

Dewberry Engineers Inc. | 813.225.1325 1000 North Ashley Drive, Suite 801 | 813.225.1385 fax Tampa, FL 33602 | www.dewberry.com

IA_Eastern_1_2019

Report Produced for U.S. Geological Survey

USGS Contract: G16PC00020

Task Order: 140G0219F0101

Report Date: March 7, 2022

SUBMITTED BY: Dewberry 1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

SUBMITTED TO: U.S. Geological Survey tnm_help@usgs.gov

3/7/2022

TABLE OF CONTENTS

Atta	Attachments				
1.	Execu	utive Summary3			
	1.1 1.2 1.3 1.4 1.5	Project Team 3 Project Area 3 Coordinate Reference System 5 Project Deliverables 5 Dewberry Production Workflow Diagram 5			
2. Lidar Acquisition Report					
	 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 	Acquisition Extents7Acquisition Summary8Sensor Calibration and Boresight9Lidar Acquisition and Processing Details9Lidar System parameters10Acquisition Static Control.11ABGNSS-Inertial Processing13Calibration Process15Final Calibration Verification15			
3.	Lidar	Production & Qualitative Assessment15			
	3.1	Initial Processing			
		3.1.1 Post Calibration Lidar Review15			
	3.2	Data Classification and Editing17			
		3.2.1Qualitative Review183.2.2Formatting Review223.2.3Synthetic Points23			
4.	Break	kline Production & Qualitative Assessment			
	4.1	Breakline Production Methodology24			
		4.1.1 Breakline Collection Requirements25			
	4.2	Breakline Qualitative Assessment			
5.	DEM	Production & Qualitative Assessment			
	5.1 5.2	DEM Production Methodology			
6.	Deriv	ative Lidar Products			
	6.1 6.2	Swath Separation Images			
		6.2.1Interswath Accuracy			

140G0219F0101

3/7/2022

ATTACHMENTS

Appendix A: GPS Processing Reports

3/7/2022

1. EXECUTIVE SUMMARY

This task order requests a spring/summer 2019 leaf-off lidar survey to be collected over a primary Area of Interest (AOI) in the state of Iowa of approximately 14,724 square miles, including the counties of: Winneshiek, Allamakee, Chickasaw, Bremer, Fayette, Clayton, Black Hawk, Buchanan, Delaware, Dubuque, Benton, Linn, Jones, Jackson, Johnson, Cedar, Clinton, Scott, Muscatine, Washington, Louisa, Henry, Des Moines, and Lee. Some overlap of data onto surrounding counties and neighboring Illinois is expected. This project will support the National Resources Conservation Service (NRCS) high resolution elevation enterprise program, the Iowa Department of Agriculture and Land Stewardship (IDALS) Iowa Flood Plain program, and the 3DEP mission.

Lidar data were processed and classified according to project specifications. Detailed breaklines and bareearth Digital Elevation Models were produced for the project area. Project components were formatted based on a tile grid with each tile covering an area 1,000 m by 1,000 m. A total of 38,741 tiles were produced for the project, providing approximately 14,724 square miles of coverage. A total of 16,393 tiles were produced for Block 1, providing approximately 6,207 sq. miles of coverage.

1.1 Project Team

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, digital elevation model (DEM) production, and quality assurance.

Dewberry completed the ground survey for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidarderived surface model and to acquire surveyed ground control points for use in calibration activities. He also verified the GPS base station coordinates used during lidar data acquisition.

Leading Edge Geomatics completed lidar data acquisition and data calibration for the project area.

1.2 Project Area

The block area is shown in figure 1. Block 1 contains 16,393 1,000 m by 1,000 m tiles. The project tile grid contains 38,741 1,000 m by 1,000 m tiles.

3/7/2022

Figure 1. Project map and tile grid.

3/7/2022

1.3 Coordinate Reference System

Data produced for the project are delivered in the following spatial reference system:

Horizontal Datum:	North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))
Vertical Datum:	North American Vertical Datum of 1988 (NAVD88)
Geoid Model:	Geoid18
Coordinate System:	UTM Zone 15
Horizontal Units:	Meters
Vertical Units:	Meters

1.4 Project Deliverables

The deliverables for the block are as follows:

- 1. Project Extents (Esri SHP)
- 2. Classified Point Cloud (tiled LAS)
- 3. Flightline Data (file GDB)
- 4. Intensity Images (tiled, 8-bit gray scale, GeoTIFF format)
- 5. Breakline Data (file GDB)
- 6. Bare Earth Surface (tiled raster DEM, GeoTIFF format)
- 7. Swath Separation Images
- 8. Interswath Polygons
- 9. Intraswath Polygons
- 10. Metadata (XML)
- 11. Confidence Polygons
- 12. Block Report

1.5 Dewberry Production Workflow Diagram

The diagram below outlines Dewberry's standard lidar production workflow.

3/7/2022

Figure 2. Dewberry's Lidar Production Workflow Diagram

3/7/2022

2. LIDAR ACQUISITION REPORT

Dewberry elected to subcontract the lidar acquisition and calibration activities to Leading Edge Geomatics. Leading Edge Geomatics was responsible for providing lidar acquisition, calibration, and delivery of lidar data files to Dewberry.

The lidar aerial acquisition for this WUID was conducted between December 10, 2019 to June 5, 2020.

2.1 Acquisition Extents

Figure 3 shows flightline vectors by lift.

Figure 3. Block 1 swaths

3/7/2022

2.2 Acquisition Summary

The Mississippi River runs along the eastern edge of the city of Davenport, lowa and the surrounding area. Acquisition of the QL2 lidar within this region of the project was hampered by multiple delays. Dewberry worked closely with its subcontractors, the USGS and its partners to monitor ground conditions and acquire data during optimal windows that met with all project requirements. Acquisition was to begin in the Spring of 2019, but was halted due to snow on ground followed by Mississippi River flooding in May 2019 and increasing leaf-on conditions. Dewberry was permitted to restart acquisition in the Fall of 2019, but was again hampered by poor ground conditions brought on by an unseasonably wet and warm fall resulting in a longer leaf-on period. Acquisition resumed in December of 2019 for a brief period before COVID-19 restrictions went into effect nationwide and added to further delays as all stakeholders began to follow and enact state and federal guidelines surrounding the pandemic. Dewberry completed acquisition for this project in November of 2020, after communicating with USGS and local stakeholders on how best to proceed given the environmental conditions. The result of these varying delays, coupled with flooding events along the Mississippi River, have resulted in multiple temporal issues along adjoining swaths for this area of the project. Seasonal changes in the water levels, in addition to the localized flooding in some areas, required extra care and effort to determine the true banks of rivers and streams within this area. A "temporal" polygons shapefile will be provided that identifies the areas affected by these temporal changes. Areas with low ground density and poor ground definition due to flooding, mostly along the banks of the Mississippi River, will be delineated in a "low confidence" polygon shapefile.

3/7/2022

2.3 Sensor Calibration and Boresight

The trajectory (.sbet) was processed using Applanix PosPac and raw swath data (.las) was produced using Reigl RiProcess. The boresight was calibrated and then analyzed. All deemed necessary corrections are then applied to the sensor orientation internal files. The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the lidar unit or GPS. Roll, pitch, and scanner scale are optimized during the calibration process until the relative accuracy is met.

Figure 4. Sbet

2.4 Lidar Acquisition and Processing Details

Table 1 outlines lidar acquisition details, including the project spatial reference system, and processing software used for this project.

Parameter	Value
Number of Flight lines	365

Table 1. Lidar acquisition details

140G0219F0101

3/7/2022

Approximate Area	6,207 sq. miles
Acquisition Dates	December 10, 2019-June 5, 2020
Horizontal Datum	North American Datum of 1983 (NAD83)
Vertical Datum	North American Vertical Datum of 1988 (NAVD88)
Geoid Model	Geoid18
Coordinate Reference System	UTM Zone 15
Horizontal Units	Meters
Vertical Units	Meters
Kinematic Solution Processing Software:	Applanix Pospac
Point Cloud Generation Software	Riegl RiProcess
Calibration Software	BayesMap StripAlign

2.5 Lidar System parameters

Leading Edge Geomatics operated 3 Cessna 206 Aircrafts throughout the course of the project (Tail # C-FXSS, C-GPTG and C-FRBV) as well as a Piper Aztec (Tail # N105CH) outfitted with RIEGL VQ-1560i lidar system during data collection. Table details the lidar system parameters used during acquisition for this project.

 Table 2. Leading Edge Geomatics lidar system parameters.

Parameter	Value
System	VQ-1560i
Altitude (m above ground level)	1800
Nominal flight speed (kts)	130
Scanner pulse rate (kHz)	500
Scan frequency (Hz)	90
Pulse duration of the scanner (ns)	3
Pulse width of the scanner (m)	0.899
Central wavelength of the sensor laser (nm)	1064
Multiple pulses in the air	Yes

3/7/2022

Beam divergence (mrad)	= 0.25</th
Swath width (m)	1982
Nominal swath width on the ground (m)	1995
Swath overlap (%)	20
Total sensor scan angle (degrees)	58
Computed down track spacing per beam (m)	0.48
Computed cross track Spacing per beam (m)	0.48
Nominal pulse spacing (NPS) (single swath) (m)	0.5
Nominal Pulse Density (NPD) (single swath) (points per sq m)	4
Aggregate NPS (m) (if NPS was designed to be met through single coverage, ANPS and NPS will be equal)	0.5
Aggregate NPD (m) (if NPD was designed to be met through single coverage, ANPD and NPD will be equal)	4
Maximum Number of Returns per Pulse	15

2.6 Acquisition Static Control

Leading Edge Geomatics deployed static GPS base stations during the acquisition of the Eastern Iowa Lidar Project. Locations were chosen based on ease of access and clear line of sight to the satellite constellation. Location data was recorded at a frequency of 1 Hz to ensure the highest quality positional solution. Static base station data was incorporated during the kinematic post-processing of aircraft position.

Base stations were set on existing monuments where available. If no existing monuments were convenient for base station setup, new benchmarks were established. The coordinates of these base stations are provided in the table below.

Name	NAD83(2011) Albers Conus, m		NAD83(2011), m	NAVD88 Geoid12B, m
	Easting (X)	Northing (Y)	Ellipsoid Height	Orthometric Height
IAAN	389471.751	2132222.498	228.089	260.543
IABF	300613.691	1975469.778	236.359	269.146
IACI	362579.065	2086907.561	222.251	254.823

Table 3. Base s	tations used	to control	lidar	acquisition.

3/7/2022

IADA	443963.257	2079827.869	201.682	234.497
IADU	435074.429	2174093.634	216.966	249.503
IADY	399154.715	2176945.240	268.051	299.850
IAFA	337162.854	2004092.447	208.859	241.758
IAFL	333890.068	2006643.487	206.9633	239.831
IAGY	263119.076	2155960.255	285.934	317.851
IAHO	367922.943	1983247.334	192.761	225.924
IAIN	336384.884	2167871.799	272.029	302.840
IAKA	356723.855	2061551.951	177.93	210.599
IAKY	312281.249	2116521.920	243.208	274.703
IAME	407469.120	2057230.881	184.2194	217.119
IAMQ	439835.080	2131547.844	188.631	221.326
IAMR	369698.775	2173904.995	269.046	299.830
IAMS	401278.609	2019048.668	190.921	224.013
IAMW	254144.114	2116052.703	274.488	306.170
IANW	331722.522	2113658.481	245.271	276.979
IARY	336186.261	2159709.027	248.621	279.456
IASA	476389.213	2134782.009	160.717	193.808
IASG	314486.193	2044122.345	213.439	245.853
ΙΑΤΑ	283774.702	2112384.164	248.366	280.123
IAWA	294848.741	2168863.765	240.868	272.213
IAWI	379339.206	2021486.862	192.8638	225.895

3/7/2022

ILCA	410746.804	1942757.824	166.9916	200.239
ILFU	481614.581	2108869.166	155.149	188.276
ILGA	469448.165	2006505.165	215.5724	248.580
ILMO	462260.343	2065944.415	190.9182	223.783
MOCN	376203.720	1911880.340	159.418	192.240
MOED	322746.311	1914377.119	194.67	227.276
ΜΟΚΙ	287913.061	1923328.596	267.4275	299.775
MONY	320721.676	1894915.921	228.582	260.925
ΜΟΡΥ	380571.171	1867152.455	166.2583	198.734
NLIB	365095.419	2093859.460	208.678	241.231
WLNC	429639.724	2216524.947	281.891	314.416

2.7 ABGNSS-Inertial Processing

ABGNSS-Inertial processing was performed using the software identified in Table 1. The reference frame used for this processing does not always match the project spatial reference system and is shown in Table 4.

Appendix A contains additional mission GPS and IMU processing covering:

• Pospac graphics and processing

•

- Graphics of any reference stations used for differential correction
- Graphics of processing interface to show trajectory data and labeled reference stations for each lift (only graphics of trajectory when precise point position is used).
 - Graphics of processed plots for each mission/flight/lift to include:
 - 1. Forward/reverse separation of trajectory
 - 2. Estimated accuracy of trajectory
 - 3. Any additional plots used in the analyses of trajectory quality

140G0219F0101

3/7/2022

Parameter	Value
Horizontal Datum	North American Datum of 1983 (NAD83)
Vertical Datum	North American Vertical Datum of 1988 (NAVD88)
Geoid Model	Geoid18
Coordinate Reference System	UTM Zone 15
Horizontal Units	Meters
Vertical Units	Meters

Table 4. Spatial reference system used for ABGNSS-Inertial processing

3/7/2022

2.8 Calibration Process

Lidar mission flight trajectories were combined with raw point files in Riegl RiProcess. The initial points (.las) for each mission calibration were inspected for flight line errors, spatial distribution, data voids, density, or issues with the lidar sensor. If a calibration error greater than specification was observed within the mission, the necessary roll, pitch, and scanner scale corrections were calculated and corrections were applied to each individual swath using the BayesMap StripAlign software. In addition, all GPS, aircraft trajectory, mission information, and ground control files were reviewed and logged into a database. The missions with the new calibration values were regenerated and validated internally once again to ensure quality.

2.9 Final Calibration Verification

Dewberry surveyed 150 ground control points (GCPs) in flat, non-vegetated areas to test the accuracy of the calibrated swath data. GCPs were located in open, non-vegetated terrain. To assess the accuracy of calibration, the heights of the ground control points were compared with a surface derived from the calibrated swath lidar. A full list of GCPs used for accuracy testing is included in the GCP Survey Report provided with project deliverables.

Land Cover Type	# of Points	RMSE _z (m)	NVA (m)	Mean (m)	Median (m)	Skew	Std Dev (m)	Min (m)	Max (m)	Kurtosis
Ground Control Points (GCPs)	150	0.06	0.11	0.03	0.04	0.50	0.04	-0.05	0.19	0.78

3. LIDAR PRODUCTION & QUALITATIVE ASSESSMENT

3.1 Initial Processing

Following receipt of the calibrated swath data from the acquisition provider, Dewberry performed vertical accuracy validation of the swath data, inter-swath relative accuracy validation, intra-swath relative accuracy validation, verification of horizontal alignment between swaths, and confirmation of point density and spatial distribution. This initial assessment allowed Dewberry to determine whether the data was suitable for full-scale production.

3.1.1 Post Calibration Lidar Review

The table below identifies requirements verified by Dewberry prior to tiling the swath data, running initial ground macros, and starting manual classification.

3/7/2022

Table 6. Post calibration and initial processing data verification steps.

Requirement	Description of Deliverables	Additional Comments
Non-vegetated vertical accuracy (NVA) of the swath data meet required specifications of 19.6 cm at the 95% confidence level based on RMSEz (10 cm) x 1.96	The swath NVA was tested and passed specifications.	None
The NPD/NPS (or Aggregate NPD/Aggregate NPS) meets required specification of 2 ppsm or 0.7 m NPS. The NPD (ANPD) is calculated from first return points only.	The average calculated (A)NPD of this project is 5.6 ppsm. Densityraster visualization also passed specifications.	None
Spatial Distribution requires 90% of the project grid, calculated with cell sizes of 2*NPS, to contain at least one lidar point. This is calculated from first return points only.	98% of cells (2*NPS cell size) had at least 1 lidar point within the cell.	None
Within swath (Intra-swath or hard surface repeatability) relative accuracy mustmeet≤6 cm maximum difference	Within swath relative accuracy passed specification.	None
Between swath (Inter-swath or swath overlap) relative accuracy must meet 8 cm RMSDz/16 cm maximum difference. These thresholds are tested in open, flat terrain.	Between swath relative accuracy passed specification, calculated from single return lidar points.	None
Horizontal Calibration-There should not be horizontal offsets (or vertical offsets) between overlapping swaths that would negatively impact the accuracy of the data or the overall usability of the data. Assessments made on rooftops or other hard planar surfaces where available.	Horizontal calibration met project requirements.	None
Ground Penetration-The missions were planned appropriately to meet project density requirements and achieve as much ground penetration beneath vegetation as possible	Ground penetration beneath vegetation was acceptable.	None
Sensor Anomalies-The sensor should perform as expected without anomalies that negatively impact the usability of the data, including issues such as excessive	No sensor anomalies were present.	None

3/7/2022

Requirement	Description of Deliverables	Additional Comments
sensor noise and intensitygain or range-walk issues		
Edge of Flight line bits-These fields must show a minimum value of 0 and maximum value of 1 for each swath acquired, regardless of which type of sensor is used	Edge of Flight line bits were populated correctly	None
Scan Direction bits-These fields must show a minimum value of 0 and maximum value of 1 for each swath acquired with sensors using oscillating (back-and-forth) mirror scan mechanism. These fields should show a minimum and maximum of 0 for each swath acquired with Riegl sensors as these sensors use rotating mirrors.	Scan Direction bits were populated correctly	None
Swaths are in LAS v1.4 formatting	Swaths were in LAS v1.4 as required by the project.	None
All swaths must have File Source IDs assigned (these should equal the Point Source ID or the flight line number)	File Source IDs were correctly assigned	None
GPS timestamps must be in Adjusted GPS time format and Global Encoding field must also indicate Adjusted GPS timestamps	GPS timestamps were Adjusted GPS time and Global Encoding field were correctly set to 17	None
Intensity values must be 16-bit, with values ranging between 0-65,535	Intensity values were 16-bit	None
Point Source IDs must be populated and swath Point Source IDs should match the File Source IDs	Point Source IDs were assigned and match the File Source IDs	None

3.2 Data Classification and Editing

Once the calibration, absolute swath vertical accuracy, and relative accuracy of the data were confirmed, Dewberry utilized proprietary and TerraScan software for processing. The acquired 3D laser point clouds were tiled according to the project tile grid using proprietary software. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classified any obvious low outliers in the dataset to class 7 and high outliers in the dataset to class 18. Points along flight line edges that were geometrically unusable were flagged as withheld and classified to a separate class so that they would be excluded from the initial

140G0219F0101

3/7/2022

ground algorithm. After points that could negatively affect the ground were removed from class 1, the ground layer was extracted from this remaining point cloud using an iterative surface model.

This surface model was generated using four main parameters: building size, iteration angle, iteration distance, and maximum terrain angle. The initial model was based on low points being selected by a "roaming window" with the assumption that these were the ground points. The size of this roaming window was determined by the building size parameter. The low points were triangulated and the remaining points were evaluated and subsequently added to the model if they met the iteration angle and distance constraints. This process was repeated until no additional points were added within iterations. Points that did not relate to classified ground within the maximum terrain angle were not captured by the initial model.

After the initial automated ground routine, each tile was imported into TerraScan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing. Dewberry analysts employed 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points were removed from the ground classification. Bridge decks were classified to class 17 and bridge saddle breaklines were used where necessary. After the ground classification corrections were completed, the dataset was processed through a water classification routine selected ground points within the breakline polygons and automatically classified them as class 9, water. During this water classification routine, points that were within 1 NPS distance or less of the hydrographic feature boundaries were moved to class 20, ignored ground, to avoid hydro-flattening artifacts along the edges of hydro features.

The withheld bit was set on the withheld points previously identified in TerraScan before the ground classification routine was performed.

After manual classification, the LAS tiles were peer reviewed and then underwent a final independent QA/QC. After the final QA/QC and corrections, all headers, appropriate point data records, and variable length records, including spatial reference information, were updated and verified using proprietary Dewberry software.

3.2.1 Qualitative Review

Dewberry's qualitative assessment of lidar point cloud data utilized a combination of statistical analyses and visual interpretation. Methods and products used in the assessment included profile- and map view-based point cloud review, pseudo image products (e.g., intensity orthoimages), TINs, DEMs, DSMs, and point density rasters. This assessment looked for incorrect classification and other errors sourced in the LAS data. Lidar data are peer reviewed, reviewed by task leads (senior level analysts), and verified by an independent QA/QC team at key points within the lidar workflow.

140G0219F0101

3/7/2022

The following table describes Dewberry's standard editing and review guidelines for specific types of features, land covers, and lidar characteristics.

Category	Editing Guideline	Additional Comments
	The SOW for the project defines unacceptable data voids as voids greater than 4 x ANPS ² , or 1.96 m ² , that are not related to water bodies or	
No Data Voids	other areas of low near-infrared reflectivity and are not appropriately filled by data from an adjacent swath. The LAS files were used to produce density grids based on Class 2 (ground) points for review	No unacceptable voids were identified in this dataset
Artifacts	Artifacts in the point cloud are typically caused by misclassification of points in vegetation or man-made structures as ground. Low-lying vegetation and buildings are difficult for automated grounding algorithms to differentiate and often must be manually removed from the ground class. Dewberry identified these features during lidar editing and reclassified them to Class 1 (unassigned). Artifacts up to 0.3 m above the true ground surface may have been left as Class 2 because they do not negatively impact the usability of the dataset.	None
Bridge Saddles	The DEM surface models are created from TINs or terrains. TIN and terrain models create continuous surfaces from the input points, interpolating surfaces beneath bridges where no lidar data was acquired. The surface model in these areas tend to be less detailed. Bridge saddles maybe created where the surface interpolates between high and low ground points. Dewberry identifies problems arising	None

Table 7. Lidar editing and review guidelines.

3/7/2022

Category	Editing Guideline	Additional Comments
	from bridge removal and resolves them by reclassifying misclassified ground points to class 1 and/or adding	
	bridge saddle breaklines where	
	applicable due to interpolation.	
	procedure to leave culverts in the bare	
	earth surface model and remove	
	bridges from the model. In instances	
Culverts and Bridges	where it is difficult to determine	None
	whether the feature was a culvert or	
	bridge, Dewberry errs on the side of	
	culverts, especially if the feature is on	
	a secondaryor tertiary road.	
	In-ground structures typically occur on	
	militarybases and at facilities	
	designed for munitions testing and	No in-ground structures present in this
In-Ground Structures	storage. When present, Dewberry	dataset
	identifies these structures in the	
	project and includes them in the	
	ground classification.	
	Irregularities in the natural ground,	
	including dirtpiles and boulders, are	
	common and maybe misinterpreted	
	as artifacts that should be removed.	
	To verify their inclusion in the ground	
	class, Dewberrychecked the features	No dirt mounds or other irregularities in
Dirt Mounds	for any points above or below the	the natural ground were present in this
	surface that might indicate vegetation	dataset
	or lidar penetration and reviews	
	ancillary layers in these locations as	
	well. Whenever determined to be	
	a dite the features to along 2 (ground)	
	Vegeteted erace within	
	wetlanda/march aroas aro not	
	wettanus/maismaleas are not	
Wetland/Marsh Areas	bydroflattened in the final DEMs	No marshes present in the data
	However it is sometimes difficult to	
	determine true ground in low wet	
	areas due to low reflectivity. In these	

3/7/2022

Category	Editing Guideline	Additional Comments
	areas, the lowest points available are used to represent ground, resulting in a sparse and variable ground surface. Open water within wetland/marsh areas greater than or equal to 2 acres is collected as a waterbody.	
Flight Line Ridges	Flight line ridges occur when there is a difference in elevation between adjacent flight lines or swaths. If ridges are visible in the final DEMs, Dewberry ensures that any ridges remaining after editing and QA/QC are within project relative accuracy specifications.	No flight line ridges are present in the data
Temporal Changes	If temporal differences are present in the dataset, the offsets are identified with a shapefile.	Temporal offsets are present in the data due to flooding events and are identified with a shapefile
Low NIR Reflectivity	Some materials, such as asphalt, tars, and other petroleum-based products, have low NIR reflectivity. Large-scale applications of these products, including roadways and roofing, may have diminished to absent lidar returns. USGS LBS allow for this characteristic of lidar but if low NIR reflectivity is causing voids in the final bare earth surface, these locations are identified with a shapefile.	No Low NIR Reflectivity is present in the data
Laser Shadowing	Shadows in the LAS can be caused when solid features like trees or buildings obstruct the lidar pulse, preventing data collection on one or more sides of these features. First return data is typically collected on the side of the feature facing toward the incident angle of transmission (toward the sensor), while the opposite side is not collected because the feature itself blocks the incoming laser pulses. Laser shadowing typically occurs in areas of single swath coverage	No Laser Shadowing is present in the data

3/7/2022

Category	Editing Guideline	Additional Comments
	because data is only collected from	
	one direction. It can be more	
	pronounced at the outer edges of the	
	single coverage area where higher	
	scanning angles correspond to more	
	area obstructed by features. Building	
	shadow in particular can be more	
	pronounced in urban areas where	
	structures are taller. Data are edited to	
	the fullest extent possible within the	
	point cloud. As long as data meet	
	other project requirements (density,	
	spatial distribution, etc.), no additional	
	action taken.	

3.2.2 Formatting Review

After the final QA/QC was performed and all corrections were applied to the dataset, all lidar files were updated to the final format requirements and the final formatting, header information, point data records, and variable length records were verified using proprietary tools. The table below lists the primary lidar header fields that are updated and verified.

Parameter	Project Specification	Pass/Fail
LAS Version	1.4	Pass
Point Data Record Format	6	Pass
Horizontal Coordinate Reference System	NAD83 (2011) UTM Zone 15, meters in WKT format	Pass
Vertical Coordinate Reference System	NAVD88 (Geoid 18), meters in WKT format	Pass
Global Encoder Bit	17 for adjusted GPS time	Pass
Time Stamp	Adjusted GPS time (unique timestamps)	Pass
System ID	Sensor used to acquire data	Pass
Multiple Returns	The sensor shall be able to collect multiple returns per pulse and the return numbers are recorded	Pass
Intensity	16-bit intensity values recorded for each pulse	Pass

Table 8. Classified lidar formatting parameters

3/7/2022

Parameter	Project Specification	Pass/Fail
	Class 1: Unclassified	
	Class 2: Ground	
	Class 7: Low Noise	
Classification	Class 9: Water	Pass
	Class 17: Bridge Decks	
	Class 18: High Noise	
	Class 20: Ignored Ground	
	Withheld bits set: Class 1 withheld set	
Withheld Points	in overlapping flightlines, and all class	Pass
	7 & 18 set as withheld	
Scan Angle	Recorded for each pulse	Pass
XYZ Coordinates	Recorded for each pulse	Pass

3.2.3 Synthetic Points

Time of flight laser measurements have their maximum unambiguous range restricted by the maximum distance the laser can travel round-trip before the next laser pulse is emitted. One solution to this problem is to limit "valid" returns to a certain window between specified elevations, or a "range gate"; however, this technique can prevent some returns from being captured if there is terrain outside of the range gate. It can also cause some late returns to be georeferenced as part subsequent pulses.

The multiple time around (MTA) capabilities of Riegl sensors enable the recording of lidar returns any distance from the laser (within detection capabilities) without forcing range gate restrictions. However, there is still a possibility that a late return will occur simultaneously with a pulse emission. The backscatter energy from the laser optics and the atmosphere directly below the aircraft during this event can effectively blind the sensor, making it unable to discern information about the laser return. Because this occurs more consistently with later returns, this blind zone is typically found in a narrow band along the edges of the sensor's range. The result is a predictable geometry of voids (typically within project specifications) in the point cloud.

During post-processing of the lidar data, Riegl software interpolates coordinates within the blind zones between last returns on each side of the gap. These are flagged as "synthetic" points and are assigned a valid time stamp, though they do not have any waveform data or pulse width information. Amplitude and reflectance are averaged from surrounding points. The assignment of synthetic points does not change the original raw point cloud data.

This dataset contains flagged synthetic points. The images below show an example from a different dataset of synthetic points applied to the ground class of the lidar point cloud.

140G0219F0101

3/7/2022

Figure 5. The left image shows ground classified without synthetic points. The right image shows ground classified with synthetic points. Both images are overlaid on a hillshade of the example area.

4. BREAKLINE PRODUCTION & QUALITATIVE ASSESSMENT

4.1 Breakline Production Methodology

Breaklines were manually digitized within an Esri software environment, using full point cloud intensity imagery, bare earth terrains and DEMs, the lidar point cloud, and ancillary ortho imagery where appropriate.

When data characteristics are suitable, Dewberry may use eCognition software to generate initial, automated water polygons, which are then manually reviewed and refined where necessary.

Breakline features with static or semi-static elevations (ponds and lakes, bridge saddles, and soft feature breaklines) were converted to 3D breaklines within the Esri environment where breaklines were draped on terrains or the las point cloud. Subsequent processing was done on ponds/lakes to identify the minimum z-values within these features and re-applied that minimum elevation to all vertices of the breakline feature.

Linear hydrographic features show downhill flow and maintain monotonicity. These breaklines under went conflation by using a combination of Esri and LP360 software. Centerlines were draped on terrains, enforced for monotonicity, and those elevations were then assigned to the bank lines for the final river/stream z-values.

Tidal breaklines may have been converted to 3D using either method, dependent on the variables within each dataset.

3/7/2022

4.1.1 Breakline Collection Requirements

The table below outlines breakline collection requirements for this dataset.

Parameter	Project Specification	Additional Comments
Ponds and Lakes	Breaklines are collected in all inland ponds and lakes ~2 acres or greater. These features are flat and level water bodies at a single elevation for each vertex along the bank.	None
Rivers and Streams	Breaklines are collected for all streams and rivers ~100' nominal width or wider. These features are flat and level bank to bank, gradient will follow the surrounding terrain and the water surface will be at or below the surrounding terrain. Streams/river channels will break at culvert locations however not at elevated bridge locations.	None
Tīdal	Breaklines are collected as polygon features depicting water bodies such as oceans, seas, gulfs, bays, inlets, salt marshes, very large lakes, etc. Includes any significant water body that is affected by tidal variations. Tidal variations over the course of collection, and between different collections, can result in discontinuities along shorelines. This is considered normal and should be retained. Variations in water surface elevation resulting from tidal variations during collection should not be removed or adjusted. Features should be captured as a dual line with one line on each bank. Each vertex placed shall maintain vertical integrity. Parallel points on opposite banks of the tidal waters must be captured at the same elevation to ensure flatness of the water feature. The entire water	No tidally influenced features are in this dataset so no tidal breaklines were collected.

Table 9. Breakline collection requirements

140G0219F0101

3/7/2022

	surface edge is at or below the immediate surrounding terrain.	
Islands	Donuts will exist where there are islands greater than 1 acre in size within a hydro feature.	None
Bridge Saddle Breaklines	Bridge Saddle Breaklines are collected where bridge abutments were interpolated after bridge removal causing saddle artifacts.	None
Soft Features	Soft Feature Breaklines are collected where additional enforcement of the modeled bare earth terrain was required, typically on hydrographic control structures or vertical waterfalls, due to large vertical elevation differences within a short linear distance on a hydrographic features.	Soft Features were collected in this dataset to aid in breakline enforcement in certain areas.

4.2 Breakline Qualitative Assessment

Dewberry performed both manual and automated checks on the collected breaklines. Breaklines underwent peer reviews, breakline lead reviews (senior level analysts), and final reviews by an independent QA/QC team. The table below outlines high level steps verified for every breakline dataset.

Parameter	Requirement	Pass/Fail
Collection	Collect breaklines according to project specifications using lidar-derived data, including intensity imagery, bare earth ground models, density models, slope models, and terrains.	Pass
Placement	Place the breakline inside or seaward of the shoreline by 1-2 x NPS in areas of heavy vegetation or where the exact shoreline is hard to delineate.	Pass
Completeness	Perform a completeness check, breakline variance check, and all automated checks on each block before designating that block complete.	Pass

Table 10. Breakline verificat	ion steps.
-------------------------------	------------

140G0219F0101

3/7/2022

Merged Dataset	Merge completed production blocks. Ensure correct horizontal and vertical snapping between all production blocks. Confirm correct horizontal	Pass
Merged Dataset Completeness Check	Check entire dataset for features that were not captured but that meet baseline specifications or other metrics for capture. Features should be collected consistently across tile boundaries.	Pass
Edge Match	Ensure breaklines are correctly edge-matched to adjoining datasets. Check completion type, attribute coding, and horizontal placement.	Pass
Vertical Consistency	Waterbodies shall maintain a constant elevation at all vertices Vertices should not have excessive min or max z-values when compared to adjacent vertices Intersecting features should maintain connectivity in X, Y, Z planes Dual line streams shall have the same elevation at any given cross-section of the stream	Pass
Vertical Variance	Using a terrain created from lidar ground (class 2, 8, and 20 as applicable) and water points (class 9) to compare breakline Z values to interpolated lidar elevations to ensure there are no unacceptable discrepancies.	Pass
Monotonicity	Dual line streams generally maintain a consistent down-hill flow and collected in the direction of flow – some natural exceptions are allowed	Pass
Topology	Features must not overlap or have gaps Features must not have unnecessary dangles or boundaries	Pass
Hydro-classification	The water classification routine selected ground points within the breakline polygons and automatically classified them as class 9, water. During this water classification routine, points that were within 1 NPS distance or less of the hydrographic feature boundaries were moved to class 20, ignored ground, to avoid hydroflattening artifacts along the edges of hydro features.	Pass
Hydro-flattening	enforcement checks. Tidal waters should	Pass

3/7/2022

preserve as much ground as possible and can	
be non-monotonic.	

5. DEM PRODUCTION & QUALITATIVE ASSESSMENT

5.1 **DEM Production Methodology**

Dewberry utilized LP360 to generate DEM products and both ArcGIS and Global Mapper for QA/QC.

The final classified lidar points in all bare earth classes were loaded into LP360 along with the final 3D breaklines and the project tile grid. A raster was generated from the lidar data with breaklines enforced and clipped to the project tile grid. The DEM was reviewed for any issues requiring corrections, including remaining lidar misclassifications, erroneous breakline elevations, incorrect or incomplete hydro-flattening or hydro-enforcement, and processing artifacts. The formatting of the DEM tiles was verified before the tiles were loaded into Global Mapper to ensure that there was no missing or corrupt data and that the DEMs matched seamlessly across tile boundaries. A final qualitative review was then conducted by an independent review department within Dewberry.

5.2 DEM Qualitative Assessment

Dewberry performed a comprehensive qualitative assessment of the bare earth DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. Dewberry conducted the review in ArcGIS using a hillshade model of the full dataset with a partially transparent colorized elevation model overlaid. The tiled DEMs were reviewed at a scale of 1:5,000 to look for artifacts caused by the DEM generation process and to verify correct and complete hydro-flattening and hydro-enforcement. Upon correction of any outstanding issues, the DEM data was loaded into Global Mapper for its second review and to verify corrections.

The table below outlines high level steps verified for every DEM dataset.

Parameter	Requirement	Pass/Fail
Digital Elevation Model (DEM) of bare-earth w/ breaklines	DEM of bare-earth terrain surface (1 meter) is created from lidar ground points and breaklines. DEMs are tiled without overlaps or gaps, show no edge artifact or mismatch, DEM deliverables are .tif format	Pass
DEM Compression	DEMs are not compressed	Pass
DEM NoData	Areas outside surveyboundary are coded as NoData. Internal voids (e.g.,	Pass

140G0219F0101

3/7/2022

	open water areas) are coded as NoData (-999999)	
Hydro-flattening	Ensure DEMs were hydro-flattened or hydro-enforced as required by project specifications	Pass
Monotonicity	Verify monotonicity of all linear hydrographic features	Pass
Breakline Elevations	Ensure adherence of breaklines to bare- earth surface elevations, i.e., no floating or digging hydrographic feature	Pass
Bridge Removal	Verify removal of bridges from bare- earth DEMs and no saddles present	Pass
DEM Artifacts	Correct any issues in the lidar classification that were visually expressed in the DEMs. Reprocess the DEMs following lidar corrections.	Pass
DEM Tiles	Split the DEMs into tiles according to the project tiling scheme	Pass
DEM Formatting	Verify all properties of the tiled DEMs, including coordinate reference system information, cell size, cell extents, and that compression is not applied to the tiled DEMs	Pass
DEM Extents	Load all tiled DEMs into Global Mapper and verify complete coverage within the (buffered) project boundary and verify that no tiles are corrupt	Pass

6. DERIVATIVE LIDAR PRODUCTS

USGS required several derivative lidar products to be created. Each type of derived product is described below.

6.1 Swath Separation Images

Swath separation images representing interswath alignment have been delivered. These images were created from the last return of all points except points classified as noise or flagged as withheld. The images are in .TIFF format. The swath separation images are symbolized by the following ranges:

140G0219F0101

3/7/2022

- 0-8 cm: Green
- 8-16 cm: Yellow
- >16: Red

6.2 Interswath and Intraswath Polygons

6.2.1 Interswath Accuracy

The Interswath accuracy, or overlap consistency, measures the variation in the lidar data within the swath overlap. Interswath accuracy measures the quality of the calibration or boresight adjustment of the data in each lift. Per USGS specifications, overlap consistency was assessed at multiple locations within overlap in non-vegetated areas of only single returns. As with precision, the interswath consistency was reported by way of a polygon shapefile delineating the sample areas checked and attributed with the following and using the cells within each polygon as sample values:

- Minimum difference in the sample area (numeric)
- Maximum difference in the sample area (numeric)
- RMSDz (Root Mean Square Difference in the vertical/z direction) of the sample area (numeric). Intraswath Accuracy

6.2.2 Intraswath Accuracy

The intraswath accuracy, or the precision of lidar, measures variations on a surface expected to be flat and without variation. Precision is evaluated to confirm that the lidar system is performing properly and without gross internal error that may not be otherwise apparent. To measure the precision of a lidar dataset, level or flat surfaces were assessed. Swath data were assessed using only first returns in non-vegetated areas.

Precision was reported by way of a polygon shapefile delineating the sample areas checked and attributed with the following and using the cells within each polygon as sample values:

- Minimum slope-corrected range (numeric)
- Maximum slope-corrected range (numeric)
- RMSDz of the slope-corrected range (numeric).