

NRCS Logan County, Illinois 4ppsm LiDAR Report

Prepared For:

United States Geological Survey

National Geospatial Technical Operations Center 1400 Independence Road Rolla, Missouri 65401

Prepared By:

Quantum Spatial 4020 Technology Parkway Sheboygan, WI 53083 P: 920.457.3631 F:920.457.0410

Contract ID: G10PC00025 Task Order: G13PD00885

Quantum Spatial Project No: 1130905

Table of Contents

United States Geological Survey NRCS Logan County, Illinois LiDAR

TITLE	SECTION
Introduction	<u>1</u>
Geodetic Control	
LiDAR Acquisition and Procedures	
Quality Control Surveys	<u>4</u>
LiDAR Processing	
Conclusion	<u>6</u>
Flight Logs	<u>7</u>
LIDAR GPS Processing Plots	
QA/QC Output Control Report	<u>9</u>
Ground Control Survey Reports.	

1. Introduction

This report contains a summary of the Light Detection and Ranging (LiDAR) data acquisition and processing for the project area to include Logan County, Illinois. The United States Geological Survey (USGS) requires the LiDAR data to aid in analysis of land use, hydrologic, vegetation and recreational management.

1.1 Contact Info

Questions regarding the technical aspects of this report should be addressed to:

Quantum Spatial 4020 Technology Parkway Sheboygan, WI 53083

Attention: Chris Guy (LiDAR Manager) Phone: 920.457.3631 Email: cguy@quantumspatial.com

1.2 Purpose

Quantum Spatial acquired high accuracy LiDAR data of Logan County, Illinois for the USGS in accordance with requirements specified to produce such a dataset as outlined in contract ID G10PC00025 and as defined by United States Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.0 (ILMF).

1.3 Project Locations

This project consisted of Logan County, Illinois. The area of acquisition is approximately 618 square miles (1600 square kilometers) located in central Illinois. Image 1.3a on the following page shows the relative location of this area.

1.4 Time Period

LiDAR data acquisition for complete coverage of the project was acquired between November 23, 2013 and November 30, 2013. See Image 3.3a and 3.3b for the project swaths collected. Flight logs can be found in <u>Section 7</u> of this document.

Project data includes eight (8) flight missions totaling one hundred eleven (111) flight lines.

1.5 Project Scope

Data collection was accomplished by the staff of Quantum Spatial. Multiple flights were required to collect LiDAR data coverage of the entire county of Logan.

As documented in the Task Order, collected data was to achieve a Fundamental Vertical Accuracy (FVA) of 18.13cm (0.59 ft) at a 95% confidence level, from an RSME of 9.25cm (0.30 ft) in the open terrain land cover category based on a Triangulated Integrated Network (TIN) of the LiDAR points. And to achieve the same values from Digital Elevation Models (DEM) derived from LiDAR data.

Consolidated Vertical Accuracy (CVA) is to achieve 26.9 cm (0.88 ft) at 95th Percentile based on the DEM.

Supplemental Vertical Accuracy (SVA) has a target for each of the ground cover category of 26.9 cm (0.88ft) at 95th Percentile.

Ground cover categories are Bare Earth/Open Terrain, Urban, Tall Weeds, Brush, and Forest.

Section <u>5.6</u> contains the vertical accuracy assessment result values.

Image 1.3a: The area outlined in black shows the location of Logan County, Illinois.

2. Geodetic Control

The field survey report and an accuracy report are included with the project delivery. See "Final_Delivery_Report" and "Accuracy_Report" pdfs attached.

Ground survey was performed by Compass Data, Inc. between December 1, 2013 and December 12, 2013. Check points were collected in various land cover categories for data calibration and vertical assessment analysis. Ground control check points were compared to airborne data. The comparison of vertical differences provides for calculation of vertical accuracies in the various land cover categories.

3. LiDAR Acquisition and Procedures

3.1 Acquisition Time Period

LiDAR data acquisition and Airborne GPS control were completed between November 23, 2013 and November 30, 2013. Data from the eight (8) flight missions is included in the project.

3.2 LiDAR Planning

The LiDAR data for this project was collected with aircraft operated by Quantum Spatial. The aircraft is equipped with LiDAR sensor systems as well as systems to collect GPS and IMU positioning data during flight. All flight planning was completed using Leica MissionPro software and data collection was completed using a Leica ALS70 sensor.

3.3 LiDAR Acquisition

Data acquired from eight (8) flight missions was utilized to provide project area coverage. Refer to Table 3.3a and 3.3b for acquisition parameters. Acquired swaths can be seen in Image 3.3a and 3.3b on the following page. <u>Section 7</u> contains the flight logs.

A Leica sensor used on board a Piper Navajo Twin aircraft. Airborne GPS and IMU position and trajectory data of the LiDAR sensor were also acquired during the time of flight.

Before take-off, the LiDAR system and the Airborne GPS and IMU system were initialized for a period of five minutes and in operation after landing for another five minutes. The missions acquired data according to the planned flight lines and included a minimum of one (usually two) cross flights. The cross flights were flown perpendicular to the planned flight lines and their data used in the in-situ calibration of the sensor.

Sensor Type	Leica ALS - 70
Sensor ID	SN7220
Field of View	40°
Flying Height (Above mean sea level)	1433 - 1518m
Pulse Rate Frequency	358 kHz
Mirror Scan Rate Frequency	53.4 Hz
Scan Angle (degrees)	20°
Ground Speed	150 kts
Average Point Density	4.2 pts/m ²
Minimum Overlap	11.84%

Table 3.3a: Acquisition Parameters 4ppsm

Table 3.3b: Acquisition Parameters 8ppsm

Sensor Type	Leica ALS - 70
Sensor ID	NS7220
Field of View	36°
Flying Height (Above mean sea level)	751 - 800m
Pulse Rate Frequency	335.4 kHz
Mirror Scan Rate Frequency	56 Hz
Scan Angle (degrees)	18°
Ground Speed	150 kts
Average Point Density	8.36 pts/m ²
Minimum Overlap	19.28%

Image 3.3a: Swaths for 4ppsm data, colored by mission. Mission 20131124-135651 is orange, 20131127-144235 is blue, 20131127-213804 is yellow, 20131128-135545 is red, and 20131130-155001 is green.

Image 3.3b: Swaths for 8ppsm data. colored by mission. Mission 20131123-223305 is orange, 20131124-191118 is purple, and 20131126-144704 is green.

3.4 LiDAR Trajectory Processing

Missions were processed using a Continuously Operating Reference Station (CORS) station and at least one base station. The image below illustrates locations of these sites relative to the project area.

Image 3.4a: Relative location of CORS station HDIL and base station used in flight calibration.

4. Quality Control Surveys

A field survey was performed by Compass Data, Inc. between December 1, 2013 and December 12, 2013. One hundred eighty six (186) check points were collected to calibrate and evaluate airborne LiDAR data in various land coverage categories throughout Logan County.

5. Final LiDAR Processing

5.1 ABGPS and IMU Processing

Airborne GPS

Applanix - POSGPS

Utilizing carrier phase ambiguity resolution on the fly (i.e., without initialization), the solution to sub-decimeter kinematic positioning without the operational constraint of static initialization as used in semi-kinematic or stop-and-go positioning was utilized for the airborne GPS post-processing.

The processing technique used by Applanix, Inc. for achieving the desired accuracy is Kinematic Ambiguity Resolution (KAR). KAR searches for ambiguities and uses a special method to evaluate the relative quality of each intersection (RMS). The quality indicator is used to evaluate the accuracy of the solution for each processing computation. In addition to the quality indicator, the software will compute separation plots between any two solutions, which will ultimately determine the acceptance of the airborne GPS post processing.

Inertial Data

The post-processing of inertial and aiding sensor data (i.e. airborne GPS post processed data) is to compute an optimally blended navigation solution. The Kalman filter-based aided inertial navigation algorithm generates an accurate (in the sense of least-square error) navigation solution that will retain the best characteristics of the processed input data. An example of inertial/GPS sensor blending is the following: inertial data is smooth in the short term. However, a free- inertial navigation solution has errors that grow without bound with time. A GPS navigation solution exhibits short-term noise but has errors that are bounded. This optimally blended navigation solution will retain the best features of both, i.e. the blended navigation solution has errors that are smooth and bounded. The resultant processing generates the following data:

- •... Position: Latitude, Longitude, Altitude
- •... Velocity: North, East, and Down components
- •... 3-axis attitude:..... roll, pitch, true heading
- •... Acceleration: x, y, z components
- •... Angular rates:..... x, y, z components

The Applanix software, version 4.4, was used to determine both the ABGPS trajectory and the blending of inertial data.

The airborne GPS and blending of inertial and GPS post-processing were completed in multiple steps.

1. The collected data was transferred from the field data collectors to the main computer. Data was saved under the project number and separated between LiDAR mission dates. Inside each mission date, a sub-directory was created with the aircraft's tail number and an A or B suffix was attached for the time of when the data was collected. Inside the tail number sub-directory, five sub- directories were also created EO, GPS, IMU, PROC, and RAW.

2. The aircraft raw data (IMU and GPS data combined) was run through a data extractor program. This separated the IMU and GPS data. In addition to the extracting of data, it provided the analyst the first statistics on the overall flight. The program was POSPac (POS post-processing PACkage).

3. Executing POSGPS program to derive accurate GPS positions for all flights: Applanix POSGPS

The software utilized for the data collected was PosGPS, a kinematic on- the-fly (OTF) processing software package. Post processing of the data is computed from each base station (Note: only base stations within the flying area were used) in both a forward and backward direction. This provides the analyst the ability to Quality Check (QC) the post processing, since different ambiguities are determined from different base stations and also with the same data from different directions.

The trajectory separation program is designed to display the time of week that the airborne or roving antenna traveled, and compute the differences found between processing runs. Processed data can be compared between a forward/reverse solution from one base station, a reverse solution from one base station and a forward solution from the second base station, etc. For the Applanix POSGPS processing, this is considered the final QC check for the given mission. If wrong ambiguities were found with one or both runs, the analyst would see disagreements from the trajectory plot, and re-processing would continue until an agreement was determined.

Once the analyst accepts a forward and reverse processing solution, the trajectory plot is analyzed and the combined solution is stored in a file format acceptable for the IMU post processor.

Please see <u>Section 8</u> of the control report for the final accepted trajectory plots.

4. When the processed trajectory (either through POSGPS) data was accepted after quality control analysis, the combined solution is stored in a file format acceptable for the IMU post processor (i.e. POSProc).

5. Execute POS Proc. POS Proc comprises a set of individual processing interface tools that execute and provide the following functions:

The diagram below shows the organization of these tools, and is a function of the POSProc processing components.

Integrated Inertial Navigation (iin) Module.

The name *iin* is a contraction of Integrated Inertial Navigation. *iin* reads inertial data and aiding data from data files specified in a processing environment file and computes the aided inertial navigation solution. The inertial data comes from a strapdown IMU. *iin* outputs the navigation data between start and end times at a data rate as specified in the environment file. *iin* also outputs Kalman filter data for analysis of estimation error statistics and smoother data that the smoothing program *smth* uses to improve the navigation solution accuracy.

iin implements a full strapdown inertial navigator that solves Newton's equation of motion on the earth using inertial data from a strapdown IMU. The inertial navigator implements coning and sculling compensation to handle potential problems caused by vibration of the IMU.

Smoother Module (smth).

smth is a companion processing module to *iin. smth* is comprised of two individual functions that run in sequence. *smth* first runs the *smoother function* and then runs the *navigation correction function*.

The *smth* smoother function performs backwards-in-time processing of the forwards-in-time blended navigation solution and Kalman filter data generated by *iin* to compute smoothed error estimates. *smth* implements a modified Bryson-Frazier smoothing algorithm specifically

designed for use with the *iin* Kalman filter. The resulting smoothed strapdown navigator error estimates at a given time point are the optimal estimates based on all input data before and after the given time point. In this sense, *smth* makes use of all available information in the input data. *smth* writes the smoothed error estimates and their RMS estimation errors to output data files.

The *smth* navigation correction function implements a feedforward error correction mechanism similar to that in the *iin* strapdown navigation solution using the smoothed strapdown navigation errors. *smth* reads in the smoothed error estimates and with these, corrects the strapdown

navigation data. The resulting navigation solution is called a Best Estimate of Trajectory (BET), and is the best obtainable estimate of vehicle trajectory with the available inertial and aiding sensor data.

The above mentioned modules provide the analyst the following statistics to ensure that the most optimal solution was achieved: a log of the *iin* processing, the Kalman filter Measurement Residuals, Smoothed RMS Estimation Errors, and Smoothed Sensor Errors and RMS,

5.2 LiDAR "Point Cloud" Processing

The ABGPS/IMU post processed data along with the LiDAR raw measurements were processed using Optech Incorporated's ASDA software. This software was used to match the raw LiDAR measurements with the computed ABGPS/IMU positions and attitudes of the LiDAR sensor. The result was a "point cloud" of LiDAR measured points referenced to the ground control system.

5.3 LIDAR CALIBRATION

Introduction

The purpose of the LiDAR system calibration is to refine the system parameters in order for the post-processing software to produce a "point cloud" that best fits the actual ground.

The following report outlines the calibration techniques employed for this project.

Calibration Procedures

All Companies involved in collection routinely performs two types of calibrations on its airborne LiDAR system. The first calibration, system calibration, is performed whenever the LiDAR system is installed in the aircraft. This calibration is performed to define the system parameters affected by the physical misalignment of the system versus aircraft. The second calibration, in-situ calibration, is performed for each mission using that missions data. This calibration is performed to refine the system parameters that are affected by the on site conditions as needed.

System Calibration

The system calibration is performed whenever the LiDAR system is installed in the aircraft. This calibration is performed to define the system parameters affected by the physical misalignment of the system versus aircraft. The main system parameters that are affected are the heading, pitch, roll, and mirror scale.

The system calibration is performed by collecting data over a known test site that incorporates a flat surface and a large, flat roofed building. A ground survey is completed to define the flat surface and the building corners. The processed LiDAR data and ground survey data is input into TerraSolid's TerraMatch software to determine the systematic errors. The system parameters are then corrected according to the determined errors and used in the processing of future LiDAR acquisition missions.

In-situ Calibration

The in-situ calibration is performed as needed using the mission's data. This calibration is performed to refine the system parameters that are affected by the on site conditions.

For each mission, LiDAR data for at least one cross flight is acquired over the mission's acquisition site. The processed data of the cross flight is compared to the perpendicular flight lines using either the Optech proprietary software or TerraSolid's TerraMatch software to determine if any systematic errors are present. In this calibration, the data of individual flight lines are compared against each other and their systematic errors are corrected in the final processed data.

5.4 LiDAR Processing

The LAS files are imported, verified, and parsed into manageable, tiled grids using GeoCue version 2012.1.27.7. GeoCue allows for ease of data management and process tracking. Relative accuracy of flightline to flightline alignment is assessed. Image 5.4a illustrates relative vertical alignment of flightlines.

- Green indicates a flightline difference of less than 0.16 feet;
- Yellow.... 0.16 0.33 feet;
- Orange... 0.33 0.48 feet;
- Red..... 0.48 0.64 feet;
- Magenta.. 0.64 feet or greater.

Image 5.4a: Relative Accuracy Assessment

Areas containing dense vegetation coverage or inundation from water will show a greater elevation offset then is actually present in the ground data. This is due to these regions having a high number of returns from vegetation or non-ground objects and few returns from the ground causing the elevation offset to be exaggerated.

A few tiles are evaluated to ensure that the desired point density has been met. Image 5.4b illustrates tiles analyzed for point density. Quantum Spatial utilizes proprietary software to complete this task. A grid, sized according to the USGS version 13 specifications, based on the nominal post spacing, is used for point analysis. The USGS version 13 specification allows that a grid size up to 2 times the nominal post spacing be used. Point density is analyzed on the basis of this grid space size or cell and the result indicates the point density of the sampled tiles.

Fifty eight tiles were analyzed.

3.2 foot grid size/point spacingTotal number of cells: 24050487Total number of cells with one or more points: 23601542Percentage of cells with 1 point or more: 98.13%

Once both the accuracy between swaths and data density is accepted an automated classification algorithm is performed using TerraSolid's TerraScan, version 013.011. This produces the majority of the bare-earth datasets. Further, the data is processed to classify specific vegetation classes and man-made structures.

The remainder of the data is classified using manual classification techniques. The majority of the manual editing involves changing points initially classified as ground (class 2), to unclassified or non-ground (class 1). Erroneous low points and high points, including clouds, are classified to Noise (class

5.5 Check Point Validation

To ensure position of the assembled data it is verified against surveyed ground control data. TerraScan computes the vertical differences between surveyed ground control points and LiDAR collected points.

Check points are surveyed within the project area to provide calibration checks of the LiDAR point cloud. A report indicating comparative positional statistics is produced when LiDAR has been adjusted to control and can be found in <u>Section 9</u>, of this report.

Forty five (45) ground check points were made across the project area to be used in adjusting the data to position. These forty five points were collected by Quantum Spatial, as part of the one hundred eighty six (186) control points collected for the project as described in <u>Section 4</u>, acquired from December 1, 2013 and December 12, 2013.

5.6 Vertical Accuracy Assessment

Vertical accuracy assessment is conducted by comparing ground survey check point z values to processed LiDAR data z values by horizontal proximity. Differences in z values are calculated to express an RMSEz value.

The Fundamental Vertical Accuracy (FVA) of the LAS data achieved 6.51 cm at a 95% confidence level with an RMSE of 3.35 cm utilizing twenty-one (21) Open Terrain ground survey check points compared to a Triangulated Integrated Network (TIN) of the LiDAR points.

See attached "Final_Delivery_Report" and "Accuracy_Report" for details of the ground survey control data.

	Ground Cover Category	Number of Checkpoints	Result cm (ft.)
FVA	Open Terrain	26	6.51 (0.2156)
RMSEz	Open Terrain	26	3.35 (0.110)

FVA Data Compared to TIN

The Supplemental Vertical Accuracy (SVA) and Consolidated Vertical Accuracy (CVA) results are in the following table. Ground survey check points made in various ground cover categories are compared to Digital Elevation Models (DEM) derived from the LiDAR data.

Accuracy Results

	Ground Cover Category	Number of Checkpoints	Result cm (ft.)
FVA	Open Terrain	26	7.96 (0.261)
CVA	All categories	119	13.26 (0.435)
SVA	Open Terrain	26	7.16 (0.235)
SVA	Urban	30	9.42 (0.309)
SVA	Tall Grass	20	11.70 (0.384)
SVA	Brush	20	18.81 (0.617)
SVA	Forest	23	13.29 (0.436)

5.7 LiDAR Data Delivery

Raw point cloud data supplied is in the following format:

- LAS, version 1.2
- GPS times adjusted to GPS Absolute
- Full swaths and delivered as 1 file per swath which did not exceed 2 gigabytes.

Classified point cloud data is also being supplied using the following criteria.

- LAS, version 1.2 in 5280 foot grid
- GPS times adjusted to GPS Absolute
- Classification scheme:
 - \circ 1 Processed, but unclassified
 - o 2 Bare Earth, Ground
 - o 7 Noise (Low or High, Manually identified, if needed)
 - o 9 Water
 - 10 Ignored Ground (Breakline proximity)

Deliverables:

Break line polygons are collected in a Microstation environment to the project specifications using heads up and stereo techniques for collection of drainage and hydro features. They are checked for QC/QA. Upon acceptance the breaklines, either polygons or lines, are translated into ARC and imported to the final geo-database as separate features in ESRI standard.

Ground survey point locations in ESRI shapefile format.

Calibrated LiDAR points as full swaths per flightline.

Classified points as LAS following the standard established by The American Society for Photogrammetry and Remote Sensing (ASPRS) for LAS data on a per tile basis.

Bare earth Digital Elevation Models (DEM), hyrdo flattened on a per tile basis.

Intensity raster images are produced for each tile through GeoCue, in GeoTIFF format.

Metadata

6. Conclusion

Sound procedures and use of new technologies ensure this project data will serve the United States Geological Survey and all users of the provided LiDAR derivative products well into the future. The models produced are accurate and representative of surface conditions at the time of data acquisition on Logan County, Illinois.

7. Flight Logs and Opus Solutions

Mission 20131123_223305, page 1

	TSI			5.1	2,			-						1	1 1 1 1		fstr -										
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			REMARKS	BA-> BAT	BAT→ SHE												A (#) Cp (Cp 2 (2#) B								on ID:	leight: 2.0 meters preferred	F-Msill amechaho@aermete
	01-S-10	373TM	MPLA	FERRY: 5	FERRY												CIRCLE AN						NOTES:		Base Stati	Antenna H	53-6695
	LEICA	Ë	MM/TO DRIVE	140	-		_	_			_	_				_	_	_	_			7					388-29
	and C	AIRCRAI	STOP	19-48	23:02	23:62	23:07	23:12	5:17	23:22	12:50	15:32	3:39	23,44	23,51	13.52		0,II	511	0:23	26,39	15:00	STOP	07.15			FAX: 8
3	47 00%		UTC TIN START	3,34	22:37	23.02	23:04	23:10 5	23, IS 9	23.20 6	73:27 2	23:300	35:34 6	33.4,G	23:48	23 <i>'SY</i> 6		6:080	A Hiso	000,00	bille o	30:33 p	START	22:37			467-2665
2	ATORD		Flying Ht. (m)		200	ß		_			- 8		_							_	_0	2	STATIC	1.2	1		NE: 920-
	13		FIXED		355	255				_										_	_	~	T ERRY	1.			085 PHC
	198		불		35	35				_			_					_		_		\checkmark	RCRAF				WL 53
	ATE: I		SCAN		36 35	36	-	_	_				_		_	_	_					7	SITE	2.8			gan Falls,
ŀ	-	MA .	REQ A	_	÷	2					_	_	<u>,</u>					_	_	_		7	LEFT	£			Shebov
		PERATOR	NID SPEED F		100	150	-	_	_		_				_				_	_			FLOWN	24		1	source Drive
	50	0	9 69 1		1 341	341	2 61	3 241	5	S 24	ر وا	1 241	الح (دا	09 241	0 61	11 241		15 61	13 241	14 61	195 241	the Cel	INES	13			4.6216 Res
	_2233		49 11		00 (FF	139 60	490 00	वता ४	442 00	443 00	यूवन <u>o</u> o	445 00	9% 00	O LEA	448 0	0 644		450 0	4SI D	452 0	453 0	121	TOTAL L			р÷.	C. INC. 1
100	E BUISINGS	AM.	T NUMBER	50	N COUNTY -	4	•	-	-	-		-						5	1				TATUS	30905			AERO-METRI
	NOISSIN	PLOT: (PROJEC	11309	LOGA		3													2	3 - 1		S	0	0	0	

24

7	
	X

REMARKS
NO MPLA
A49 LE MEUTC W STOP W
HTLOG Unc Tu START
REC D
/13 5/ //13 5/ 2555
DERA
· · · · · · · · · · · · · · · · · · ·
7305 7305 817 241 817 241 817 241 818 61 818 841 821 61
23-82 455 0 457 0 457 0 457 0 457 0 457 0 457 0
N COM

Mission 20131123_223305, page 2.

	CANSTO TSI	Hurry		REMARKS	FERRY: BUT -> SITE MA BLOACORS -4		1111111111111111111111111111111111111	ういたいに 中に、一次教会の主義和な課題の	「「「「」」」」」」」」「「「「「」」」」」」」」」」」」」」」」」」」」」	「おからいのないないのない」である		ないないというないないないないという	いないというないないないないというない	のないないので、「ないない」のでは、	「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	ちたいのでいたいないのでいたないできたので、ころの	古北小学 小川行 からの あんちの あんちの	二、「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」			ことのうない いったいかい たいいちょう			MOTES:		Base Station (D; B. C.	
1	ğ	CRAFT.	1 Dig	TOP DEN	IN MI	33 1	46	65	13	2	55	C	59	18	IF	14	LY:	10	20	SE	36:	10	11	đ	Ŧ	1000	
00	Yacus		TIME	IART S	:00 14.	N NC:	37 IV.	SO H	·03 15.	CING 15:	39 15	SI 56.	1 20	3 60%	5.22 16	71 550	24 K	in loid	c1 513	11 21	11 65.3	132 11	1.04 14	a num	[00]		
LIGHT	S DIANE		Flying C	t a	11	Seo N	1 14	Ĩ	5	1	1 15	15	15		24	10	100		H I	T Start			メも	STATIC B	1.54		
ORS FI	6		FICED	GAUN		3255		C.No.	15090	1000	100		100	and a			136						イ	BREN I		and the second s	and the second se
ERAT	he/u		PRF :	뷮		558	_												2018	100	1999		1	RCRAFT			
Р	MTE:	£	SCAN	NGLE		10	-	·		4.4777		******		20.07	-41.77-				179701					SITE	4.0		
	-	רן ג	FREQ	ž		53	•••	1.001070	#10.02						an a							-	2	LEFT	5		
27.8		OPERATOR	NO SPEED	Teres		150								-1.1.im	1700.04	len a rue a	80.400 7	-100					4	FLOWN	34/18	25	
(S40i3ni)		U	E Her	Bou		63 0	3 Coi	181 1	ē S	131 57	X Cel	191 6	nto coi	5 181	1 oct	1212	1,001	19 1 9. 19	120 2	9 5 5 E	Y Col	1 (Ş.	To S S	NES	ų		
Mauph 1	-		AL LIN	ź		G5 190	134 61	CN 551	52 47	531 A.C	/30 AU	89 R.	25 AG	18 C.C.S	20 20	2 X 2	1. 1.	123 AL	39 627	29 V2	420 83	54 B-25	417 35	TOTAL U	111		
w.	WISSIDK: BOISILS	PILOT: CAM	PROJECT NUMBER		132905	LeGan Courty 4	3*	Lovo	and the		-	a.	<u>.</u>					s.iC.	wiin	aater			non er	STATUS	0 1130505	Ō	

Mission 20131124_135651, page 1.

	152		ARKS		WA BLAM CORS .4							-										Contraction of the second seco	
	ICA ALS-70	WTEC N	DTE MPIA REM	1	FERRY : SINE & BALT													-		NOTES:			Base Station ID:
	9	RCRAFT:	VTC MA	(:22 OY	245		-	╞	+	-		-		-	 -				-	STOP			
LOG	Q4V	M	TART	19 18	51		\vdash	t	+	-	-	_			 		-	_		START			
LIGHT	KR Sun		Hyteg HL (m) S	500 15	-				\uparrow		t	-								STATIC :			袰
ORS F	3 0%4		GAIN	255 1					T	T										ERY		ł	
ERAT	1/24/1		RF KÅ	358																IRCRAFT FI	_		
P	DATE: /	H	SCAN	07																SITE			
		h ë	FREQ Hz	ន																LEFT			
5		DERATO	IND SPEED (KTS)	150																FLOWN			
YMMDD_TIME(GPS)	ц.	ÿ	No. Lbi Hdg	4PPMBlack go								*****			 	 	fa toma			TOTAL LINES	¥		
W.	N: \$013112	CAM	ECT NUMBER	ogas	N COUTY															TATUS	130905		
	MISSIO	PILOT:	PROJE	13	Locar	ļ.	1.25			1			53							0,	- O		0

Mission 20131124_135651, page 2.

SION: 20131124_ DT: CAM											
OT: CAM			0	DATE:	11/24/1	13 Brd	KER So	Apples		ECAA	15-10
		OPERATC	ц. Ч	ε					IRCRAFT	1	1
OUECT NUMBER AND NAME No.	LINE LDI H	CND SPEED	명권	SCAN	붪	FICED	Flying Ht (m)	UTC TIM	EUTC	0.10	SAGVIDO VIO
130905								51.61	4 1.4 10		row Retto Are du Dian and
OCAR COUNTY 460	0 035 24	11 150	3	36	335	255	800	19.42	9.40		CINES AND
	4 036 6		-			-	-	19:50	55,6		
1000	12 120 3	14	_					19:58	20:05		
2%	6 028 6	-		_				30.06	34.11		
46	10 600 6.	2	_					36:14	36:19		
\$	8 030 6		_					36:22	20:27		
24	A 031 3	41	_			-		36:31	26:35		
5	0 033 6	1		_				30:38	20.42	Ľ	BUT BOF SUDE DD. POCD . Dir um Farrage
~	~		_				_			L	
7	1 633 3	11		_			_	30:46	30,50	E	
2	12 034 C		_					20:54	20:57	F	
^	V ULol 3	1 22	7	>	2	7	1	21:00	21:02	7	
		_			_				21:27		FEPRY' SATE - BAE VIA BLOHI CORS
			_		_						
		_									
	*******	_	_								,
		_	_								
		_				_					
STATUS	OTAL LINES	FLOW	N LEFT	SITE	AIRCRA	let Ferry	STAT	C START	STOP		NOTES:
D 1130905	W	1/2/1	5	-		¢,	2.7	19:15	21.27		
0		53									Base Station ID:
			_								Antenna Heicht: 2.0 meters preferred

Q

Mission 20131126_144704

Mission 20131127 213804

Mission 20131128_135545

MIC: II / Jao / J LIEGA MASTI 2020 LIEGA MASTI 2021 <th20< th=""><th></th><th>MINUM.</th><th>DD_TIME(G</th><th>(Sd</th><th></th><th>ö</th><th>PERAT</th><th>TORS I</th><th>FLIGH</th><th>TLOG</th><th></th><th></th><th></th><th></th><th></th></th20<>		MINUM.	DD_TIME(G	(Sd		ö	PERAT	TORS I	FLIGH	TLOG					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SSION: \$ 201	31130-	155001			DATE: 1	1/30/	13				EICA ALS	000 C 01-		Ĭ
MADE NAMER LIRE Constrain The Automatical Restance TANE Constrained Restance Restan	LOT: CAM			OPERATIC	30	1.14					AIRCRAF	T. 4.72	14		10 2
(1309a5 Renv: S:SY L:S.S L:S L:S <thl:s< th=""> L:S <thl:s< th=""></thl:s<></thl:s<>	ROJECT NUMBE AND NAME	No.	LINE Lbi Hdi	GND SPEET	FREQ Hz	SCAN	RF FRF	FIXED	Flying Ht. (m)	UTL UTL	AE UTC	MINTO IN COL	1.5	BUADKS	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	130905		TRO	8						15:54	6:20	3% Fee	NY: BUT-	* SITE VIA BLOACE	5. 50
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	OGAN COUTY	3	Alo 179	35	ß	сh	358	255	1500	5.3	K:35	-			10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A 611	2	409 35c	-		_	-	-	-	16:39	14:22				
326 Aud 17 17 17 17 17 17 326 Aud 179 17 17 17 17 326 Aud 359 1 1 17 17 17 326 Aud 17 1 17 17 16 320 Aud 17 <td>1040</td> <td>330</td> <td>Pri Poh</td> <td>0-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>12:21</td> <td>00:00</td> <td></td> <td></td> <td></td> <td></td>	1040	330	Pri Poh	0-	_					12:21	00:00				
3.46 Act, 174 1 17:16 17:37 1 3.47 Ac5 359 1 1 17:37 1 3.47 Ac5 359 1 1 17:37 1 3.47 Ac5 359 1 1 17:37 1 3.47 Ac5 15 1 1 1 1 3.47 Ac5 1 1 1 1 1 3.49 Ac5 1 1 1 1 1 3.49 Ac5 1 1 1 1 1 3.41		ž	A07 350							7:04	17:13				
3(2) Alos 359 1 1 17:37 17:37 2(4) 1 1 17:33 17:32 17:32 3(4) 1 1 17:33 17:32 17:32 2(5) 1 1 17:33 17:32 17:32 2(5) 1 1 17:33 17:32 17:32 2(5) 1 1 17:33 17:32 17:32 2(5) 1 1 1 17:33 17:32 2(5) 1 1 1 1 1 2(5) 1 1 1 1 1 2(7) 1 1 1 1 1 2(7) 1 1 1 1 1 2(7) 1 1 1 1 1 2(7) 1 1 1 1 1 2(7) 1 1 1 1 1 2(7) 1 1 1 1 1 2(7) 1 1 1 1 1 2(7) 1 1 1 1 1 2(7) 1 1 1 1		368	Act 17	σ=					_	17:16	17:25				1
366/801 179 1 17:31 17:31 17:32 15:32 1 366/803 3:69 1 1 17:53 15:32 1 1 366/803 3:69 1 1 15:65 15:32 1 1 366/803 5:69 1 1 1 1 1 1 1 366/803 5:69 1 1 1 1 1 1 1 366/803 5:69 1 1 1 1 1 1 366/803 1 1 1 1 1 1 1 366/803 1 1 1 1 1 1 1 366/803 1 1 1 1 1 1 1 366/803 1 1 1 1 1 1 1 366/803 1 1 1 1 1 1 1 366/803 1 1 1 1 1 1 1 366/803 1 1 1 1 1 1 1 366/803 1 1 1 1 1 1 1 </td <td></td> <td>367</td> <td>Ao5 35°</td> <td>g=</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>17:29</td> <td>17:37</td> <td></td> <td></td> <td></td> <td></td>		367	Ao5 35°	g=						17:29	17:37				
365 803 559 1 1 17:53 15:62 15:14 1 321 A02 779 1 1 15:15 15:14 1 1 323 A01 359 1 1 15:15 1 1 1 325 A01 359 1 1 1 15:12 Ferror': 5,nE + 8,ME Vn 3,JMe 325 X Juol 1 1 1 1 1 1 1 326 1 1 1 1 1 1 1 1 1 326 1 1 1 1 1 1 1 1 1 327 1 1 1 1 1 1 1 1 1 328 1 1 1 1 1 1 1 1 329 1 1 1 1 1 1 1 1 329 1 1 1 1 1 1 1 1		3 colo	Aot 196	¢-				_		14:01	17:49			,	, ,
3eri Ae.2 179 1 18:05 18:11 1 3c.3 Ae.1 3c9 1 1 18:15 18:27 1 X Juent 90 1 1 18:16 18:27 1 X Juent 1 18:17 1 18:17 1 X Juent 1 18:17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		365	Ao3 350	6		_				£5;LL	15:03				
363 Aol 359 1 1 187.15 187.15 157.21 Fetron': Sinte > Surt		ž	And Look	e-	_	-			-	37.05	18.11				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		363	Aol 35	6	-		_			18,15	18:21				
STATUS FLOW LEFT STATUS FEIDOV SITE SITE I1309 05 III I01/10 20 3.0 I5'5Y 10* MOTES: FLT:#Y		X	S lolo	~	~	~	7		1	18:24	12:81	X			
STATUS FLOWN LEFT STATIC START START STOP MOTES: FLO.47 I130905 川 Ios/Io Ø 3.0 I5'54 16:24 16:24 I11 Ios/Io Ø 3.1 .9 3.0 I5'54 16:24											18:52	Ð	1001. SITE-	SAL VIABLAGO	507
STATUS FLOWN LEFT STATUS FLOWN LEFT STATUS FLOWN LEFT STATUS NOTES: FLT:#Y I130905 J 1 loi/lo Ø 3.0 f5'54/ 16.24 NOTES: FLT:#Y		_										_			
STATUS FLOWN LEFT STATIC STATIC <td></td> <td></td> <td>******</td> <td></td>			******												
STATUS TOTAL LINES FLOWIN LEFT SITE RERY STATIC START STOP NOTES: FLT.単文 11309 05 川1 105/10 Ø 2.1 、9 2.0 15'5'4 16:24			1114444									_			
STATUS TOTAL LINES FLOWN LEFT STE AIRCRAFT STATIC START STOP NOTES: FLT-#Y 0 1(30995 1/1 101/10 ダ 2.1 .9 3.0 15'5'Y 16'2'Q 1 1/1 101/10 ダ 2.1 .9 3.0 15'5'Y 16'2'Q															
STATUS TOTAL LINES FLOWN LEFT SITE FERRY STATIC START STOP MOTES: FLT.単Y 1130905 1/11 101/10 Ø 2.1 、9 3.0 15'5'4 16:24												_			
STATUS TOTAL LINES FLOWN LEFT STE FERRY STATIC START STOP NOTES: FLT.#Y 0 1(309905 1/1 101/10 Ø 2.1 .9 3.0 15'54 16'.24 1 1/1 101/10 Ø 2.1 .9 3.0 15'54 16'.24						- 4	RCRAF					_			
N 1130905 111 101/10 Ø 2.1 .9 3.0 1554 18.24 N 111 111 111 111 111 111	STATUS	TOTAL	LINES	FLOWN	LEFT	SITE	Ē	ERRY	STATIC	START	STOP	NON	キシン Ser	2	
III SKC VISIO-II	1130905		111	101/10	Ø	2.1		6	3.0	1.5.51	18:34				
				111					is Ma	KC VI	jl-ol S				
	0														Sectors

Mission 20131130_155001

A REAL PROPERTY OF A REAL PROPERTY OF	
	Tyler Steniz <isteniz@quantumspatial.com< th=""></isteniz@quantumspatial.com<>
OPUS solution : 000	83270.13O OP1386857367313
opus <opus@ngs.noaa.gov> Reply-To: ngs.opus@noaa.gov</opus@ngs.noaa.gov>	Thu, Dec 12, 2013 at 8:13 AM
File: 00093270 130 OP13	2013/123_23335
FILE: 00083270,130 OF 130	000000000000000000000000000000000000000
NGS O	PUS SOLUTION REPORT
All computed coordinate acc For additional information: ht	curacies are listed as peak-to-peak values. ttp://www.ngs.noaa.gov/OPUS/about.jsp#accuracy
USER: tstentz@aerome RINEX FILE: 0008327w.13o	tric.com DATE: December 12, 2013 TIME: 14:13:12 UTC
NAV EILE: brdc3270 13p	OBS USED: 10725 / 11593 · 93%
NAV FILE: brdc3270.13n ANT NAME: NOV702GG ARP HEIGHT: 2.00	OBS USED: 10725 / 11593 : 93% NONE
NAV FILE: brdc3270.13n ANT NAME: NOV702GG ARP HEIGHT: 2.00 REF FRAME: NAD_83(2011 X: 91221.168(m) Y: -4857042.668(m Z: 4119464.705(m)	OBS USED: 10725 / 11593 : 93% NONE # FIXED AMB: 58 / 61 : 95% OVERALL RMS: 0.014(m) 1)(EPOCH:2010.0000) IGS08 (EPOCH:2013.8959) 0.001(m) 91220.354(m) 0.001(m)) 0.004(m) -4857041.287(m) 0.004(m)) 0.003(m) 4119464.616(m) 0.003(m)
NAV FILE: brdc3270.13n ANT NAME: NOV702GG ARP HEIGHT: 2.00 REF FRAME: NAD_83(2011 X: 91221.168(m) Y: -4857042.668(m Z: 4119464.705(m) LAT: 40 29 15.52852 E LON: 271 4 33.44851 W LON: 88 55 26.56144 EL HGT: 227.940(m ORTHO HGT: 259.97	OBS USED: 10725 / 11593 : 93% NONE # FIXED AMB: 58 / 61 : 95% OVERALL RMS: 0.014(m) 1)(EPOCH:2010.0000) IGS08 (EPOCH:2013.8959) 0.001(m) 91220.354(m) 0.001(m)) 0.004(m) -4857041.287(m) 0.004(m)) 0.003(m) 4119464.616(m) 0.003(m) 0.004(m) 40 29 15.55571 0.004(m) 0.001(m) 271 4 33.41506 0.001(m) 9 0.001(m) 88 55 26.58494 0.001(m) 9 0.003(m) 226.821(m) 0.003(m) 3(m) 0.012(m) [NAVD88 (Computed using GEOID12A)]
NAV FILE: brdc3270.13n ANT NAME: NOV702GG ARP HEIGHT: 2.00 REF FRAME: NAD_83(201 X: 91221.168(m) Y: -4857042.668(m Z: 4119464.705(m) LAT: 40 29 15.52852 E LON: 271 4 33.44851 W LON: 88 55 26.55144 EL HGT: 227.940(n ORTHO HGT: 259.97 UTM COOR UTM COOR UTM (Zone Northing (Y) [meters] 448 Easting (X) [meters] 336 Convergence [degrees] -1 Point Scale 0.999 Combined Factor 0.5	OBS USED: 10725 / 11593 : 93% NONE # FIXED AMB: 58 / 61 : 95% OVERALL RMS: 0.014(m) 1)(EPOCH:2010.0000) IGS08 (EPOCH:2013.8959) 0.001(m) 91220.354(m) 0.001(m)) 0.004(m) -4857041.287(m) 0.004(m)) 0.003(m) 4119464.616(m) 0.003(m) 0.004(m) 40 29 15.55571 0.004(m) 0.001(m) 271 4 33.41506 0.001(m) 9 0.001(m) 276.821(m) 0.001(m) 9 0.001(m) 226.821(m) 0.003(m) 3(m) 0.012(m) [NAVD88 (Computed using GEOID12A)] RDINATES STATE PLANE COORDINATES 16) SPC (1201 IL E) 3661.604 424314.556 9933.722 249918.868 .24952476 -0.38354574 992732 1.0000586 99989157 0.99997010
NAV FILE: brdc3270.13n ANT NAME: NOV702GG ARP HEIGHT: 2.00 REF FRAME: NAD_83(201 X: 91221.168(m) Y: -4857042.668(m Z: 4119464.705(m) LAT: 40 29 15.52852 E LON: 271 4 33.44851 W LON: 88 55 26.55143 EL HGT: 227.940(n ORTHO HGT: 259.97 UTM COOR UTM COOR UTM (Zone Northing (Y) [meters] 448 Easting (X) [meters] 336 Convergence [degrees] -1 Point Scale 0.999 Combined Factor 0.5	OBS USED: 10725 / 11593 : 93% NONE # FIXED AMB: 58 / 61 : 95% OVERALL RMS: 0.014(m) 1)(EPOCH:2010.0000) IGS08 (EPOCH:2013.8959) 0.001(m) 91220.354(m) 0.001(m) 0.004(m) -4857041.287(m) 0.004(m) 0.003(m) 4119464.616(m) 0.003(m) 0.004(m) 4857041.287(m) 0.004(m) 0.003(m) 4119464.616(m) 0.003(m) 0.004(m) 4857041.287(m) 0.004(m) 0.003(m) 4119464.616(m) 0.003(m) 0.004(m) 29 15.55571 0.004(m) 0.001(m) 271 4 33.41506 0.001(m) 9 0.001(m) 276.821(m) 0.003(m) 90.001(m) 226.821(m) 0.003(m) 3(m) 0.012(m) [NAVD88 (Computed using GEOID12A)] RDINATES STATE PLANE COORDINATES 16) SPC (1201 IL E) 3661.604 424314.556 9938157 0.393997010 0NATOR: 16TCK3693383661(NAD 83)

12/12/13

Quantum Spatial Mail - OPUS solution : 00083270.13O OP1386857367313

 DL6165
 BLOM CITYBLOOMINGTONIL CORS ARP
 N402944.282
 W0885959.461
 6488.1

 DL7697
 HDIL MACKINAWFWIL2006
 CORS ARP
 N403321.161
 W0891738.330
 32252.4

 DK4053
 KA12
 KARA
 CO 12
 CORS ARP
 N395225.338
 W0885531.988
 68172.9

NEAREST NGS PUBLISHED CONTROL POINT LC0434 854.93 N402916. W0885528. 37.1

This position and the above vector components were computed without any knowledge by the National Geodetic Survey regarding the equipment or field operating procedures used.

https://mail.google.com/mail/w/0/?ui=2&ik=cc5c30ab23&view=pt&search=inbox&th=142e727bo91e5d20

	Quantum Spatial Mail - OPUS solution : 00083280.13O OP1386660283436	
	Tyler Stentz≪istentz@quantumspatial.com	n
OPUS solution : 000	083280.13O OP1386860283436	
opus <opus@ngs.noaa.gov></opus@ngs.noaa.gov>	Thu, Dec 12, 2013 at 8:59 /	AN
Reply-To: ngs.opus@noaa.g	gov	
TO. Isteritz@aerometric.com	2012/12/1	
FILE: 00083280.13O OP1	1386860283436	۳,
NGS	OPUS SOLUTION REPORT	-
====		
All computed coordinate a For additional information:	accuracles are listed as peak-to-peak values. ; http://www.ngs.noaa.gov/OPUS/about.jsp#accuracy	
USER: tstentz@aeron RINEX FILE: 0008328n.134	DATE: December 12, 2013 TIME: 14:59:50 UTC	
ARP HEIGHT: 2.00	OVERALL RMS: 0.013(m)	
X- 91221 189/m	m) 0.001(m) 91220.355(m) 0.001(m)	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(m) 0.001(m) 91220.355(m) 0.001(m) "(m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m)	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(m LAT: 40 29 15.5285	m) 0.001(m) 91220.355(m) 0.001(m) (m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40 29 15.55570 0.004(m)	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(LAT: 40 29 15.5285 E LON: 271 4 33.448	m) 0.001(m) 91220.355(m) 0.001(m) (m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40 29 15.55570 0.004(m) 855 0.001(m) 271 4 33.41509 0.001(m) 545 0.001(m) 28 55 28 58401 0.001(m)	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(m LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.55 ^o FL HGT: 227.952	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(m LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.557 EL HGT: 227.952 ORTHO HGT: 259.1	m) 0.001(m) 91220.355(m) 0.001(m) 7(m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40 29 15.55570 0.004(m) 855 0.001(m) 271 4 33.41509 0.001(m) 5145 0.001(m) 88 55 26.58491 0.001(m) 52(m) 0.010(m) 226.832(m) 0.010(m) .985(m) 0.021(m) [NAVD88 (Computed using GEOID12A)]	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(i LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.55 EL HGT: 227.952 ORTHO HGT: 259.5	m) 0.001(m) 91220.355(m) 0.001(m) 7(m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40 29 15.55570 0.004(m) 855 0.001(m) 271 4 33.41509 0.001(m) 5145 0.001(m) 88 55 26.58491 0.001(m) 52(m) 0.010(m) 226.832(m) 0.010(m) .885(m) 0.021(m) [NAVD88 (Computed using GEOID12A)] DORDINATES STATE PLANE COORDINATES	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(m LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.557 EL HGT: 227.952 ORTHO HGT: 259.1 UTM COC UTM (Zo	m) 0.001(m) 91220.355(m) 0.001(m) 7(m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40.29.15.55570 0.004(m) 855 0.001(m) 271.4.33.41509 0.001(m) 5145 0.001(m) 285.526.58491 0.001(m) 52(m) 0.010(m) 226.832(m) 0.010(m) .985(m) 0.021(m) [NAVD88 (Computed using GEOID12A)] DORDINATES STATE PLANE COORDINATES space 16) SPC (1201 IL E)	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.55 EL HGT: 227.952 ORTHO HGT: 259.5 UTM COO UTM (Zo Northing (Y) [meters] 4 Easting (X) [meters] 4	m) 0.001(m) 91220.355(m) 0.001(m) 7(m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40 29 15.55570 0.004(m) 855 0.001(m) 271 4 33.41509 0.001(m) 5145 0.001(m) 88 55 26.58491 0.001(m) 52(m) 0.010(m) 226.832(m) 0.010(m) .985(m) 0.021(m) [NAVD88 (Computed using GEOID12A)] DORDINATES STATE PLANE COORDINATES one 16) SPC (1201 IL E) 4483661.604 424314.555 336933 723 249918.869	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.55' EL HGT: 227.952 ORTHO HGT: 259.1 UTM COO UTM (Zo Northing (Y) [meters] 4 Easting (X) [meters] 3 Convergence [degrees]	m) 0.001(m) 91220.355(m) 0.001(m) 7(m) 0.008(m) -4857041.296(m) 0.008(m) 9(m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40.29 15.55570 0.004(m) 855 0.001(m) 271 4 33.41509 0.001(m) 5145 0.001(m) 226.832(m) 0.001(m) :2(m) 0.010(m) 226.832(m) 0.010(m) :985(m) 0.021(m) [NAVD88 (Computed using GEOID12A)] OORDINATES STATE PLANE COORDINATES one 16) SPC (1201 IL E) 4483661.604 424314.555 336933.723 249918.869 -1,24952475 -0.38354574	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(m LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.557 EL HGT: 227.952 ORTHO HGT: 259.1 UTM COO UTM (Zo Northing (Y) [meters] 4 Easting (X) [meters] 3 Convergence [degrees] Point Scale 0.9	m) 0.001(m) 91220.355(m) 0.001(m) 7(m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40 29 15.55570 0.004(m) 855 0.001(m) 271 4 33.41509 0.001(m) 5145 0.001(m) 271 4 33.41509 0.001(m) 5145 0.001(m) 226.832(m) 0.001(m) 52(m) 0.010(m) 226.832(m) 0.010(m) 226.832(m) 0.010(m) 226.832(m) 0.010(m) .985(m) 0.021(m) [NAVD88 (Computed using GEOID12A)] DORDINATES STATE PLANE COORDINATES sone 16) SPC (1201 IL E) 4483661.604 424314.555 336933.723 249918.869 -1.24952475 -0.38354574 99992732 1.00000586 0.99989157 0.99997010	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.55 EL HGT: 227.952 ORTHO HGT: 259.9 UTM COO UTM (Zo Northing (Y) [meters] 4 Easting (X) [meters] 3 Convergence [degrees] Point Scale 0.9 Combined Factor 0	m) 0.001(m) 91220.355(m) 0.001(m) 7(m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40 29 15.55570 0.004(m) 855 0.001(m) 271 4 33.41509 0.001(m) 5145 0.001(m) 88 55 26.58491 0.001(m) 32(m) 0.010(m) 226.832(m) 0.010(m) .885(m) 0.021(m) [NAVD88 (Computed using GEOID12A)] DORDINATES STATE PLANE COORDINATES one 16) SPC (1201 IL E) 4483661.604 424314.555 336933.723 249918.869 -1,24952475 -0.38354574 99992732 1.00000586 0.99989157 0.99997010 SIGNATOR: 16TCK3693383661(NAD 83)	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(m LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.55 EL HGT: 227.952 ORTHO HGT: 259.9 UTM COC UTM (Zoc Northing (Y) [meters] 4 Easting (X) [meters] 3 Convergence [degrees] Point Scale 0.9 Combined Factor 0 US NATIONAL GRID DES	m) 0.001(m) 91220.355(m) 0.001(m) (m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40 29 15.55570 0.004(m) 855 0.001(m) 271 4 33.41509 0.001(m) 5145 0.001(m) 88 55 26.58491 0.001(m) 52(m) 0.010(m) 226.832(m) 0.010(m) .885(m) 0.021(m) [NAVD88 (Computed using GEOID12A)] DORDINATES STATE PLANE COORDINATES one 16) SPC (1201 IL E) 4483661.604 424314.555 336933.723 249918.869 -1.24952475 -0.38354574 99992732 1.00000586 0.99989157 0.99997010 SIGNATOR: 16TCK3693383661(NAD 83)	
X: 91221.169(m Y: -4857042.677(Z: 4119464.712(i LAT: 40 29 15.5285 E LON: 271 4 33.448 W LON: 88 55 26.557 EL HGT: 227.952 ORTHO HGT: 259.5 UTM COO UTM (Zo Northing (Y) [meters] 4 Easting (X) [meters] 3 Convergence [degrees] Point Scale 0.9 Combined Factor 0 US US NATIONAL GRID DES BAS PID DESIGNATION	m) 0.001(m) 91220.355(m) 0.001(m) (m) 0.008(m) -4857041.296(m) 0.008(m) (m) 0.008(m) 4119464.623(m) 0.008(m) 51 0.004(m) 40 29 15.55570 0.004(m) 855 0.001(m) 271 4 33.41509 0.001(m) 5145 0.001(m) 88 55 26.58491 0.001(m) 22(m) 0.010(m) 226.832(m) 0.010(m) .985(m) 0.021(m) [NAVD88 (Computed using GEOID12A)] DORDINATES STATE PLANE COORDINATES one 16) SPC (1201 IL E) 4483661.604 424314.555 336933.723 249918.869 -1.24952475 -0.38354574 99992732 1.00000586 0.99989157 0.99997010 SIGNATOR: 16TCK3693383661(NAD 83) SE STATIONS USED LATITUDE LONGITUDE DISTANCE(m)	

12/12/13 DG9099 K/ DL6165 BL DK4053 K/	AR4 KARA CO 4 COO .OM CITYBLOOMINGT A12 KARA CO 12 COF	Quantum Spatial Mail - C P CORS ARP ONIL CORS ARP IS ARP N	00000000000000000000000000000000000000	33280.130 OP138586028 7 W0881723.849 32 W0885959.461 0885531.988 681	3436 66847.4 6488.1 72.9
LC0434	NEAREST NGS PUB 854.93	LISHED CONTRO N402916. WG	L POINT)885528.	37.1	
This position knowledge field operat	on and the above vector by the National Geode ing procedures used.	r components wer tic Survey regardi	e computed wit ng the equipme	thout any ant or	

https://mail.g.cogle.com/mail/u/0/?ui=2&ik=co5c30ab23&view=pt&search=inbox&th=142e75253438a13f

and the second sec		Tyler Stentz «tstentz@quantumspatial.com»
quantun		
PUS solution	: 00083300.13O OP13	386864376498
กษรสสฎต		Thu, Dec 12, 2013 at 10:08 AM
aply-To: ngs.opus@r sply-To: ngs.opus@r ; tstentz@aerometri	a.gov≥ ioaa.gov c.com	20121126 441701
FILE: 00083300.130	OP1386864376498	20121196-191164
	NGS OPUS SOLUTION REPO	PORT
All computed coord For additional inform	nate accuracies are listed as p nation: http://www.ngs.noaa.go	peak-to-peak values. ov/OPUS/about.jsp#accuracy
USER: tstentz(RINEX FILE: 00083	gaerometric.com D 30o.13o TIM	DATE: December 12, 2013 ME: 16:08:23 UTC
SOFTWARE: pag EPHEMERIS: lgr1 NAV FILE: brdc3 ANT NAME: NOV ARP HEIGHT: 2.00	e5 1209.04 master92.pl 07231 7682.eph [rapid] 5 300.13n OBS U 7702GG NONE #1 0 QVERALL	313 START: 2013/11/26 16:21:00 STOP: 2013/11/26 16:21:00 USED: 4640 / 4848 : 96% ∉ FIXED AMB: 36 / 39 : 92% L RMS: 0.013(m)
REF FRAME: NA	D_83(2011)(EPOCH:2010.0000	00) IGS08 (EPOCH:2013.9031)
X: 9122 Y: -48570 Z: 41194	21.194(m) 0.001(m) 9 042.640(m) 0.015(m) -4 464.686(m) 0.016(m) 4	91220.380(m) 0.001(m) 4857041.259(m) 0.015(m) 4119464.597(m) 0.016(m)
LAT: 40.29	15.52863 0.004(m) 40	0 29 15.55582 0.004(m) 271 4 33.41618 0.002(m)
E LON: 271 W LON: 88 S EL HGT: ORTHO HGT:	5 26.55036 0.002(m) 8 227.907(m) 0.022(m) 259.940(m) 0.039(m) [NA	88 55 26.58382 0.002(m) 226.788(m) 0.022(m) AVD88 (Computed using GEOID12A)]
	UTM COORDINATES STATE UTM (Zone 16) SPC (120 4483661 607 42	E PLANE COORDINATES 201 IL E) 24314.559
	ers] 4400007.007 249	9918.894
Northing (Y) [me Easting (X) [me Convergence [de Point Scale Combined Facto	ers] 336935,749 245 agrees] -1.24952455 -0 0.99992732 1.000 r 0.99989157 0.9	0,38354554 1000586 .99997011
Northing (Y) [me Easting (X) [met Convergence [de Point Scale Combined Facto US NATIONAL (ers] 336933,749 24 agrees] -1.24952455 -0 0.99992732 1.000 r 0.99989157 0.5 PRID DESIGNATOR: 16TCK365	0,38354554 000586 .99997011 693383661(NAD 83)

12/1	12/13 DG9099 K DL7697 HI DK4053 K	AR4 KARA CO 4 CC DIL MACKINAWFWI A12 KARA CO 12 C	OOP CORS ARP 2006 CORS ARP ORS ARP	N400753.7 N403321.1 N395225.338	97 W0881723.84 161 W0891738.33 W0885531.988	49 66847.4 30 32252.4 68172.9	
	LC0434	NEAREST NGS PU 854.93	JBLISHED CONTR N402916.	ROL POINT W0885528.	37.1		
	This positi knowledge field opera	on and the above veo by the National Geo ting procedures used	tor components w detic Survey rega I.	vere computed rding the equip	without any ment or		
ht	tps://mail.google	.com/mail/u/0/?ui=28ik=cc5c	30ab23&view=pt&search	=inbox&th=142e791	119348378		2/2

Ranc					Tyler Sta	niz <tstontz@quantumspatiai.com< th=""></tstontz@quantumspatiai.com<>
OPUS solu	ition : 0008	3310.130	OP138	3686899	7305	
opus <opus@r Reply-To: ngs.c To: tstentz@ae</opus@r 	gs.noaa.gov≻ opus@noaa.gov rometric.com				20	Thu, Dec 12, 2013 at 11:29 Al
FILE: 00083	310.130 OP1386	868997305			0.0	1212/-144235
	NGS OP	US SOLUTIO	N REPOR	tт =		
All computed For additiona	coordinate accu I information: http	racies are list c://www.ngs.n	ed as pea oaa.gov/C	ik-to-peak v PUS/about	alues. t.jsp#accurad	су
USER: to RINEX FILE:	stentz@aerometr 0008331n.13o	ic.com	DA' TIME:	TE: Decemi 17:28:54 U	ber 12, 2013 ITC	
SOFTWAR EPHEMERI NAV FILE: ANT NAME ARP HEIGH	E: page5 1209.0 S: igr17683.eph brdc3310.13n : NOV702GG F: 2.00	4 master93.p rapid] NONE OVI	1 072313 ST(OBS USE # FIX ERALL RI	START: DP: 2013/11 D: 29123 / ED AMB: MS: 0.014(r	2013/11/27 1/28 02:22:0 32349 : 90 196 / 201 n)	13:33:00 00 2% : 98%
REF FRAM	E: NAD_83(2011 91221.191(m) 4857042.636(m) 4119464.689(m)	(EPOCH:201 0.004(m) 0.000(m) 0.001(m)	9122 -4857 41194	IGS 0.377(m) (041.255(m) 164.600(m)	08 (EPOCH: 0.004(m) 0.000(m) 0.001(m)	2013.9004)
LAT: 4 E LON: W LON: EL HGT: ORTHO HG	0 29 15.52879 271 4 33.44951 88 55 26.55049 227.906(m T: 259.939	0.001(m) 0.004(m) 0.004(m) 0.001(m) (m) 0.011(m	40 29 1 271 4 88 5 2) [NAVD8	5.55598 33.41606 5.26.58394 26.787(m) 8 (Compute	0.001(m) 0.004(m) 0.004(m) 0.001(m) ed using GEC	DID12A)]
Northing (Y) Easting (X) Convergence Point Scale Combined F	UTM COORI UTM (Zone [meters] 4483 [meters] 3369 [degrees] -1. 0.9999 actor 0.99	DINATES S 16) SPC 661.612 033.746 24952458 12732 1 9989157	TATE PL/ (1201 IL 424314 249918. -0.3833 0.000058 0.99997	NE COOR E) .564 392 54556 6 '011	DINATES	
US NATION	AL GRID DESIG	NATOR: 16TC	K3693383	661 (NAD 8	3)	

12/1:	2/13 DK4053 K DL6165 BL DL2304 K/	A12 KARA CO 12 C -OM CITYBLOOMIN A21 WOODFORD C	Quantum Spatial M CORS ARP IGTONIL CORS / CORS ARP	Aall - OPUS solution : 0 N395225.338 V ARP N402944. N404729.312	0083310.130 OP13888 W0885531.988 .282 W0885959.4 W0891145.766	68172.9 68172.9 461 6488.1 40839.6	
		NEAREST NGS P		ITROL POINT	97.4		
	LC0434	854.93 on and the above ve	ctor components	were computed	without any		
	knowledge field opera	by the National Ge ting procedures use	odetic Survey reg d.	garding the equip	ment or		
https	a://mail.google.o	com/mail/w/0/?ui=2&ik=cc5	:30ab23&view=pt&sear	ch=inbox&th=142e7dad4	43eba2ed		2/2

Qquantum			Tyler Steniz <ist< th=""><th>eniz@quaniumspatial.coi</th></ist<>	eniz@quaniumspatial.coi
OPUS solution : 00	083320.13O OP	138688019	94713	
opus <opus@ngs.noaa.gov Reply-To: ngs.opus@noaa.g To: tstentz@aerometric.com</opus@ngs.noaa.gov 	> Jov I		~	Thu, Dec 12, 2013 at 2:34 I
FILE: 00083320.130 OP	1386880194713		2013112	8_135545
NGS	OPUS SOLUTION REI	PORT		
All computed coordinate a For additional information:	occuracies are listed as http://www.ngs.noaa.g	peak-to-peak ov/OPUS/abou	values. t.jsp#accuracy	
USER: tstentz@aeror RINEX FILE: 0008332m.13	metric.com 30 Ti	DATE: Decem ME: 20:34:15	ber 12, 2013 UTC	
SOFTWARE: page5 120 EPHEMERIS: igr17684.e NAV FILE: brdc3320.13r ANT NAME: NOV702GG ARP HEIGHT: 2.00	09.04 master53.pl 0723 ph [rapid] 0 OBS 0 NONE # 0VERAL	13 START: STOP: 2013/1 JSED: 16025 / FIXED AMB: L RMS: 0.012(i	2013/11/28 12:56:00 1/28 20:25:00 16999 : 94% 89/ 92 : 97% n)	
REF FRAME: NAD_83(20	011)(EPOCH:2010.000)) IGS	08 (EPOCH:2013.90	37)
X: 91221.191(n Y: -4857042.634 Z: 4119464.684(n) 0.002(m) 9 (m) 0.004(m) -44 m) 0.005(m) 41	1220.377(m) 357041.253(m) 19464.595(m)	0.002(m) 0.004(m) 0.005(m)	
LAT: 40 29 15.5287 E LON: 271 4 33.449 W LON: 88 55 26.55 EL HGT: 227.901 ORTHO HGT: 2259.	1 0.003(m) 40 52 0.002(m) 27 048 0.002(m) 8 1(m) 0.005(m) 934(m) 0.014(m) [NAV	29 15.55590 1 4 33.41606 8 55 26.58394 226.782(m) /D88 (Compute	0.003(m) 0.002(m) 0.002(m) 0.005(m) d using GEOID12A)]	
UTM COG UTM (Zo Northing (Y) [meters] 4 Easting (X) [meters] 3 Convergence [degrees] Point Scale 0.9 Combined Factor 0	ORDINATES STATE ne 16) SPC (1201 483661.609 4243 36933.746 2499 -1.24952458 -0.3 9992732 1.0000 0.99989157 0.99	PLANE COOR IL E) 314.561 18.892 18354556 0586 997011	DINATES	
US NATIONAL GRID DES	IGNATOR: 16TCK3693	383661(NAD 8	3)	

12/12/13 Quantum Spatial Mail - OPUS solution : 00083320.130 OP1386880194713 DG9099 KAR4 KARA CO 4 COOP CORS ARP N400753.797 W0881723.849 66847.4 UK4053 KA12 KARA CO 12 CORS ARP N395225.338 W0885531 988 68172 9	
DL7697 HDIL MACKINAWFWIL2006 CORS ARP N403321.161 W0891738.330 32252.4	
LC0434 854.93 N402916. W0885528. 37.1	
knowledge by the National Geodetic Survey regarding the equipment or field operating procedures used.	
https://mail.google.com/mail/u/07/ui=26in=co5o30ab236view=pt&searoh=inbox8th=142e884b2764b3fb	

2/2

8. LiDAR GPS Processing Plots

Image 8.1a: PDOP Plot for mission 20131123_223305.

Image 8.1b: Separation Plot for mission 20131123_223305.

Image 8.2a: PDOP Plot for mission 20131124_135651

Image 8.2b: Separation Plot for mission 20131124_135651.

Image 8.3a: PDOP Plot for mission 20131124_191118.

Image 8.3b: Separation Plot for mission 20141124_191118.

Image 8.4a: PDOP Plot for mission 20131126_144704.

Image 8.4b: Separation Plot for mission 20131126_144704.

Image 8.5a: PDOP Plot for mission 20131127_144235.

Image 8.5b: Separation Plot for mission 20131127_144235.

Image 8.6a: PDOP Plot for mission 20131127_213804.

Image 8.6b: Separation Plot for mission 20131127_213804.

Image 8.7a: PDOP Plot for mission 20131128_135545.

Image 8.7b: Separation Plot for mission 20131128_135545.

Image 8.8a: PDOP Plot for mission 20131130_155001.

Image 8.8b: Separation Plot for mission 20131130_155001.

9. QA/QC Output Control Report

Output Control Report on check points collected across the Logan County project area and used to calibrate LiDAR data position.

	Logan County Control Report							
	Control	Easting	Northing	Known Z	Laser Z	Dz		
1	CTR100	2455329.592	1325738.183	602.367	602.55	0.183		
2	CTR101	2460000.602	1299335.012	543.922	544.16	0.238		
3	CTR101a	2460083.659	1299348.657	544.887	545.1	0.213		
4	CTR103	2486066.839	1321643.967	581.473	581.52	0.047		
5	CTR103a	2486142.884	1321632.372	581.441	581.4	-0.041		
6	CTR104	2568334.416	1283203.336	627.822	627.9	0.078		
7	CTR105	2486620.057	1290668.383	551.531	551.48	-0.051		
8	CTR105a	2486544.719	1290662.713	551.23	551.14	-0.09		
9	CTR106	2512704.266	1331560.379	695.045	694.79	-0.255		
10	CTR107	2514137.179	1290800.82	587.147	586.95	-0.197		
11	CTR107a	2514191.991	1290799.036	586.601	586.39	-0.211		
12	CTR108	2543132.941	1330796.029	666.182	666.36	0.178		
13	CTR108a	2543115.248	1330838.181	665.994	666.05	0.056		
14	CTR109	2568750.464	1267635.848	642.623	642.67	0.047		
15	CTR110	2558620.357	1312517.125	709.613	709.83	0.217		
16	CTR111	2574128.79	1309359.698	696.444	696.54	0.096		
17	CTR112	2544639.073	1294592.231	598.922	598.85	-0.072		
18	CTR113	2541147.039	1269769.265	608.025	607.83	-0.195		
19	CTR114	2530461.601	1317313.244	601.091	601.07	-0.021		
20	CTR115	2514374.991	1273711.076	578.34	578.15	-0.19		
21	CTR116	2499521.97	1306438.253	607.517	607.62	0.103		
22	CTR116a	2499516.994	1306370.878	606.076	605.88	-0.196		
23	CTR117	2486851.29	1276490.06	568.549	568.6	0.051		
24	CTR117a	2486847.151	1276406.488	567.056	567.18	0.124		
25	CTR118	2460493.787	1281182.693	554.539	554.55	0.011		
26	CTR118a	2460411.838	1281115.211	553.562	553.99	0.428		
27	CTR119	2460644.826	1266571.056	525.278	525.52	0.242		
28	CTR119a	2460547.23	1266570.921	524.085	524.18	0.095		
29	CTR120	2512509.89	1260805.233	555.941	555.73	-0.211		

	Logan County Control Report							
	Control	Easting	Northing	Known Z	Laser Z	Dz		
30	CTR121	2543484.429	1237889.019	595.486	595.47	-0.016		
31	CTR122	2571880.55	1243543.696	609.265	609.29	0.025		
32	CTR123	2512048.396	1222224.369	618.632	618.44	-0.192		
33	CTR123a	2512766.059	1222022.723	605.077	605.03	-0.047		
34	CTR124	2544257.99	1221760.885	636.271	636.08	-0.191		
35	CTR125	2499087.565	1239653.155	589.799	589.61	-0.189		
36	CTR126	2467611.821	1242908.444	598.623	598.91	0.287		
37	CTR126a	2467615.109	1242966.371	598.68	598.79	0.11		
38	CTR127	2482826.193	1221969.873	598.136	598.29	0.154		
39	CTR127a	2482823.664	1222061.465	598.11	598.06	-0.05		
40	CTR128	2511649.013	1192040.637	597.394	597.28	-0.114		
41	CTR128a	2511627.463	1192144.923	597.916	598	0.084		
42	CTR129	2548845.648	1195519.751	580.681	580.69	0.009		
43	CTR129a	2548766.98	1195531.224	579.48	579.6	0.12		
44	CTR130	2573091.332	1187644.065	600.556	600.83	0.274		
45	CTR130a	2573111.212	1187571.777	601.448	601.84	0.392		
				A	a al-	0.00		

Average dz	0.03
Minimum dz	-0.255
Maximum dz	0.428
Average magnitude	0.142
Root mean square	0.172
Std deviation	0.172

10. Ground Control Survey Reports

Refer to "Final_Delivery_Report" and "Accuracy_Report" for ground control survey results.