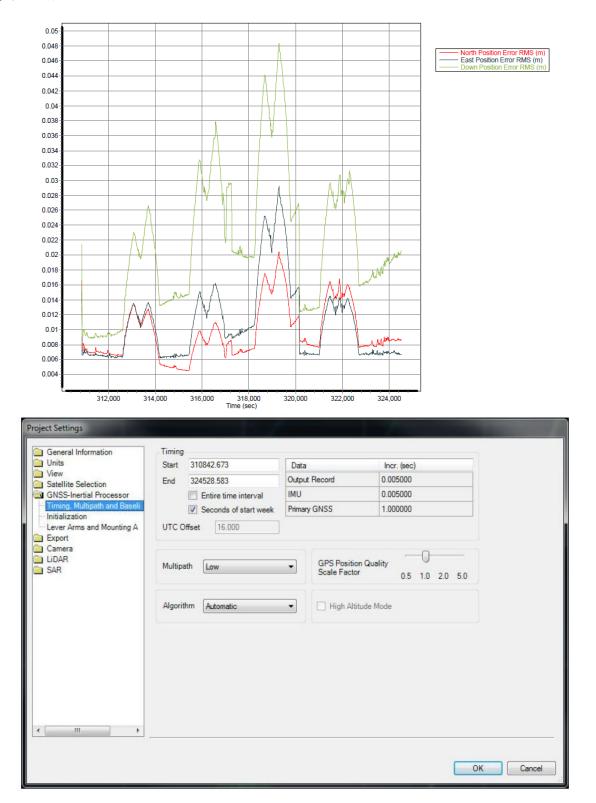
OK Cancel

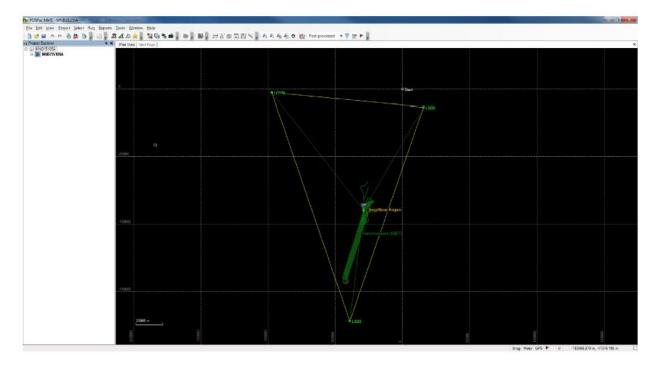
Number of GPS Satellites



312,000

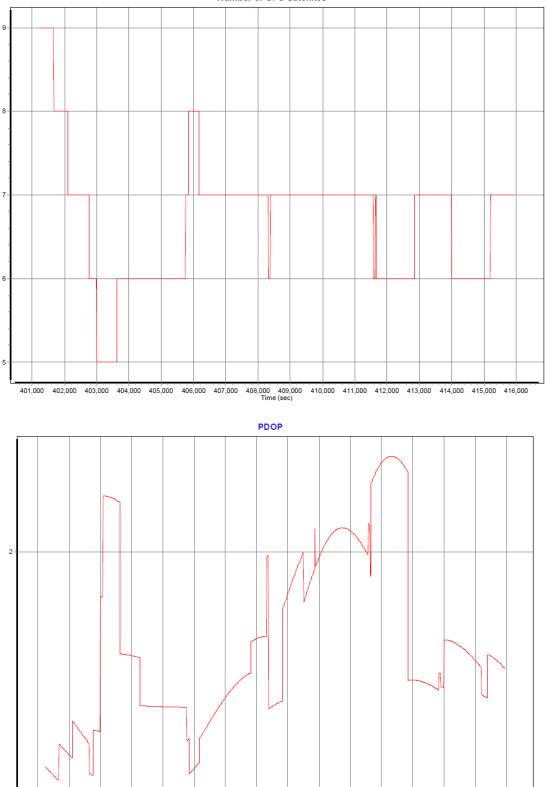
314,000


316,000


320,000

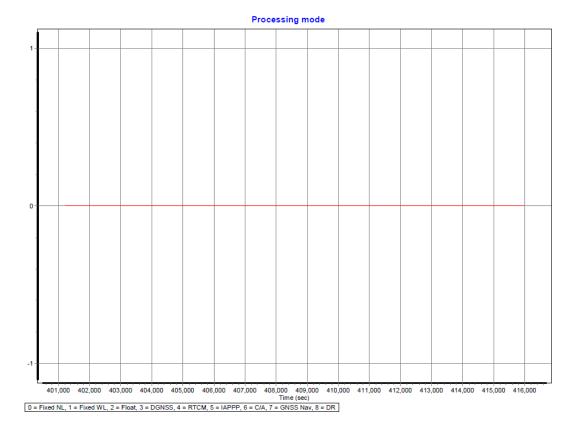
322,000

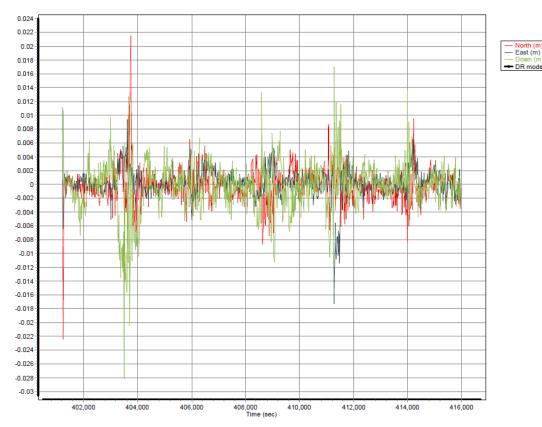
324,000

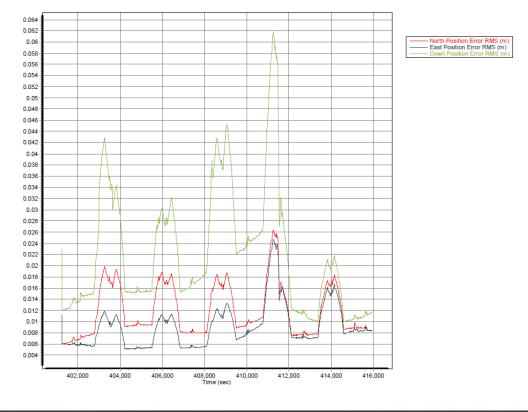

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 97 of 157

Altitude (m) 1,100 1,095 1,090 1,085 1,080 1,075 1,070 1,065 1,060 1,055 1,050 1,045 1,040 1,035 1,030 1,025 1,020 1,015 IV (M NY 1,010 1,005 1,000 995 990 985 980 975 970 965 960 955 950 408,000 Time (sec) 402,000 412,000 414,000 416,000 404,000 406,000 410,000

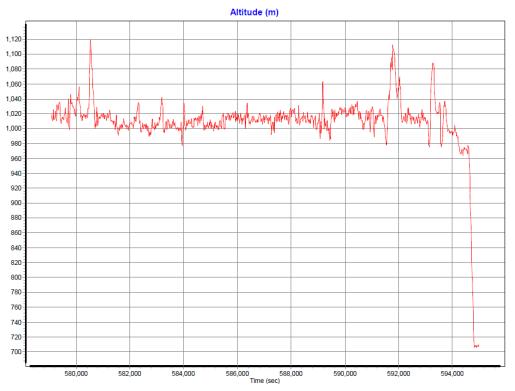
MNB15106A


Baseline Length (m) 58,000 56,000 54,000 52,000 50,000 48,000 46,000 44,000 42,000 40,000 38.000 36 000 34,000 32.000 30,000 28,000 26,000 24,000 22,000 20,000 18,000 16,000 14,000 12,000 10,000 ΛA A 8,000 ħ 6.000 VV 4,000 V 2.000 n -2.000 401,000 402,000 403,000 404,000 405,000 406,000 407,000 408,000 409,000 410,000 411,000 412,000 413,000 414,000 415,000 416,000 Time (sec) Project Settings General Information
Units
View
Satellite Selection
GNSS-Inertial Processor Reference to IMU Lever Arm Reference to IMU Mounting Angles х 0.034 m х 0.000 deg Y 0.018 m Y 0.000 deg Timing, Multipath and Baseli -0.155 m Ζ Ζ 0.000 deg Initialization Reference to Primary GNSS Lever Arm Aircraft to Reference Mounting Angles Lever A Export Camera LiDAR -0.155 m 0.000 deg Х Х Y -0.061 m Y 0.000 deg -0.992 m Ζ 0.000 deg Ζ 0 Standard Deviation <3cm 10cm 50cm 1m 10m • . OK Cancel



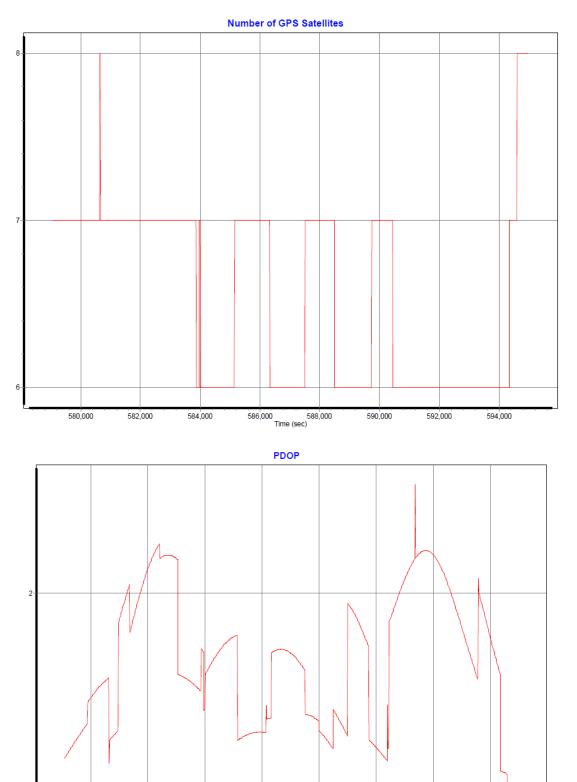

401,000 402,000 403,000 404,000 405,000 406,000 407,000 408,000 409,000 410,000 411,000 412,000 413,000 414,000 415,000 416,000 Time (sec)

Number of GPS Satellites



Project Settings	Timing Start 401226.433 End 415966.597	Data Output Record IMU	Incr. (sec) 0.005000 0.005000	
	Image: Seconds of start week UTC Offset 16.000	Primary GNSS	1.000000	
	Multipath Low	GPS Position Qua Scale Factor	ality 0.5 1.0 2.0 5.0	
	Algorithm Automatic	High Altitude 1	Mode	
< <u> </u>				
			ок	Cancel

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 102 of 157



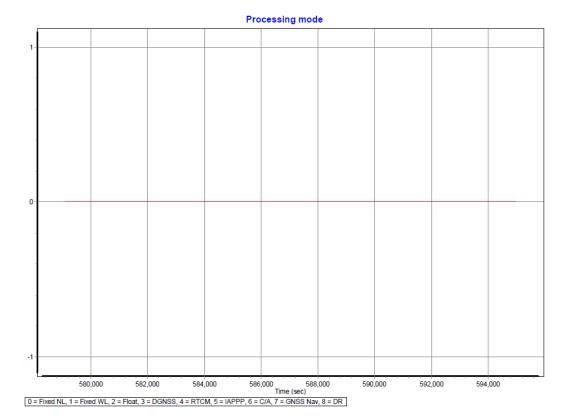
MNB15108A

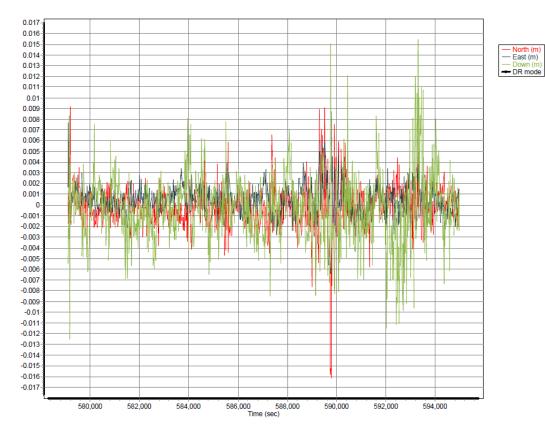
Baseline Length (m) 60,000 58,000 56,000 54,000 52,000 50,000 48,000 46,000 44,000 42,000 40,000 38,000 36,000 34,000 32,000 30,000 28,000 26,000 24,000 22,000 20,000 18,000 16,000 14,000 12,000 11 10,000 П L f 8,000 ₩, W 6,000 W 4,000 2,000 0 -2,000 580,000 582,000 584,000 586,000 588,000 Time (sec) 590,000 592,000 594,000 Project Settings General Information Reference to IMU Lever Arm Reference to IMU Mounting Angles

Ditts					
View	х	0.034 m	х	0.000 deg	
GNSS-Inertial Processor	Y	0.018 m	Y	0.000 deg	
Timing, Multipath and Baseli Initialization	Z	-0.155 m	Z	0.000 deg	
	Reference to	Primary GNSS Lever Arm	Aircraft to Re	ference Mounting Angles	
Camera	х	-0.150 m	x	0.000 deg	
Lidar SAR	Y	-0.061 m	Y	0.000 deg	
	Z	-0.992 m	Z	0.000 deg	
	Standard Deviation	<pre><3cm 10cm 50cm 1m 10m</pre>			
SAR					
[◀ [] ▶]					
					OK Cancel

586,000 588,000 Time (sec) 590,000

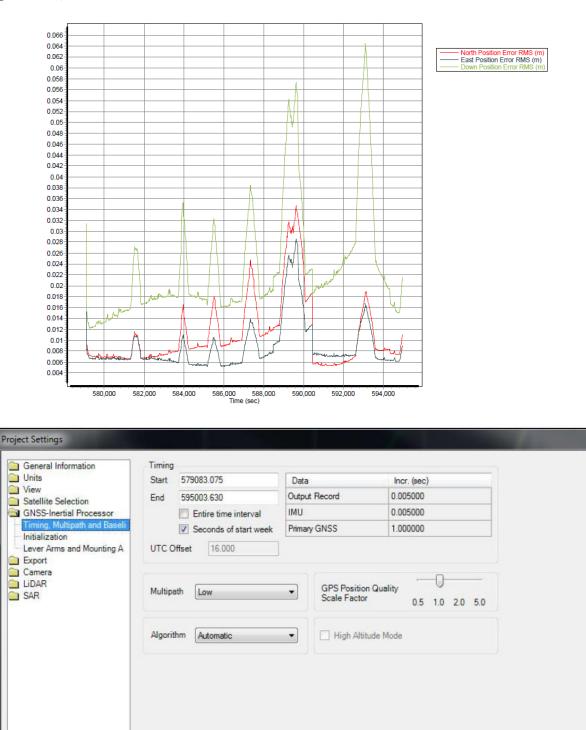
592,000


594,000


580,000

582,000

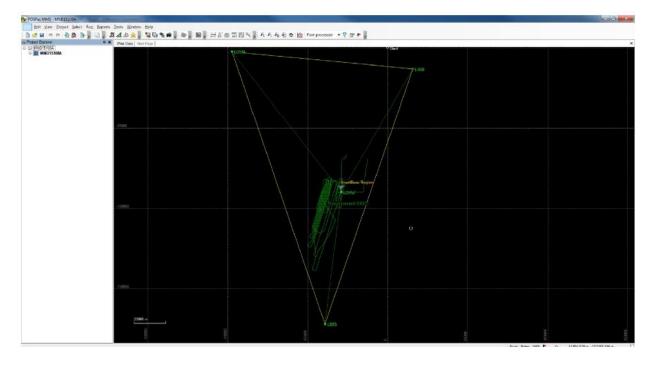
584,000



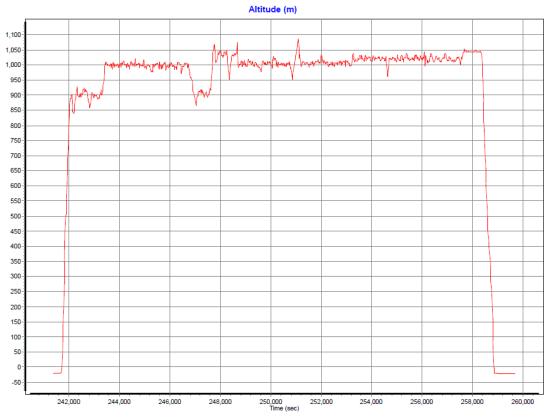
•

111

.

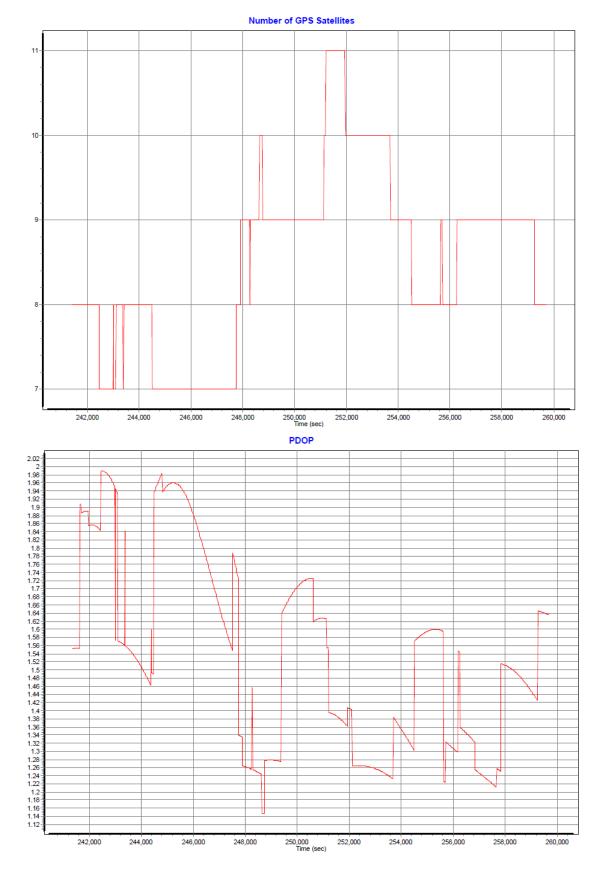


Dewberry

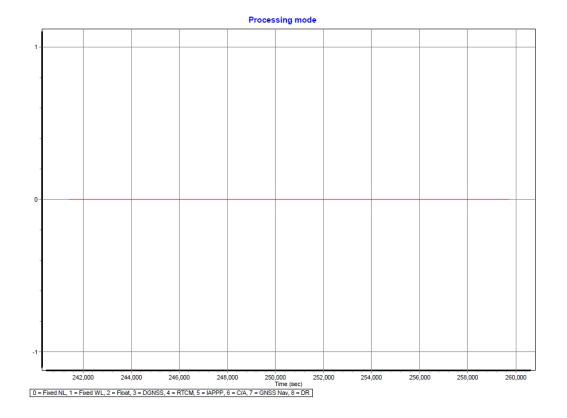

Cancel

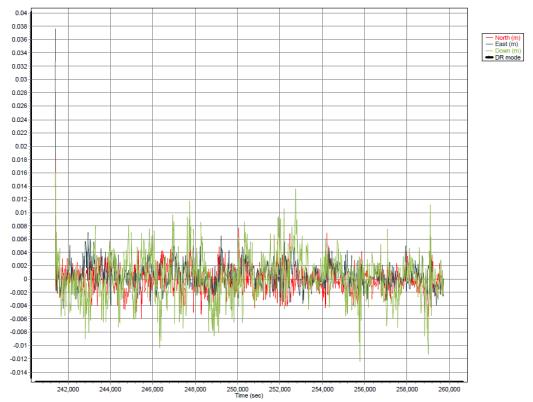
OK

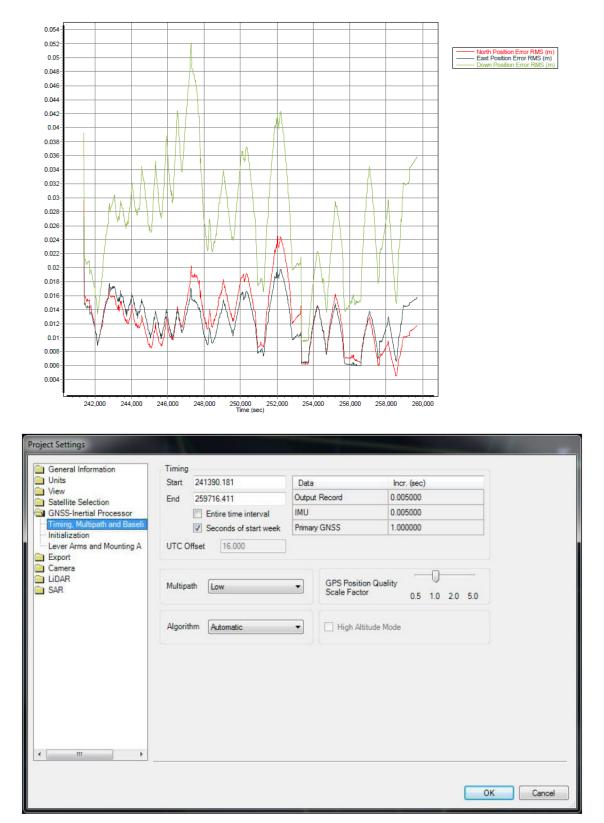
Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 107 of 157

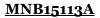


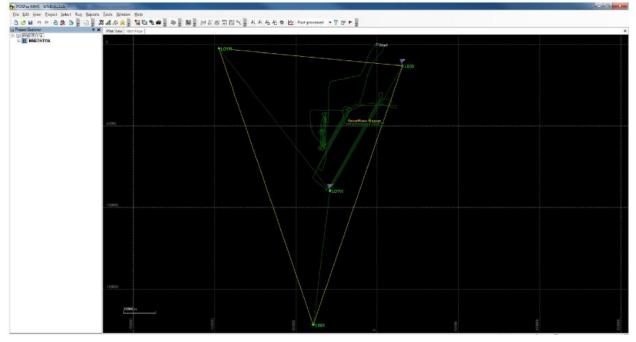
<u>MNB15111A</u>

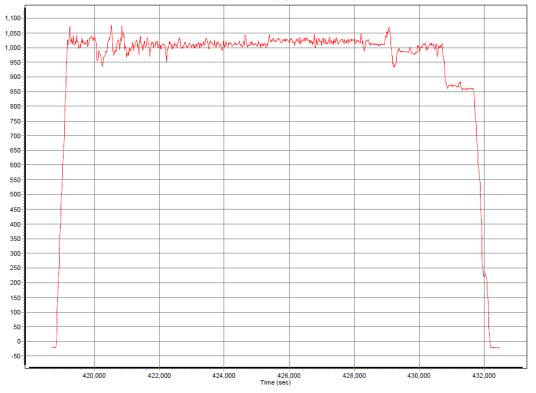



Baseline Length (m) 52,000 \sim 50,000 48,000 46,000 44,000 42,000 40,000 38,000 36,000 34,000 32,000 30,000 28,000 26,000 24,000 22,000 20,000 18,000 ₩ h 16,000 Æ 14,000 12,000 10,000 8,000 V t 6,000 ₩ M 4,000 2,000 0 242,000 244,000 246,000 248,000 250,000 Time (sec) 252,000 254,000 256,000 258,000 260,000 Project Settings

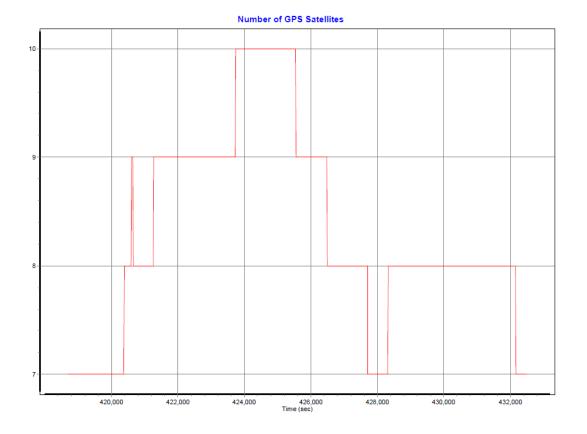

General Information	Reference to	IMU Lever Arm	Reference t	to IMU Mounting Angles	
Dunits	х	0.034 m	х	0.000 deg	
GNSS-Inertial Processor	Y	0.018 m	Y	0.000 deg	
Timing, Multipath and Baseli Initialization	Z	-0.155 m	Z	0.000 deg	
Lever Arms and Mounting A	Reference to	Primary GNSS Lever Arm	Aircraft to F	Reference Mounting Angles	
Camera	х	-0.150 m	х	0.000 deg	
🗀 Lidar 🗀 Sar	Y	-0.061 m	Y	0.000 deg	
	Z	-0.992 m	Z	0.000 deg	
	Standard Deviation	<3cm 10cm 50cm 1m 10m			
4 111					
<u>, </u>					
					OK Cancel

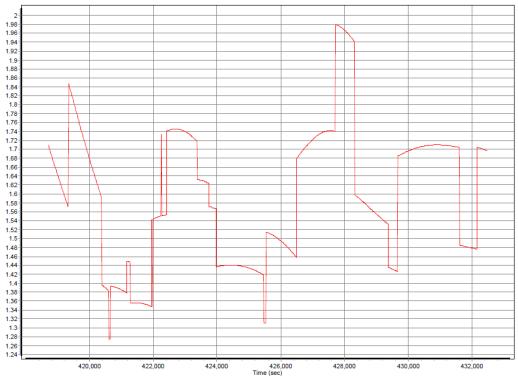




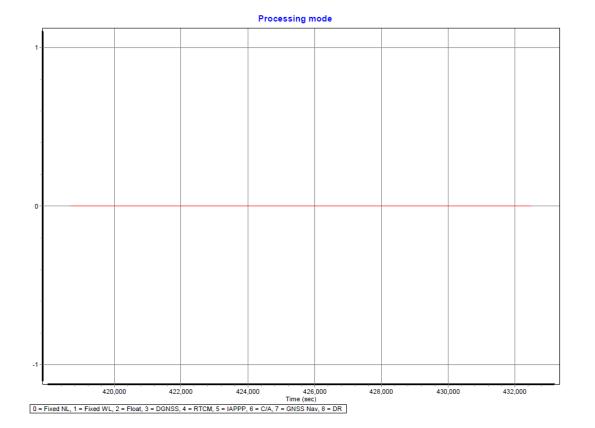


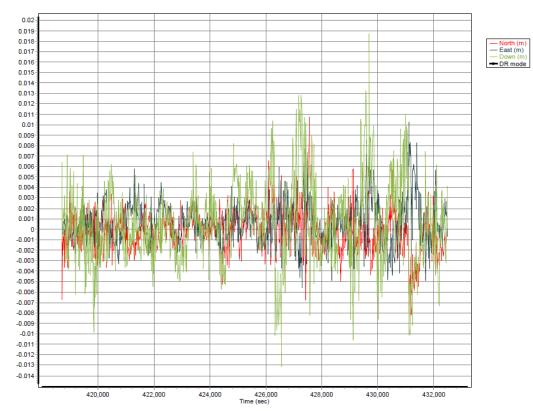
Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 112 of 157



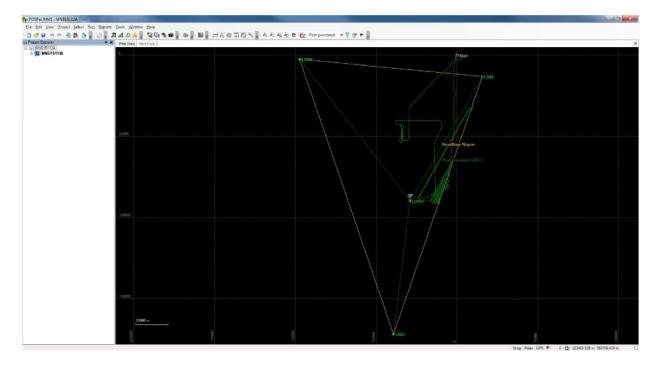


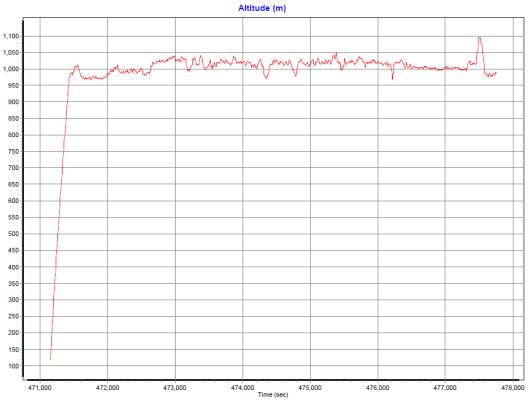
Baseline Length (m) 58,000 56,000 54,000 52,000 50,000 48,000 46,000 44,000 42,000 40,000 38,000 36,000 34,000 32,000 30,000 28,000 26,000 W 24,000 22,000 20,000 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 420,000 422,000 424,000 426,000 Time (sec) 428,000 430,000 432,000

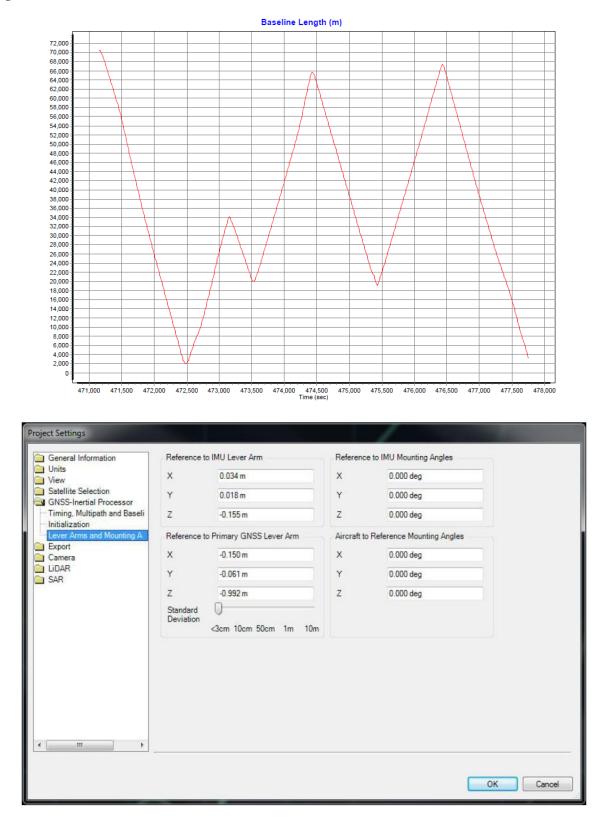

Project Settings			1		
General Information	Reference	to IMU Lever Arm	Reference t	to IMU Mounting Angles	
Dunits	x	0.034 m	х	0.000 deg	
GNSS-Inertial Processor	Y	0.018 m	Y	0.000 deg	
Timing, Multipath and Baseli Initialization	Z	-0.155 m	Z	0.000 deg	
Lever Arms and Mounting A	Reference t	to Primary GNSS Lever Arm	Aircraft to F	Reference Mounting Angl	es
Camera	x	-0.150 m	x	0.000 deg	
LIDAR SAR	Y	-0.061 m	Y	0.000 deg	
	z	-0.992 m	Z	0.000 deg	
	Standard Deviation	0			
		<3cm 10cm 50cm 1m 10m			
· · · ·					
					OK Cancel

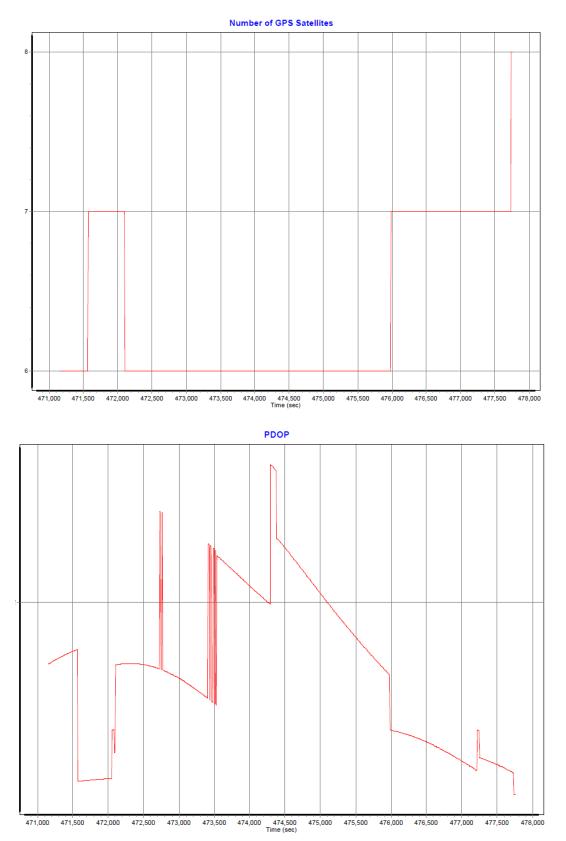


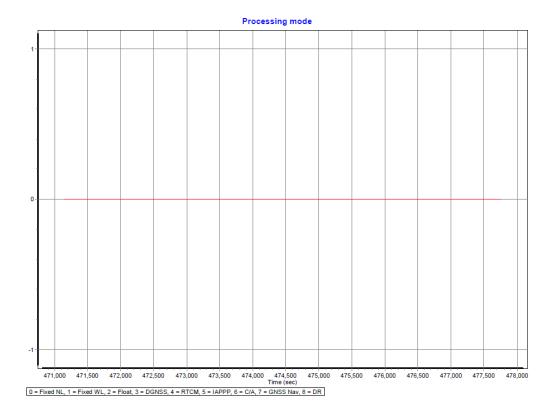

PDOP



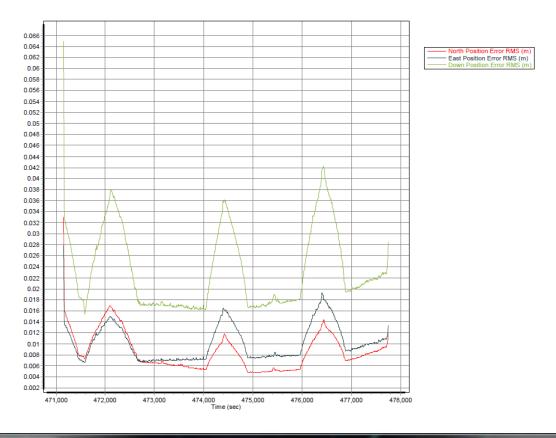


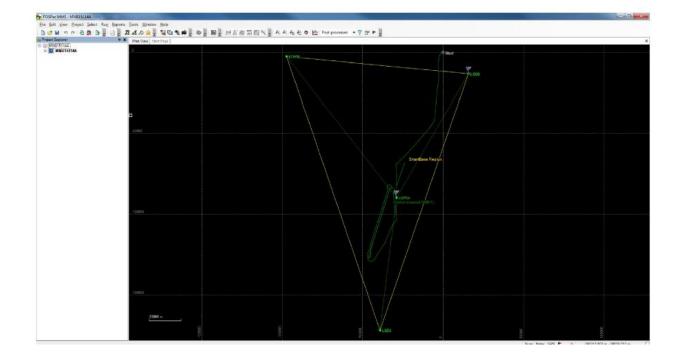

General Information	Timing Start 418700.442	Data	Incr. (sec)			
🔁 View	End 432500.000	Output Record	0.005000			
GNSS-Inertial Processor	Entire time interval	IMU	0.005000			
Timing, Multipath and Baseli	Seconds of start week	Primary GNSS	1.000000			
Initialization Lever Arms and Mounting A Export Camera LiDAR SAR	UTC Offset 16.000					
	Multipath Low	GPS Position Qu Scale Factor	ality 0.5 1.0 2.0 5.0			
	Algorithm Automatic	High Altitude	Mode			
General Information Units View Satellite Selection GNSS-Inertial Processor Timing, Multipath and Baseli Initialization Lever Arms and Mounting A Export Camera LiDAR SAR						
			0	K Cancel		

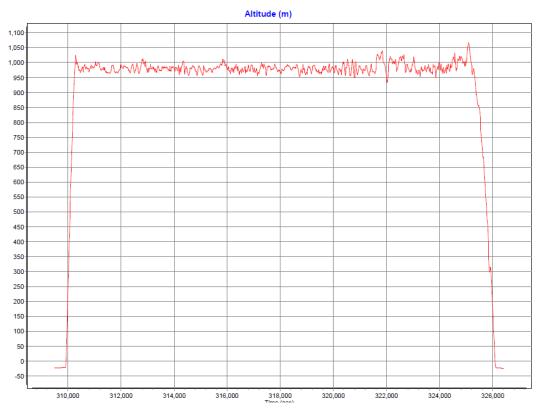

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 117 of 157



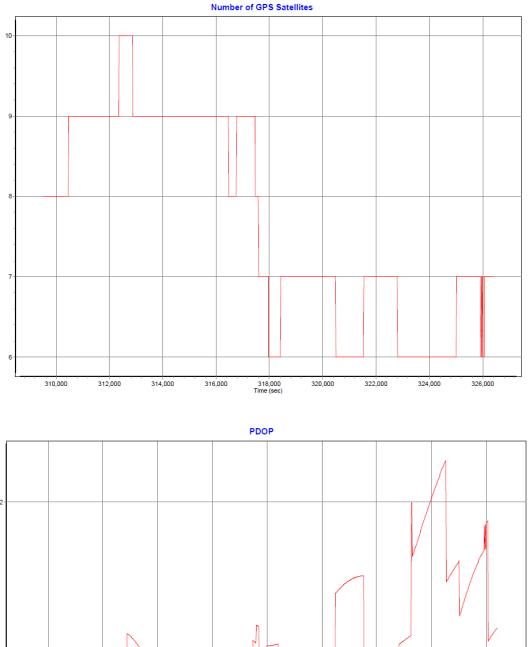
<u>MNB15114A</u>

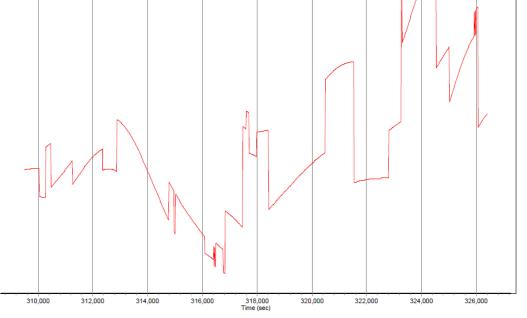




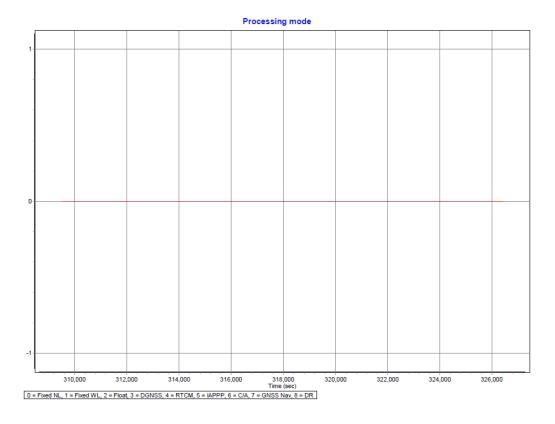


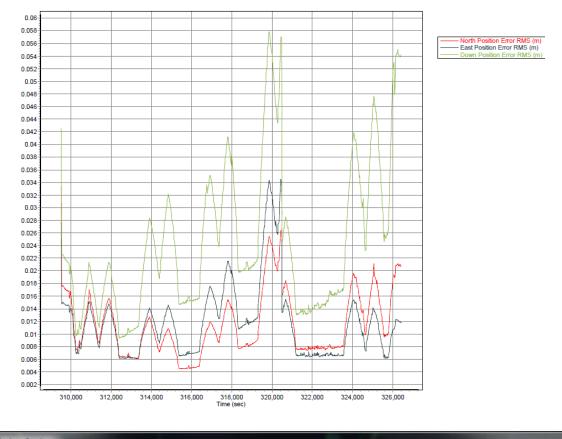

General Information	Timing Start	47115	0.907	Data		Incr. (s	sec)			1
View Satellite Selection	End	d 477765.350	Output Record		0.005000					
GNSS-Inertial Processor	[tire time interval			0.005000				
Timing, Multipath and Baseli Initialization	[Se Se	conds of start week			1.0000	1.000000			
Lever Arms and Mounting A Export	UTC Off	fset	16.000							
<pre>Export Camera LiDAR SAR SAR </pre>	Multipat	h Li	ow	•	GPS Position Qu Scale Factor).5 1	.0 2.0) 5.0	
	Algorith	m A	utomatic	•	High Altitude	Mode				
•										

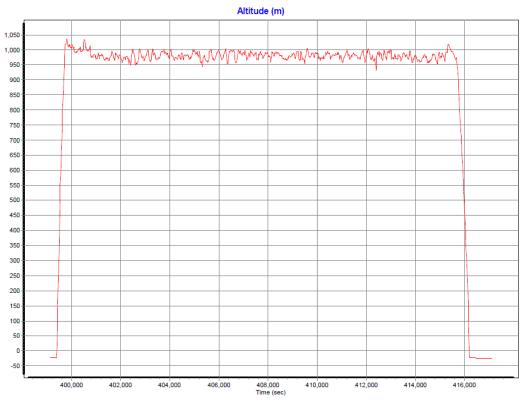

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 122 of 157



<u>UNB15105A</u>



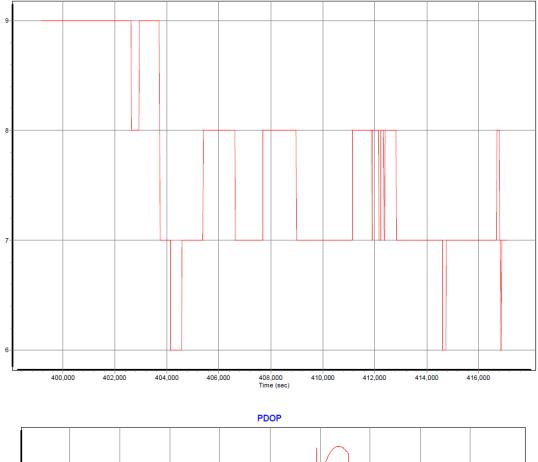


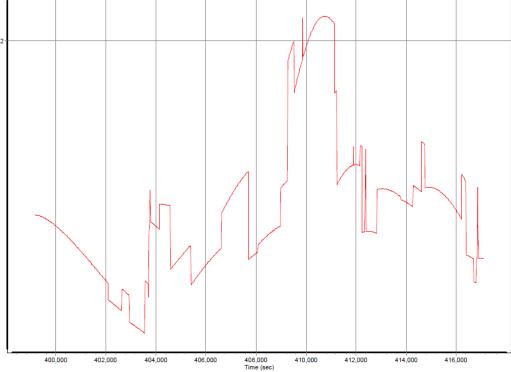


General Information	Timing	11						
View	Start 309509.306	Data	Incr. (sec)					
Satellite Selection	End 326438.164	Output Record	0.005000					
GNSS-Inertial Processor Timing, Multipath and Baseli	Entire time interval	IMU	0.005000					
Initialization	Seconds of start week	Primary GNSS	1.000000					
Lever Arms and Mounting A	UTC Offset 16.000	UTC Offset 16.000						
Camera LiDAR								
SAR	Multipath Low	 GPS Position Scale Factor 	Quality 0.5 1.0 2.0 5.0					
			0.5 1.0 2.0 5.0					
	Algorithm Automatic	High Altitu	ude Mode					
	-							
			ок	Cancel				

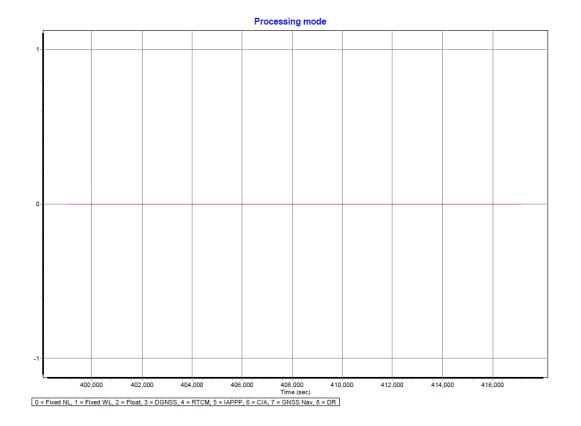
Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 127 of 157

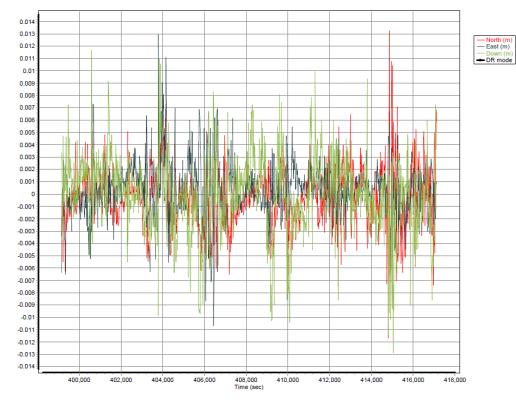
<u>UNB15106A</u>

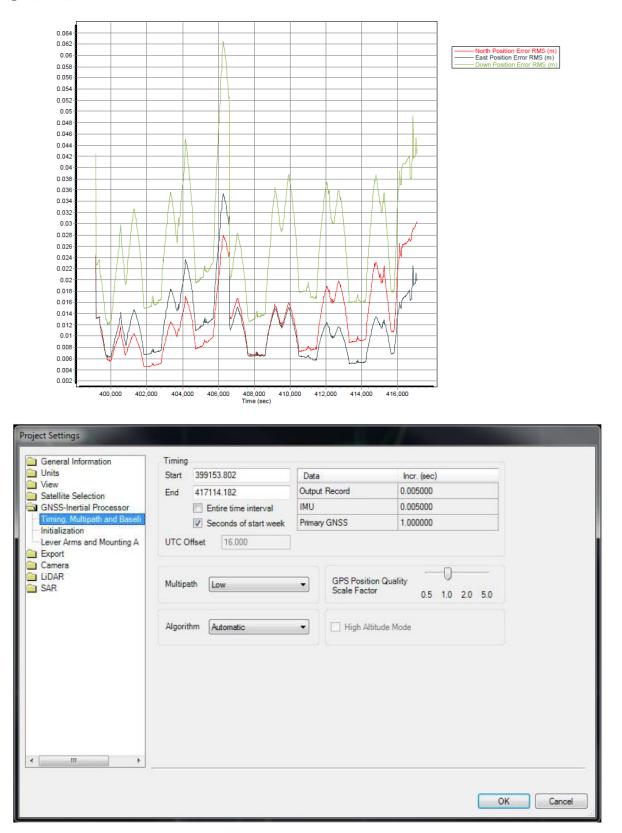

58,000-56,000 1 L 54,000 52,000 50,000 48,000-46,000 44,000-٨ 42,000 40,000-38,000 1 36,000 34,000 32,000 30,000 28,000 26,000 24,000 Ň 22,000 20,000 18,000 Δ 16,000 14,000 12,000 10,000 8,000-6,000-1 4,000 2,000 0 -2,000 400,000 402,000 404,000 406,000 408,000 Time (sec) 410,000 412,000 414,000 416,000

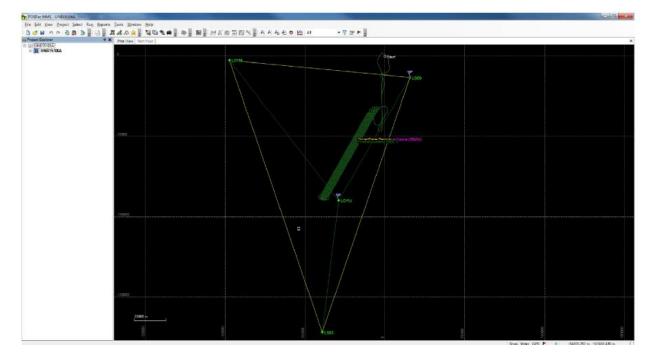

Project Settings		
General Information Units View Satellite Selection GINSS-Inertial Processor Timing, Multipath and Baseli Initialization Lever Arms and Mounting A Export Camera LiDAR SAR	Reference to IMU Lever Arm X 0.034 m Y 0.018 m Z -0.155 m Reference to Primary GNSS Lever Arm X -0.094 m Y -0.055 m Z -1.020 m Standard	Reference to IMU Mounting Angles X 0.000 deg Y 0.000 deg Z 0.000 deg Aircraft to Reference Mounting Angles X 0.000 deg Y 0.000 deg Z 0.000 deg Y 0.000 deg Z 0.000 deg Z 0.000 deg
< <u> </u>		OK Cancel

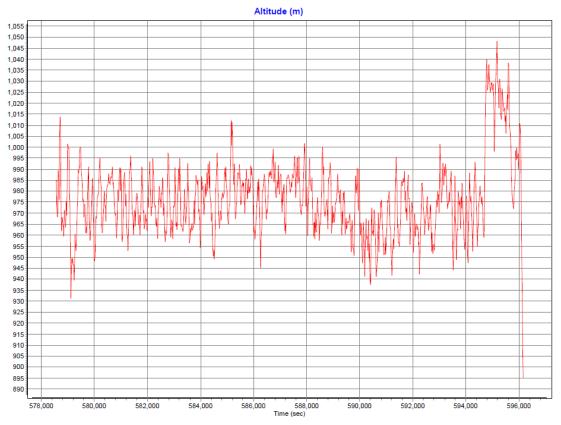
Baseline Length (m)

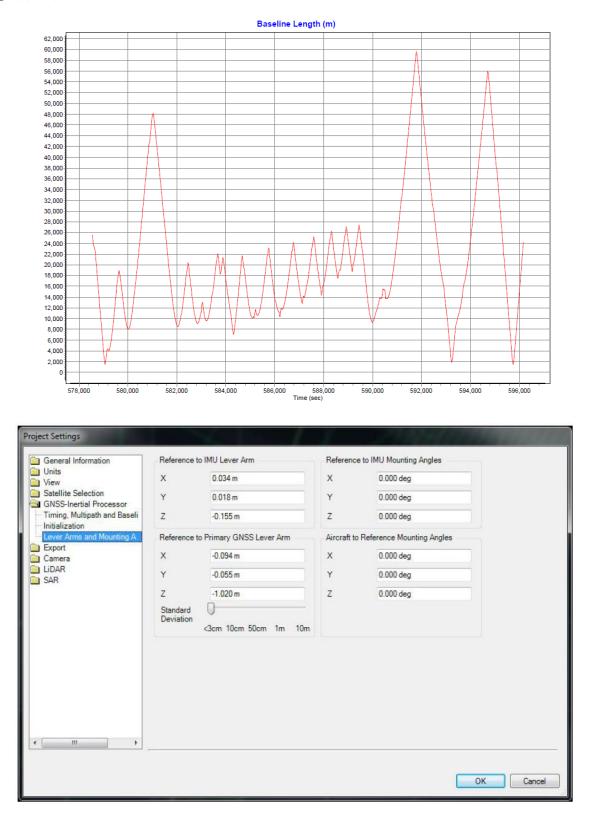




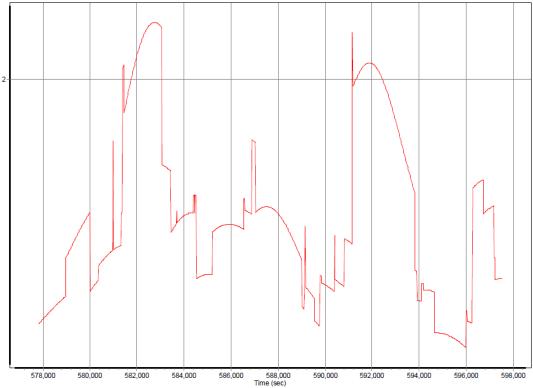




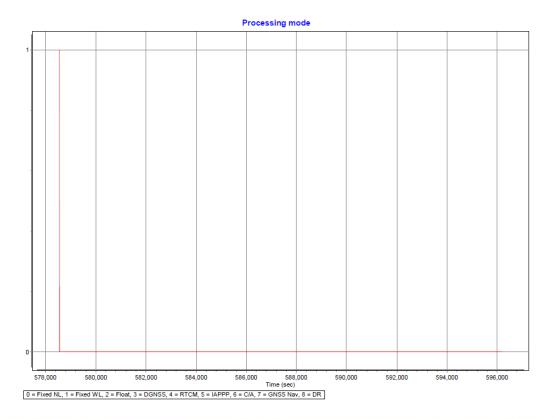


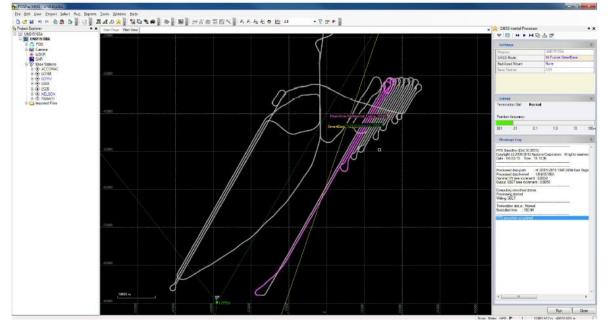


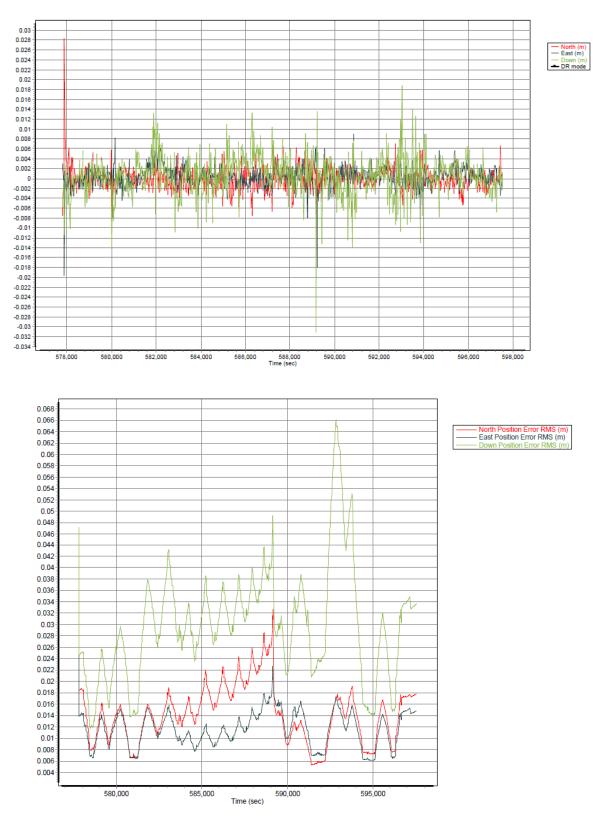
Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 132 of 157

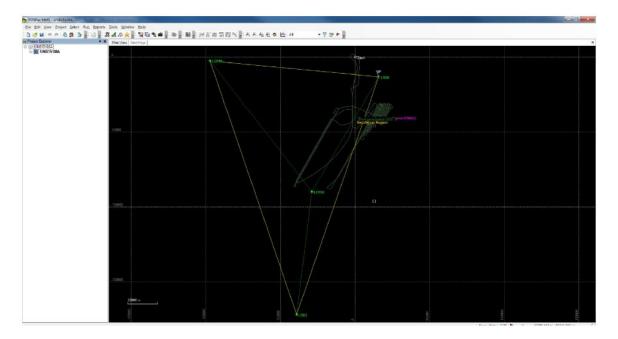


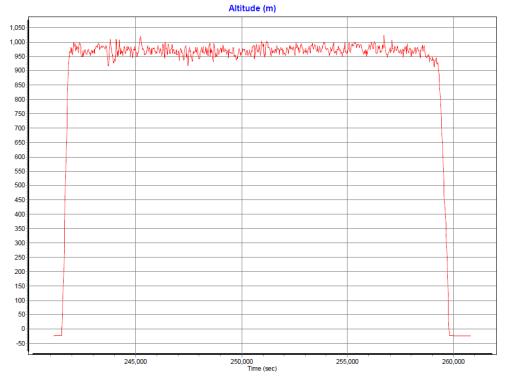
<u>UNB15108A</u>



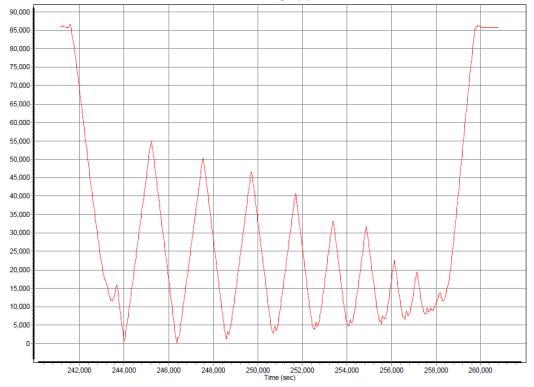







Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 137 of 157

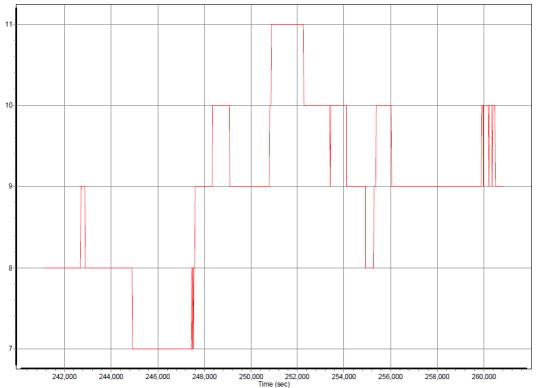
Project Settings		I = I	A Station	
General Information Units View Satellite Selection GINSS-Inertial Processor Timing, Multipath and Baseli Initialization Lever Arms and Mounting A Export Camera LiDAR SAR	Timing Start 578545.966 End 596200.000 Entire time interval Image: Seconds of start week UTC Offset 16.000	Data Output Record IMU Primary GNSS	Incr. (sec) 0.005000 0.005000 1.000000	
	Multipath Low	GPS Position Qu Scale Factor	0.5 1.0 2.0 5.0	
< <u> </u>				
< <u> </u>			0	K Cancel

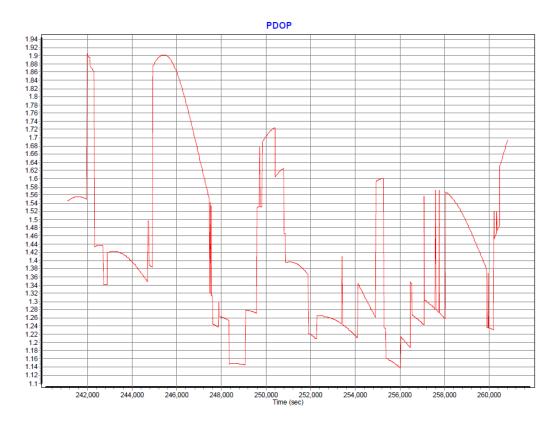


Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 138 of 157

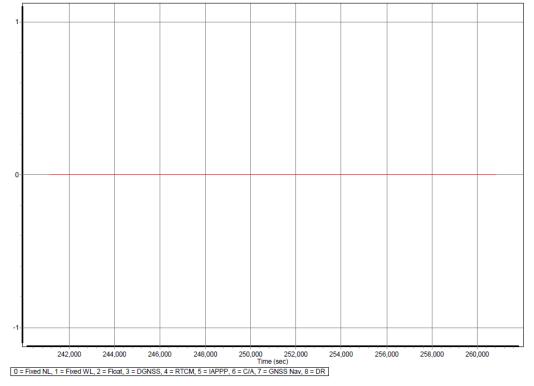
<u>UNB15111A</u>

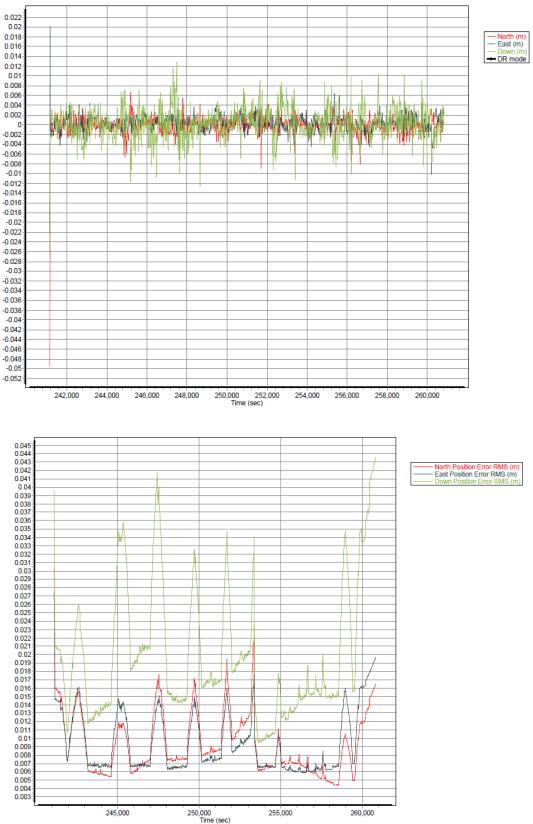
Baseline Length (m)



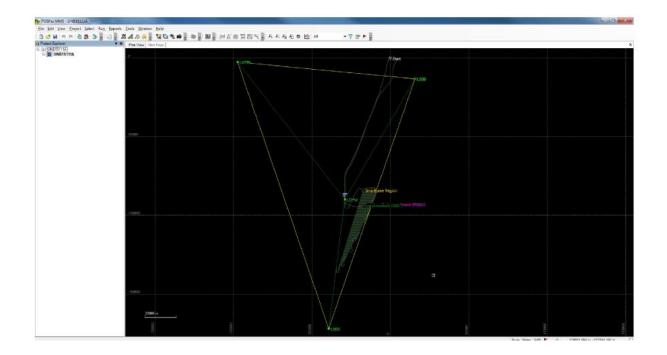

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 139 of 157

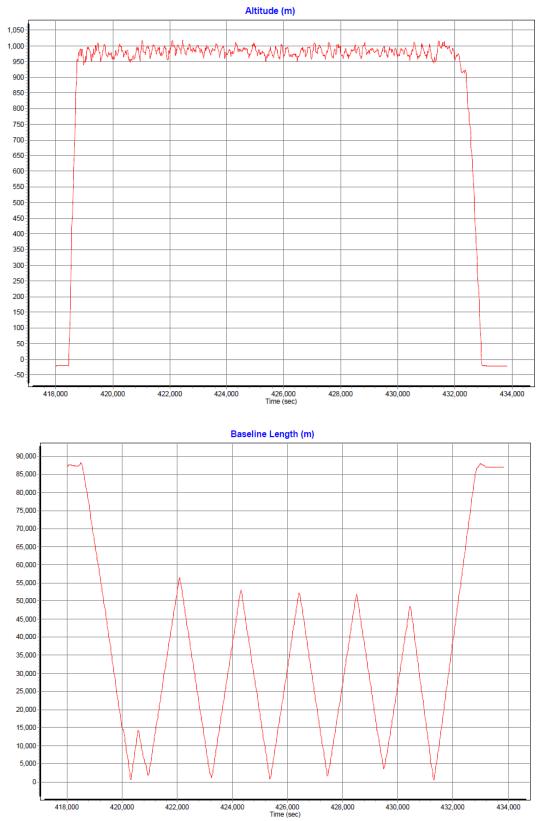
Project Settings					
General Information	Reference t	o IMU Lever Arm	Reference	to IMU Mounting Angles	
Units	x	0.034 m	х	0.000 deg	
GNSS-Inertial Processor	Y	0.018 m	Y	0.000 deg	
Timing, Multipath and Baseli Initialization	Z	-0.155 m	Z	0.000 deg	
Lever Arms and Mounting A	Reference t	o Primary GNSS Lever Arm	Aircraft to	Reference Mounting Angles	s (
Camera	x	-0.094 m	х	0.000 deg	
idar Sar	Y	-0.055 m	Y	0.000 deg	
	z	-1.020 m	z	0.000 deg	
	Standard Deviation	0			
		<3cm 10cm 50cm 1m 10m			
< <u> </u>					
					OK Cancel


Number of GPS Satellites



Processing mode

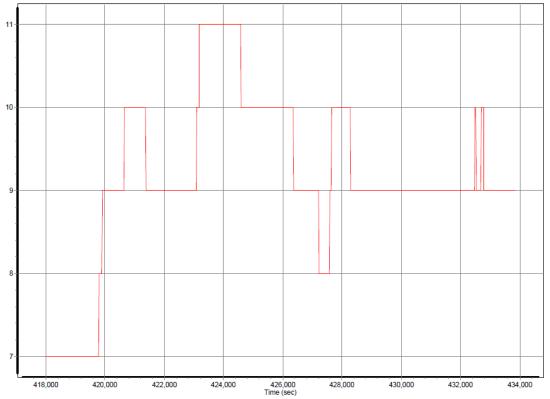


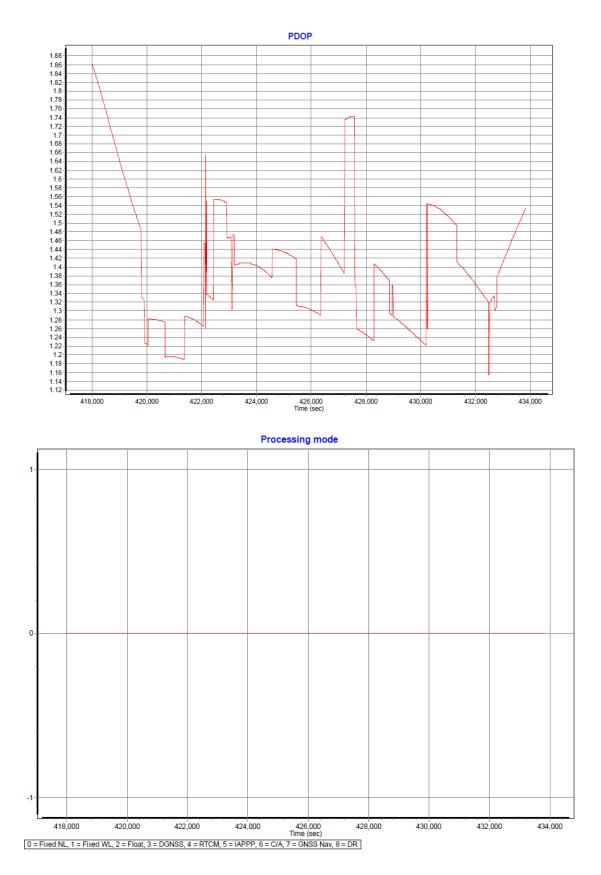

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 142 of 157

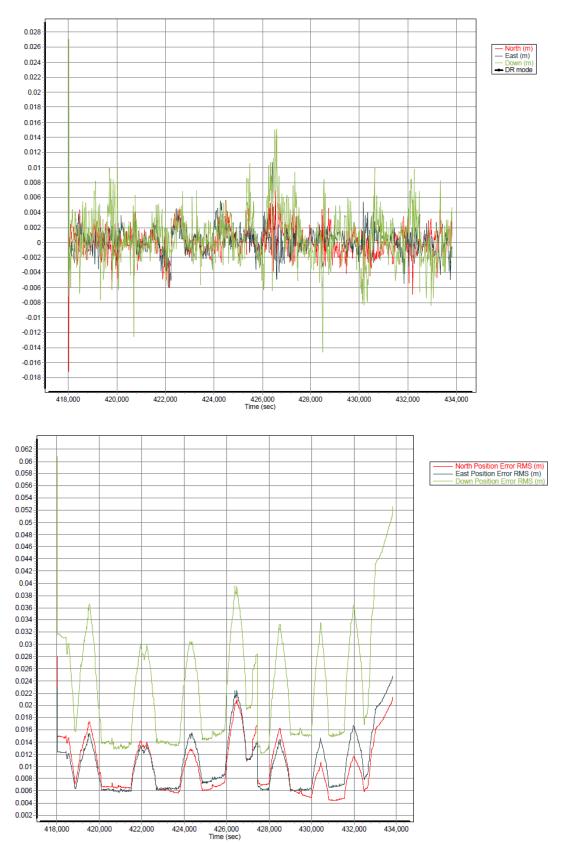
Project Settings				
General Information Units View Satellite Selection GISS-Inertial Processor Timing, Multipath and Baseli Initialization Lever Arms and Mounting A Export Camera LiDAR SAR	Timing Start 241134.764 End 260845.974 Entire time interval Seconds of start week UTC Offset 16.000 Multipath Low	Data Output Record IMU Primary GNSS GPS Position Qu Scale Factor	Incr. (sec) 0.005000 0.005000 1.000000 1.000000 nality 0.5 1.0 2.0 5.0	
<)	Algorithm Automatic	High Altitude	Mode	
			0	Cancel

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 143 of 157

<u>UNB15113A</u>

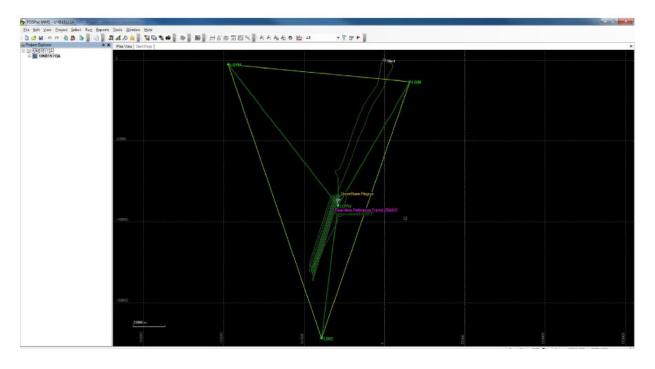


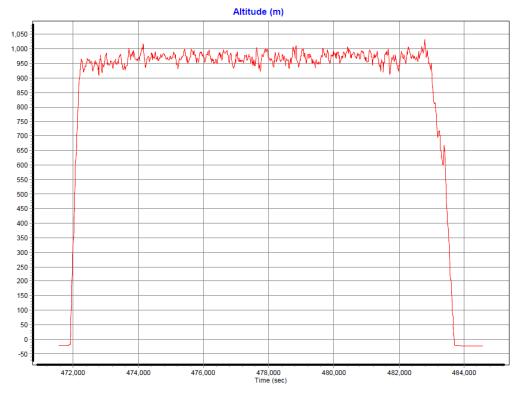



Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 144 of 157

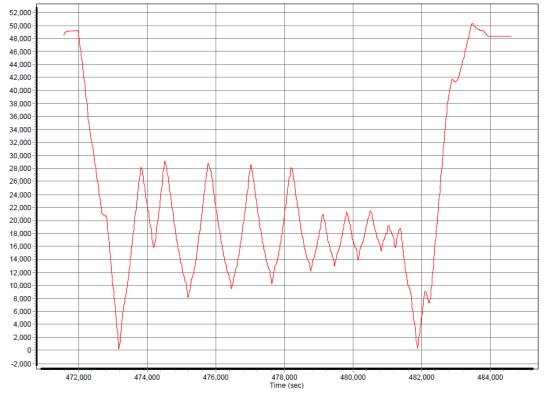
Project Settings		
General Information Units View Satellite Selection GNSS-Inertial Processor Timing, Multipath and Baseli Initialization Lever Arms and Mounting A Export Camera LiDAR	Reference to IMU Lever Arm X 0.034 m Y 0.018 m Z -0.155 m Reference to Primary GNSS Lever Arm X -0.094 m Y -0.055 m	Reference to IMU Mounting Angles X 0.000 deg Y 0.000 deg Z 0.000 deg Aircraft to Reference Mounting Angles X 0.000 deg Y 0.000 deg Q 0.000 deg Y 0.000 deg Y 0.000 deg Y 0.000 deg Y 0.000 deg
SAR	Z -1.020 m Standard Deviation <3cm 10cm 50cm 1m 10n	Z 0.000 deg
< <u> </u>	<u></u>	OK Cancel

Number of GPS Satellites




Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 147 of 157

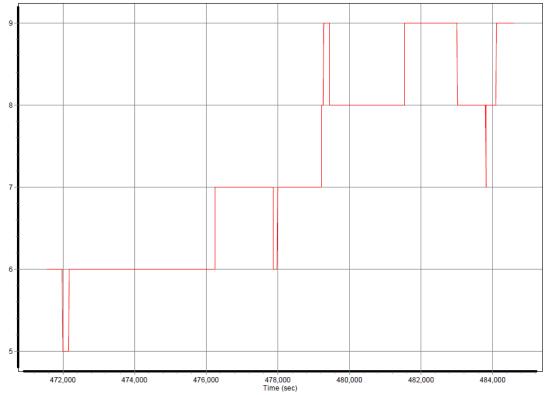
Project Settings	Timing			$I \downarrow I$		1000	
🗀 Units	and the second second second	8005.357	Data		Incr. (sec)		
Satellite Selection	End 43	3854.541		t Record	0.005000		
GNSS-Inertial Processor Timing, Multipath and Baseli			IMU	01/02	0.005000		
Initialization Lever Arms and Mounting A Export	UTC Offse	Seconds of start week t 16.000	Prima	y GNSS	1.000000		
LiDAR	Multipath	Low	•	GPS Position Q Scale Factor	uality 0.5 1.0 2.0	5.0	
	Algorithm	Automatic	•	High Altitude	Mode		
< <u> </u>							
·						OK Cancel	

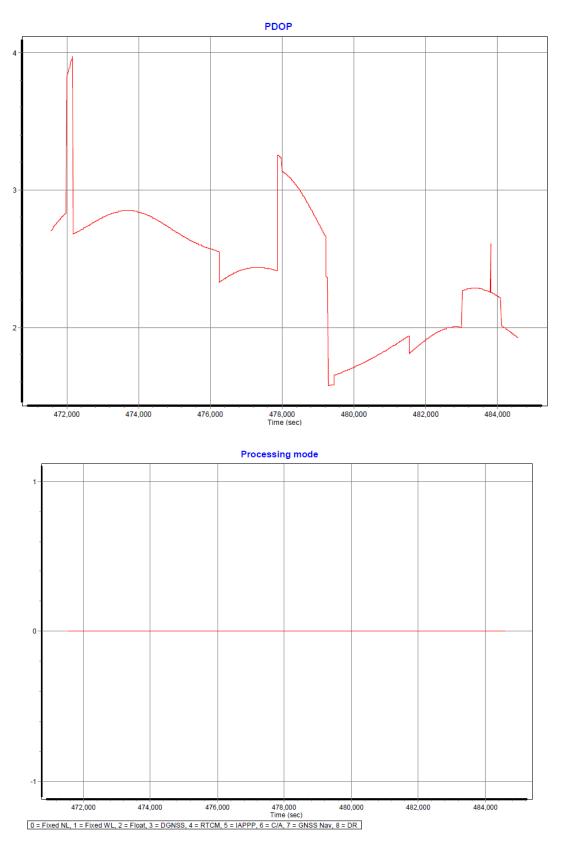


Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 148 of 157

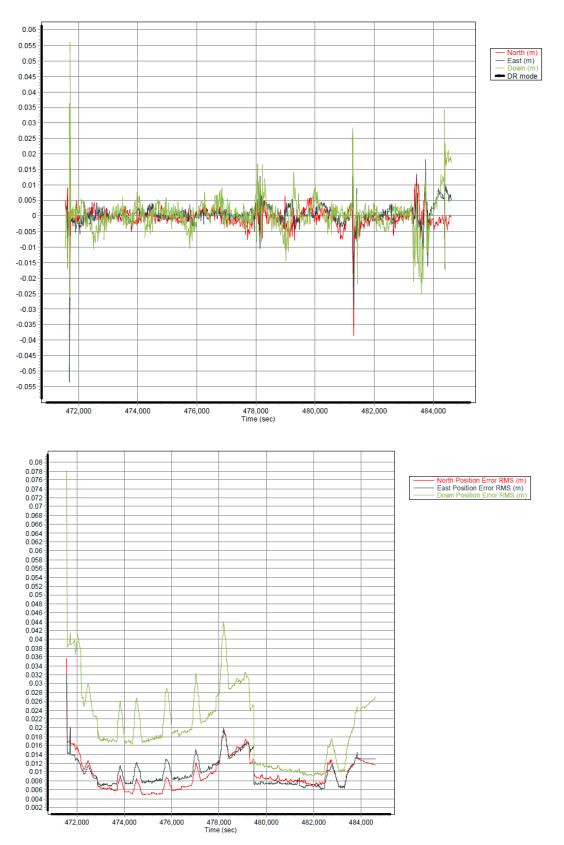
<u>UNB15114A</u>

Baseline Length (m)

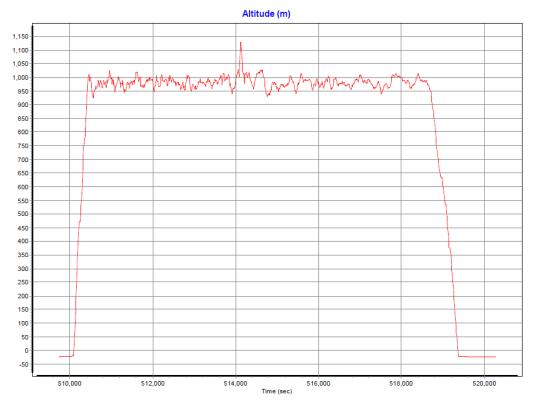




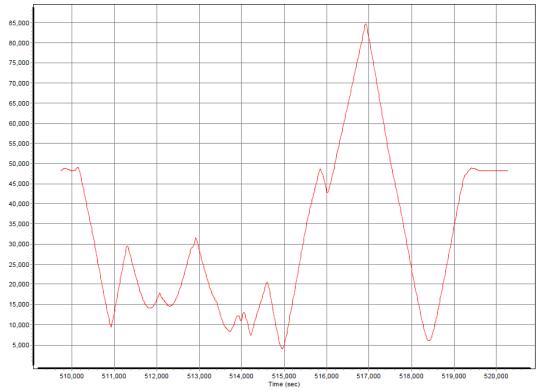
Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 149 of 157


Project Settings					
General Information	Reference to	o IMU Lever Arm	Reference	to IMU Mounting Angles	
 Units View 	x	0.034 m	×	0.000 deg	
GNSS-Inertial Processor	Y	0.018 m	Y	0.000 deg	
Timing, Multipath and Baseli Initialization	Z	-0.155 m	Z	0.000 deg	
Lever Arms and Mounting A	Reference to	Primary GNSS Lever Arm	Aircraft to I	Reference Mounting Angle	es
Camera	х	-0.094 m	x	0.000 deg	
🗀 Lidar 🗀 Sar	Υ	-0.055 m	Y	0.000 deg	
	Z	-1.020 m	Z	0.000 deg	
	Standard Deviation	0			
		<3cm 10cm 50cm 1m 10m			
K					
					OK Cancel
					Cancel

Number of GPS Satellites

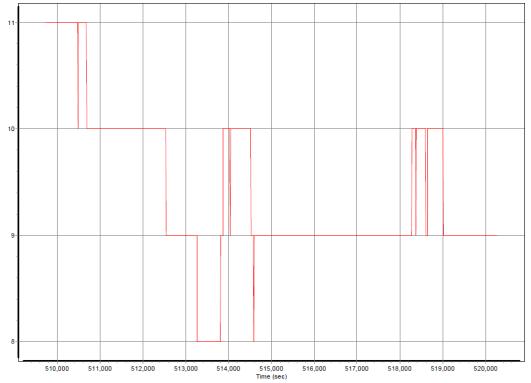


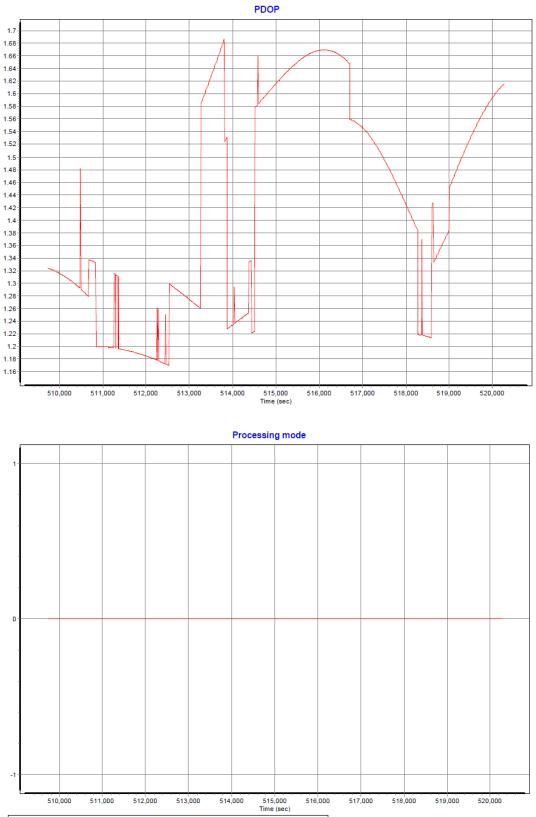
Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 152 of 157


General Information	Timing			1
View	Start 471557.736	Data	Incr. (sec)	1
Satellite Selection	End 484595.512	Output Record	0.005000	£
Timing, Multipath and Baseli	Entire time interval Seconds of start week		1.000000	
Initialization	UTC Offset 16.000		1.00000	
Lever Arms and Mounting A		_		
Camera			D	
SAR	Multipath Low	GPS Position Q Scale Factor		
			0.5 1.0 2.0 5.0	
	Algorithm Automatic	High Altitude	Mode	
	Agentain (Automatic		, Mode	
< <u> </u>				OK Cancel
D Jogstowe - manifest	を#2 ゆ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			OK Cancel

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 153 of 157

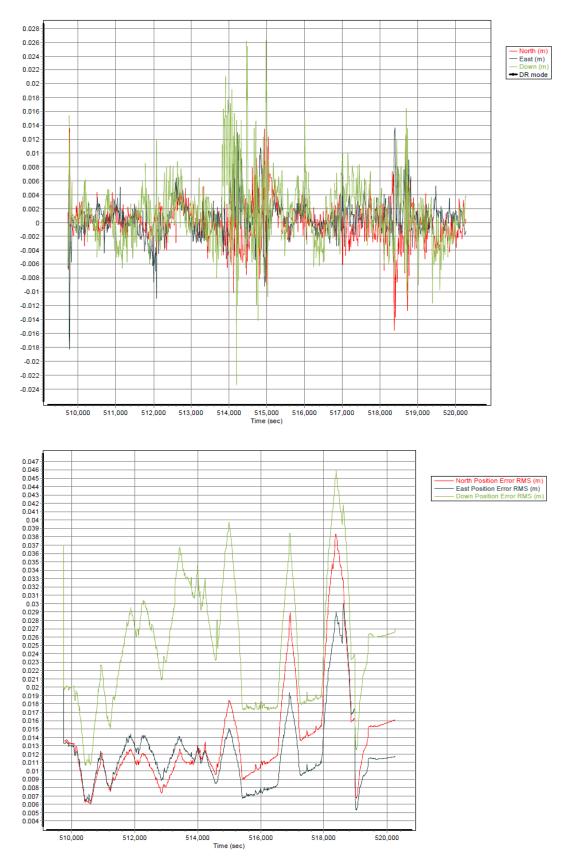
<u>UNB15114B</u>

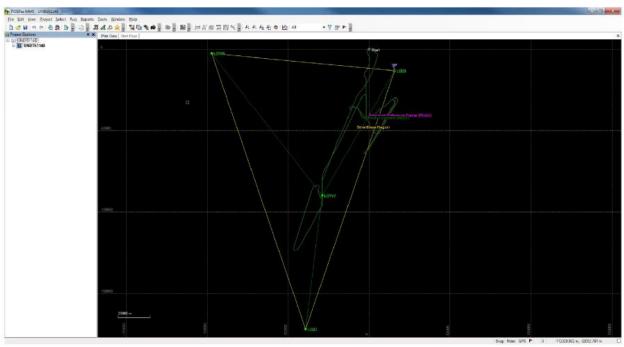

Baseline Length (m)



Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 154 of 157

Project Settings			(A)		
General Information	Reference to	o IMU Lever Arm	Reference	to IMU Mounting Angles	
Units View	х	0.034 m	x	0.000 deg	
GNSS-Inertial Processor	Y	0.018 m	Y	0.000 deg	
Timing, Multipath and Baseli Initialization	Z	-0.155 m	z	0.000 deg	
Lever Arms and Mounting A	Reference to	Primary GNSS Lever Arm	Aircraft to F	Reference Mounting Angle	es
Camera	х	-0.094 m	x	0.000 deg	
idar Sar	Y	-0.055 m	Y	0.000 deg	
	Z	-1.020 m	Z	0.000 deg	
	Standard Deviation	0			
		<3cm 10cm 50cm 1m 10m			
۲ <u> </u>					
					OK Cancel


Number of GPS Satellites


0 = Fixed NL, 1 = Fixed WL, 2 = Float, 3 = DGNSS, 4 = RTCM, 5 = IAPPP, 6 = C/A, 7 = GNSS Nav, 8 = DR

Eastern Shore VA LiDAR TO# G15PD00284 February 11, 2016 Page 157 of 157

General Information Units	Timing Start 509734.100	Data		Incr. (sec)		
View Satellite Selection	End 520280.670	Outpu	it Record	0.005000			
GNSS-Inertial Processor	Entire time interval	IMU		0.005000			
Timing, Multipath and Baseli Initialization	Seconds of start week	Primar	ry GNSS	1.000000			
Lever Arms and Mounting A Export	UTC Offset 16.000						
Camera LiDAR			1	anna a	-0		
SAR	Multipath Low	•	GPS Position Scale Factor	24 D D D D D D D D D D D D D D D D D D D	1.0 2.0 5.0		
	Algorithm Automatic	-	High Altitud	de Mode			
						OK Cancel	
34						OK Cancel	
24 Select Roy, Departs John Monters, Dela 26 De Julio I Stat A 🚖 🖉 De 16 de 16	● ■ ■ 日本市内市内へ ■ ちちんたの 広く	0	- V = F]			OK Cancel	_
14	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	a	• V 27 17 1 1	5103		OK Cancel	

