

USGS Contract: G11PC00014 Task Order Number: G16PD00016 Task Name: FEMA R6 AR Dardanelle Reservoir QL2 Lidar

September 29, 2016

Submitted to:

USGS/NGTOC Denver Federal Center, Bld 810, MS 510 Denver, CO 80225 Attn: Jayna Winehouse Email: jwinehouse@usgs.gov Tel: 303-202-4502

Submitted by:

Fugro EarthData, Inc. 7320 Executive Way Frederick, MD 21704 POC: Becky Jordan, Project Manager Email: <u>b.jordan@fugro.com</u> Tel: 301-948-8550

TABLE OF CONTENTS

1	PRO	PROJECT OVERVIEW1			
2	PRO	JECT PLAN	1		
3	BAS	E STATION AND GROUND CONTROL LOCATIONS	1		
4	DAT	A ACQUISITION / COLLECTION	3		
	4.1	Collection Area	3		
	4.2	Lidar Data Acquisition Considerations	3		
	4.3	Description of the Laser Scanning System	4		
	4.4	Project Design	4		
5	DES	CRIPTION OF LIDAR PRODUCTION PROCESSES	5		
	5.1	Verification of Data Usability	5		
	5.1.1	GPS/IMU Processing	5		
	5.1.2	Raw Lidar Data Processing	5		
	5.1.3	Verification of Coverage and Data Quality	6		
	5.2	Lidar Data Processing	6		
	5.2.1	Raw Data Processing and Boresight	6		
	5.2.2	Pre-processing	7		
	5.2.3	Post-processing	7		
	5.2.4	Product Development	7		
	5.2.5	Lidar Hydro Breakline Collection	9		
	5.3	Pilot Area Processing	10		
6	ACC	URACY REPORTING	10		
	6.1	Positional Accuracy	10		
	6.2	Absolute Vertical Accuracy	10		
	6.3	Relative Accuracy	11		
7	REF	ERENCES	14		
	7.1	Survey Report	14		
	7.2	Collection Report	14		
	7.3	Attachment A: Data Void Location	14		
	7.4	Attachment B: Positional Accuracy Report	14		
	7.5	Attachment C: Relative Accuracy, Smooth Surface Repeatability Report	14		
	7.6	Attachment D: Relative Accuracy, Overlap Consistency Report	14		

1 **PROJECT OVERVIEW**

Fugro EarthData, Inc. (Fugro) was tasked with planning, acquiring, processing, and producing derivative products collected at 2 Points per Square Meter (ppsm), for an area of interest (AOI) defined as Dardanelle Reservoir, Arkansas.

Lidar data, and derivative products produced in compliance with this task order were based on the "U.S. Geological Survey National Geospatial Program Lidar Base Specification Version 1.2".

2 PROJECT PLAN

A kick-off meeting was held to outline communication procedures that were followed for data acquisition with respect to verification of local ground conditions and vegetation requirements. This meeting was used as a forum to clarify and resolve collection condition issues. Local contact(s) were established to provide ground condition updates. The kick-off meeting was held prior to data acquisition.

All acquisition occurred during leaf off conditions between December 18, 2015 and February 11, 2016 by Fugro. This project was acquired to achieve a Nominal Pulse Spacing (NPS) of 0.7 meters. The AOI covers approximately 2,116 square miles. A 100-meter buffer was added to the AOI covering approximately 2,132 square miles; all products were generated to the limit of this buffered boundary.

3 BASE STATION AND GROUND CONTROL LOCATIONS

During lidar data collection the airborne GPS receiver was collecting data at 2 Hz frequency and the Dilution of Precision (PDOP) was monitored. Multiple GPS base stations were also running in the project area and were recording data at 1 Hz. The airborne GPS data was post-processed in DGPS mode together with base station data to provide high accuracy aircraft positions. The GPS trajectory then was combined with the IMU data using loosely coupled approach to yield high accuracy aircraft positions and attitude angles. Then the lidar data was processed using the aircraft trajectory and raw lidar data.

Under Fugro's direction, all surveying activities were performed by Fugro's approved ID/IQ subcontractor Terrasurv, Inc. A total of 38 ground control points to support the lidar collection; along with 79 non-vegetated vertical accuracy (NVA) and 59 vegetated vertical accuracy (VVA) checkpoints were collected. Control was provided by stations of the National Spatial Reference System (NSRS), and consisted of five Continuously Operating Reference Stations (CORS) and four existing NSRS ground stations. The horizontal datum was the North American Datum of 1983 – NAD83 (2011), epoch 2010.0. The vertical datum was the North American Vertical Datum of 1988 (NAVD88), realized with GEOID12B.

The locations are shown within the figures below along with the planned flight lines. Figure 1 shows the layout of the ground control points and Figure 2 shows the layout of the checkpoints.

Please refer to the Survey Report for further details.

FUGRO EARTHDATA, INC. PROJECT REPORT: G16PD00016 FEMA R6 AR DARDANELLE RESERVOIR QL2 LIDAR **SEPTEMBER 29, 2016**

Figure 1: Ground Control

The green circles show the locations of the ground control points, the red X's are the four NSRS ground stations (benchmarks), the yellow X's represent the locations of the sixteen temporary base stations, and the red + inside white squares show the five more distant CORS used for ties to the NSRS.

Figure 2: Checkpoints

There was a high percentage of the project area covered by woods, therefore the majority of the VVA points were of the woods classification. Three types of ground cover types were encountered: woods (41 points, green dots), crops/agriculture/brush (18 points, blue dots) and low grass/bare ground (78 points, red dots). Also shown in this figure are the temporary base stations.

4 DATA ACQUISITION / COLLECTION

4.1 Collection Area

The collection area was defined by the USGS as Attachment A – Project Description and Diagram of the Task Order Detail and further delineated by Attachment B – Shape File(s), also included with the Task Order Detail. A 100-meter buffer was added to the USGS defined collection area; all products were generated to the limit of this buffered boundary. The graphic below is a visual of the planned flight lines based on the buffered boundary.

Figure 3: Flight Plan

4.2 Lidar Data Acquisition Considerations

Lidar data was acquired using a twin engine aircraft equipped with an antenna and receiver for airborne GPS collection. Flight status was communicated during data collection.

Data was collected when environmental conditions meet the criteria specified. To be specific, the following conditions existed prior to launch of the aircraft:

- Cloud and fog-free between the aircraft and ground
- Snow free
- No unusual flooding or inundation (some areas of standing water were present during the time of collection; Fugro received approval to fly during these conditions)
- Leaf off

4.3 Description of the Laser Scanning System

For this project, Fugro utilized the Riegl LMS-Q680i airborne laser scanner. The Riegl LMS-Q680i collects high density lidar with its powerful laser source, multiple time around (MTA) processing technology and full waveform digitization. With a variable scan rate of 10 to 200 scan lines per second and variable pulse rate from 80,000 to 400,000 ranges per second, the system incorporates a rotating polygon mirror with fixed 60 degree field of view, thus eliminating the torsion errors inherent with oscillating mirror lidar systems. The rotating mirror technology results in improved positional accuracy to the edge of the field of view and greater coverage while achieving overall vertical accuracies of 9-15 cm RMSE with up to 15 discrete returns per lidar pulse (offering more foliage detail - exceeding project specifications).

The rotating mirror, variable scan rate and variable laser pulse rate results in a highly uniform point density and distribution in both the laser sensor cross track and along track. This allows for the use of the entire collection swath thus resulting in greater collection efficiency. The rotating mirror provides a continuous view at nadir creating a smooth evenly distributed lidar point cloud with reduced point to point variability and thus greater accuracy.

The sensor can adequately produce the required 0.7 meters NPS.

4.4 Project Design

The following is detail on the lidar acquisition covering the Dardanelle Reservoir, Arkansas lidar buffered boundary:

Collections:	16
Collection Dates:	December 18, 2015 through February 11, 2016
Field of View (FOV):	60 degrees
Average Point Density (planned):	2 ppsm
Flight Level(s) AMT:	3400 ft
Sensor Type:	Riegl Q-680i
Sensor Serial Number(s):	165

FUGRO EARTHDATA, INC. PROJECT REPORT: G16PD00016 FEMA R6 AR DARDANELLE RESERVOIR QL2 LIDAR **SEPTEMBER 29, 2016**

Figure 4: Executed Flight Trajectories

Please refer to the Collection Report for further details.

5 DESCRIPTION OF LIDAR PRODUCTION PROCESSES

5.1 Verification of Data Usability

All acquired lidar data went through a preliminary review to assure that complete coverage had been obtained and that there were no gaps between flight lines before the flight crew left the project site. Once back in the office, the data was run through a complete iteration of processing to ensure that it is complete, uncorrupted, and that the entire project area has been covered without gaps between flight lines. There are essentially three steps to this processing.

5.1.1 **GPS/IMU Processing**

Airborne GPS and IMU data was immediately processed using the airport GPS base station data, which was available to the flight crew upon landing the plane. This ensures the integrity of all the mission data. These results were also used to perform the initial lidar system calibration test.

Raw Lidar Data Processing 5.1.2

Technicians processed the raw data to LAS format flight lines with full resolution output before performing QC. A starting configuration file is used in this process, which contains the latest calibration parameters for the sensor. The technicians also generated flight line trajectories for each of the flight lines during this process.

5.1.3 Verification of Coverage and Data Quality

The following steps and quality control measures are performed to verify complete coverage and ensure data quality:

- Trajectory files were checked to ensure completeness of acquisition for the flight lines, calibration lines, and cross flight lines.
- Intensity images were generated for the entire lift at the required 0.7 m NPS. Visual checks of the intensity
 images against the project boundary were performed to ensure full coverage to the 100 meter buffer beyond
 the project boundary.
- The intensity histogram was analyzed to ensure the quality of the intensity values.
- Thorough review of the data was performed to identify any data gaps in the project area.
- A sample TIN surface was generated to ensure no anomalies are present in the data.
- Turbulence was inspected for each flight line. If any adverse quality issues were discovered, the flight line
 was rejected and re-flown.
- The achieved post spacing was evaluated against the project specified 0.7 m NPS and also checked to make sure there is no clustering in point distribution.

5.2 Lidar Data Processing

Data processing includes the following four (4) production steps for generating the final deliverables:

- 1. Raw data processing and boresight
- 2. Pre-processing
- 3. Post-processing
- 4. Product development

Quality control steps are incorporated throughout each step and are described in the following sections.

5.2.1 Raw Data Processing and Boresight

Raw data processing is the reduction of raw lidar, IMU, and GPS data into XYZ points. This is a hardware-specific, vendor-proprietary process. The raw lidar data processing algorithms use the sensor's complex set of electronic timing signals to compute ranges or distances to a reflective surface. The ranges must be combined with positional information from the GPS/IMU system to orient those ranges in 3D space and to produce XYZ points.

The boresight for each lift was done individually as the solution may change slightly from lift to lift. The following steps describe the Raw Data Processing and Boresight process:

- Technicians processed the raw data to LAS format flight lines using the final GPS/IMU solution. This LAS
 data set was used as source data for boresight.
- Technicians first used Fugro proprietary and commercial software to calculate initial boresight adjustment angles based on sample areas within the lift. These areas cover calibration flight lines collected in the lift, cross tie and production flight lines. These areas are well distributed in the lift coverage and cover multiple terrain types that are necessary for boresight angle calculation. The technician then analyzed the results and made any necessary additional adjustment until it is acceptable for the selected areas. The boresight angle adjustment process ensures proper alignment between different look angles as well as between flight line overlaps.
- Once the boresight angle calculation was completed for the selected areas, the adjusted settings were
 applied to all of the flight lines of the lift and checked for consistency. The technicians utilized commercial
 and proprietary software packages to analyze the matching between flight line overlaps for the entire lift and
 adjusted as necessary until the results met the project specifications.

Once all lifts were completed with individual boresight adjustment, the technicians checked and corrected the vertical misalignment of all flight lines and also the matching between data and ground truth. The relative accuracy was ≤ 6

cm within individual swaths (smooth surface repeatability) and ≤ 8 cm RMSD within swath overlap (between adjacent swaths) with a maximum difference of ± 16 cm.

The technicians ran a final vertical accuracy check of the boresighted flight lines against the surveyed check points after the z correction to ensure the requirement of $RMSE_Z$ (non-vegetated) \leq 10 cm, NVA \leq 19.6 cm 95% Confidence Level (Required Accuracy) was met.

5.2.2 Pre-processing

Once boresighting was complete for the project and all lifts were tied to the ground control, the project was set up for filtering. The lidar data was cut to production tiles for editing purposes.

5.2.3 Post-processing

Fugro has developed a unique method for processing lidar data.

Once boresighting was complete for the project, the project was first set up for automatic classification. The lidar data was cut to production tiles. The low noise points, high noise points and ground points were classified automatically in this process. Fugro utilized commercial software, as well as proprietary, in-house developed software for automatic filtering. The parameters used in the process were customized for each terrain type to obtain optimum results.

Once the automated filtering was completed, the files were run through a visual inspection to ensure that the filtering was not too aggressive or not aggressive enough. In cases where the filtering was too aggressive and important terrain were filtered out, the data was either run through a different filter within local area or was corrected during the manual filtering process. Bridge deck points were classified as well during the interactive editing process. Interactive editing was completed in visualization software that provides manual and automatic point classification tools. Fugro utilized commercial and proprietary software for this process. All manually inspected tiles went through a peer review to ensure proper editing and consistency.

After the manual editing and peer review, all tiles went through another final automated classification routine. This process ensures only the required classifications are used in the final product (all points classified into any temporary classes during manual editing will be re-classified into the project specified classifications).

5.2.4 Product Development

After the lidar went through all initial processing and was checked for quality, we began the process of derivative product development to the project requirements and specifications.

During product development, a data void approximately one acre in size was discovered. The data void exists in the raw point cloud, classified point cloud, and intensity image deliverables. The DEM was generated using a TIN model built from the classified ground points. The DEM pixel values over the void area were assigned by extracting the elevations from the TIN surface. A shapefile (*DardanelleReservoirAR_Lidar_Data_Void.shp*) identifying the location of the void is being submitted with this report; the void exists between Area 1 flight lines 48 and 49 within lift 160207_165_15005200_14, classified point cloud tile 15SVV935135.las, and intensity image tile 15SVV935135.tif/tfw.

5.2.4.1 Raw Point Cloud Data

All collected flight lines were included in generating this product, after boresight was completed and the adjustment was made to match the data to the ground control. The flight lines went through the following processes: 1) Assign flight line ID to each point and file source ID to each flight line based upon the flight line trajectory; 2) Re-project flight lines files to deliverable projection/datum and unit; 3) Package final LAS 1.4 format deliverable and QC.

The raw point cloud data was delivered in fully compliant LAS v1.4, Point Record Format 6 with Adjusted Standard GPS Time. The flight lines include all collected points and were fully calibrated, georeferenced, and adjusted to ground. Correct and properly formatted georeference information as Open Geospatial Consortium (OGC) well known text (WKT) was assigned in all LAS file headers. Intensity values are included for each point, normalized to 16-bit. This deliverable was organized and delivered in their original swath, one file per swath, one swath per file.

FUGRO EARTHDATA, INC. project report: g16pd00016 fema r6 ar dardanelle reservoir ql2 lidar september 29. 2016

5.2.4.2 Classified Point Cloud Data

Once manual inspection, QC and final autofilter is complete for the lidar tiles, the LAS data was packaged to the project specified tiling scheme, clipped to project boundary including the 100 meter buffer and formatted to LAS v1.4. It was also re-projected to UTM Zone 15 north; NAD83(NSRS2011), meters; NAVD88(GEOID12B), meters. The file header was formatted to meet the project specification with File Source ID assigned. This Classified Point Cloud product was used for the generation of derived products. Water points were classified to Class 9 and Ignored ground points were classified to Class 10 using the collected hydro breaklines.

This product was delivered in fully compliant LAS v1.4, Point Record Format 6 with Adjusted Standard GPS Time at a precision sufficient to allow unique timestamps for each pulse. Correct and properly formatted georeference information as Open Geospatial Consortium (OGC) well known text (WKT) was assigned in all LAS file headers. Each tile has unique File Source ID assigned. The Point Source ID matches to the flight line ID in the flight trajectory files. Intensity values are included for each point, normalized to 16-bit.

The following classifications are included:

- (01) Class 1 Processed, but unclassified
- (02) Class 2 Bare earth ground
- (03) Class 7 Low Noise
- (04) Class 9 Water
- (05) Class 10 Ignored Ground
- (06) Class 17 Bridge Decks
- (07) Class 18 High Noise

The classified point cloud data was delivered in tiles without overlap using the project tiling scheme.

5.2.4.3 Bare Earth Surface (Raster DEM)

The bare earth DEM was generated using the lidar bare earth points and 3D hydro breaklines to a resolution of 1 meter. Where needed, supplemental breaklines were collected and used in DEM generation under the bridges to ensure a logical terrain surface below a bridge. This was delivered as a separate shapefile and delivered with the hydro product.

The bare earth points that fell within 1*NPS along the hydro breaklines (points in class 10) were excluded from the DEM generation process. This is analogous to the removal of mass points for the same reason in a traditional photogrammetrically compiled DTM. This process was done in batch using proprietary software.

The technicians then used Fugro proprietary software for the production of the lidar-derived hydro flattened bare earth DEM surface in initial grid format at 1 meter GSD. Water bodies (inland ponds and lakes) and inland streams and rivers were hydro flattened within the DEM. Hydro flattening was applied to all water impoundments, natural or man-made, that are larger than approximately 2 acres in area and to all streams that are nominally wider than 100 feet. This process was done in batch.

Once the initial, hydro flattened bare earth DEM was generated, the technicians checked the tiles to ensure that the grid spacing met specifications. The technicians also checked the surface to ensure proper hydro flattening. The entire data set was checked for complete project coverage. Once the data was checked, the tiles were then converted to ERDAS Imagine format. Georeference information is included in the raster files. Void areas (i.e., areas outside the project boundary but within the tiling scheme) are coded using a unique "NODATA" value.

5.2.4.4 Intensity Images

Upon the completion of lidar point cloud product creation, First Return points were used for intensity image generation automatically. The software considers points from neighboring tiles while creating the images for seamless edge matching. The initial intensity images were generated at 1 meter resolution in 16bit TIFF format. They

were then converted to 8bit format. Georeferencing information was assigned to all images. The technician QC'ed the final intensity images before delivery. The intensity images were delivered in GeoTIFF with TFW format.

5.2.5 Lidar Hydro Breakline Collection

Hydro linework is produced by heads-up digitizing using classified lidar datasets. Additionally, products created from lidar including intensity images, shaded-relief TIN surfaces, and contours are used.

Hydrographic features were collected as separate feature classes:

Inland Ponds and Lakes (Lake)

- ~2-acre or greater surface area (~350' diameter for a round pond).
- Flat and level water bodies (single elevation for every bank vertex defining a given water body).
- The entire water surface edge must be at or just below the immediately surrounding terrain.
- Long impoundments such as reservoirs, inlets, and fjords, whose water surface elevations drop when moving downstream, will be treated as rivers.

Inland Streams and Rivers (River)

- 100' nominal width: Short segments that narrowed to 65' and back to 100' for a ½ mile stretch, were captured to avoid unnecessary segmentation.
- Flat and level bank-to-bank (perpendicular to the apparent flow centerline); gradient to follow the immediately surrounding terrain.
- The entire water surface edge is at or just below the immediately surrounding terrain.
- Streams break at road crossings (culvert locations). These road fills were not removed from the DEM.
 Streams and rivers do not break at bridges. Bridges were removed from the DEM. When the identification of a feature as a bridge or culvert could not be made reliably, the feature was regarded as a culvert.
- The bare earth surface below a bridge is a continuous logical interpolation of the apparent terrain lateral to the bridge deck. Where abutments are clearly visible, the bare earth interpolation begins at the junction of the bridge deck and approach structure. Where this junction is not clear, Fugro utilized their professional judgment to delineate the separation of below-bridge terrain from elevated bridge surface.
- No geometric changes were made to the originally computed lidar points. Bare earth lidar points that are near breaklines were classified as Ignored Ground and excluded from the DEM generation process.
- Streams, rivers, and water bodies meeting the criteria for hydro-flattening are monotonically continuous where bridge decks have been removed.
- All breaklines used to enforce a logical terrain surface below a bridge were delivered as a separate shapefile.

2D Topological QC: After initial collection, features were then combined into working regions based on watershed sub-basins. Linework was then checked for the following topological and attribution rules:

- Lines must be attributed with the correct feature code.
- Lake and stream banklines must form closed polygons.

3D Attribution: Hydro features were collected as vector linework using lidar and its derived products listed above. This linework is initially 2D, meaning that it does not have elevation values assigned to individual line vertices. Vertex elevation values were assigned using a distance weighted distribution of lidar points closest to each vertex. This is similar to draping the 2D linework to a surface modeled from the lidar points. After the initial 'drape', the linework elevation values were further adjusted based on the following rules:

- Lake feature vertices were re-assigned (flattened) to lowest draped vertex value.
- Proprietary profile tool was used to QC bank-to-bank flatness.
- Stream centerline vertices were adjusted so that subsequent vertices are lower than previous ones based on line direction.

 Double stream bankline vertices were re-assigned based on the vertices of the closest adjusted double stream connector line.

The hydro breaklines were delivered in Esri shapefile format.

5.3 Pilot Area Processing

A pilot area comprising of a minimum of 5 square miles of the unclassified point cloud data, classified LAS, corresponding hydro flattened bare earth DEM tiles, hydro flattened breaklines, intensity images, and metadata was provided. The delivery included the NVA reporting of the unclassified point cloud and bare earth DEM and VVA reporting of the bare earth DEM.

The feedback obtained from the pilot review was incorporated into the final product delivery.

6 ACCURACY REPORTING

Data collected under this Task Order meets the National Standard for Spatial Database Accuracy (NSSDA) accuracy standards. The NSSDA standards specify that vertical accuracy be reported at the 95 percent confidence level for data tested by an independent source of higher accuracy.

6.1 Positional Accuracy

Before classification and development of derivative products from the point cloud, the absolute and relative vertical accuracies of the point cloud were verified.

The absolute accuracy for the entire project area is reported in the attachment, DardanelleReservoirAR_Lidar_QC_Master_Control_NVA_Checkpoints_Raw_FlightLines.pdf.

6.2 Absolute Vertical Accuracy

Unclassified Lidar Point Cloud Data: The Non-Vegetated Vertical Accuracy (NVA) of the Lidar Point Cloud data was calculated against TINs derived from the final calibrated and controlled swath data. The required accuracy (ACC_z) is: 19.6 cm at a 95% confidence level, derived according to NSSDA, i.e., based on RMSE_z of 10 cm in the "open terrain" and/or "Urban" land cover categories. This is a required accuracy. Please refer to the table below for the achieved accuracies. The raw swath point cloud data met the required accuracy levels before point cloud classification and derivative product generation.

Raw Flight Lines	RMSEz (non-vegetated)	NVA at 95-percent confidence level
Specification (cm)	≤ 10	≤ 19.6
Calculated Values (cm)	4.9	9.6
Specification (m)	≤ 0.100	≤ 0.196
Calculated Values (m)	0.049	0.096
Number of points	79	79

Table 1: Accuracy of the Raw Lidar Point Cloud Data

Bare Earth Surface: The accuracy (ACC_Z) of the derived DEM was calculated and is being reported in three (3) ways:

- 1. **RMSE**_z (Non-Vegetated): The required RMSE_z is \leq 10 cm.
- Non-Vegetated Vertical Accuracy (NVA): The required NVA is: ≤ 19.6 cm at a 95% confidence level, derived according to NSSDA, i.e., based on RMSE_Z of 10 cm in the "open terrain" and/or "Urban" land cover categories. This is a required accuracy.
- 3. Vegetated Vertical Accuracy (VVA): The required VVA is: ≤ 29.4 cm at a 95th percentile level, derived according to ASPRS Guidelines, Vertical Accuracy for Reporting LiDAR Data, i.e. based on the 95th

percentile error in Vegetated land cover categories combined (Tall Grass, Brush, Forested Areas). This is a required accuracy.

DEM	RMSEz (non-vegetated)	NVA at 95-percent confidence level	VVA at 95th percentiles
Specification (cm)	≤ 10	≤ 19.6	≤ 29.4
Calculated Values (cm)	4.3	8.4	14.3
Specification (m)	≤ 0.100	≤ 0.196	≤ 0.294
Calculated Values (m)	0.043	0.084	0.143
Number of points	79	79	59

Please refer to the table below for the achieved accuracies.

Table 2: Accuracy of the Derived DEM

6.3 Relative Accuracy

Smooth Surface Repeatability: In ideal theoretical conditions, smooth surface repeatability is a measure of variations documented on a surface that would be expected to be flat and without variation. Users of lidar technology commonly refer to these variations as "noise." Single-swath data was assessed using only single returns in non-vegetated areas. Repeatability was evaluated by measuring departures from planarity of single returns from hard planar surfaces, normalizing for actual variation in the surface elevation. Repeatability of only single returns was then assessed at multiple locations within hard surfaced areas (for example, parking lots or large rooftops).

Each sample area was evaluated using a signed difference raster (maximum elevation – minimum elevation) at a cell size equal to twice the ANPS, rounded up to the next integer. Sample areas were approximately 50 square meters (m²). The maximum acceptable variations within sample areas for this project is 6 cm. Isolated noise is expected within the sample areas and was disregarded.

The evaluation was done on 16 flat open sample areas over the pilot AOI. The result is shown in the table below, please also refer to *DardanelleReservoirAR_Lidar_Relative_Accuracy_Smooth_Surface_Repeatability.shp*.

Max_DZ (m)	Area (sq m)
0.0430	63
0.0560	43
0.0580	57
0.0420	60
0.0440	59
0.0540	50
0.0470	59
0.0400	75
0.0580	84
0.0360	93
0.0520	54
0.0560	59
0.0368	94
0.0407	54
0.0345	100
0.0475	89

Table 3: Relative Accuracy, Smooth Surface Repeatability

Overlap Consistency: Overlap consistency is a measure of geometric alignment of two overlapping swaths; the principles used with swaths can be applied to overlapping lifts and projects as well. Overlap consistency is the fundamental measure of the quality of the calibration or boresight adjustment of the data from each lift, and is of particular importance as the match between the swaths of a single lift is a strong indicator of the overall geometric quality of the data, establishing the quality and accuracy limits of all downstream data and products.

Overlap consistency was assessed at multiple locations within overlap in non-vegetated areas of only single returns.

Each overlap area was evaluated using a signed difference raster with a cell size equal to twice the ANPS, rounded up to the next integer. The difference rasters are visually examined using a bicolor ramp from the negative acceptable limit to the positive acceptable limit. Although isolated excursions beyond the limits are expected and accepted, differences in the overlaps shall not exceed the following limits:

- Swath overlap difference, RMSDz ≤ 8 cm
- Swath overlap difference, maximum ± 16 cm

The difference rasters are also statistically summarized to verify that root mean square difference in z (RMSDz) values do not exceed the. Consideration will be given for the effect of the expected isolated excursions over limits.

The result of the evaluation over 37 samples throughout the project area is shown in the table below, please also refer to *DardanelleReservoirAR_Lidar_Relative_Accuracy_Flightline_Overlap.shp*.

RMS_DZ (m)	Max_DZ (m)	Min_DZ (m)	Area (sq m)
0.0267	0.0655	-0.0063	4010
0.0284	0.0723	-0.0161	2543
0.0206	0.0660	-0.0788	2690
0.0512	0.1331	-0.0298	2705

FUGRO EARTHDATA, INC. project report: g16pd00016 fema r6 ar dardanelle reservoir ql2 lidar september 29, 2016

0.0147	0.0832	-0.0602	2564
0.0149	0.0580	-0.0590	3011
0.0540	0.0997	0.0126	2707
0.0290	0.0077	-0.0719	2627
0.0280	0.0555	-0.0069	2654
0.0147	0.0442	-0.0209	2570
0.0178	0.0736	-0.0512	2625
0.0359	0.0694	-0.0073	2540
0.0436	0.0214	-0.1231	2794
0.0153	0.0503	-0.0328	2583
0.0257	0.0643	-0.0181	2934
0.0329	0.0773	-0.0184	3035
0.0658	0.1067	0.0148	2698
0.0430	0.0111	-0.1374	2703
0.0286	0.0341	-0.0641	2661
0.0135	0.0347	-0.0418	3090
0.0572	0.1421	-0.0119	3254
0.0361	0.0953	-0.0548	2694
0.0226	0.0540	-0.0808	3231
0.0175	0.0560	-0.0475	3993
0.0152	0.0537	-0.0348	2844
0.0131	0.0430	-0.0261	2674
0.0283	0.0668	-0.0129	3072
0.0115	0.0374	-0.0729	3666
0.0305	0.1203	-0.0560	4141
0.0219	0.0689	-0.0588	2710
0.0409	0.1300	-0.0999	3598
0.0282	0.0734	-0.0219	2943
0.0212	0.0821	-0.0878	3080
0.0182	0.0724	-0.0964	4103
0.0323	0.0115	-0.0722	3192
0.0235	0.0396	-0.1325	3902
0.0242	0.0713	-0.0206	2763
	•	•	•

Table 4: Relative Accuracy, Overlap Consistency

7.1 Survey Report

Which includes the following deliverables:

DardanelleReservoirAR_Lidar_Survey_Report.pdf

DardanelleReservoirAR_Lidar_GCP_Coordinates.shp

 $Dardanelle Reservoir AR_Lidar_GCP_Coordinates.xlsx$

DardanelleReservoirAR_Lidar_Checkpoint_Coordinates.shp

DardanelleReservoirAR_Lidar_Checkpoint_Coordinates.xlsx

7.2 Collection Report

DardanelleReservoirAR_Lidar_Collection_Report.pdf

7.3 Attachment A: Data Void Location

DardanelleReservoirAR_Lidar_Data_Void.shp

7.4 Attachment B: Positional Accuracy Report

DardanelleReservoirAR_Lidar_QC_Master_Control_NVA_Checkpoints_Raw_FlightLines.pdf

7.5 Attachment C: Relative Accuracy, Smooth Surface Repeatability Report

DardanelleReservoirAR_Lidar_Relative_Accuracy_Smooth_Surface_Repeatability.shp

7.6 Attachment D: Relative Accuracy, Overlap Consistency Report

DardanelleReservoirAR_Lidar_Relative_Accuracy_Flightline_Overlap.shp

