Dewberry & Davis LLC 1000 N. Ashley Drive, Suite 801 Tampa, FL 33602-3718 813.225.1325 813.225.1385 fax www.dewberry.com

LA DOTD Amite Watershed Lidar Project

Report Produced for U.S. Geological Survey

LA DOTD Contract: 4400008293

Task Order: 6

Report Date: 01/25/2019

SUBMITTED BY:

Dewberry 1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

SUBMITTED TO: U.S. Geological Survey 1400 Independence Road Rolla, MO 65401 573.308.3810

Table of Contents

Executive Summary
Project area4
The Project Team
Survey Area
Date of Survey
Coordinate Reference System
Lidar Vertical Accuracy
Project Deliverables
Project Tiling Footprint
Lidar Acquisition Report7
Lidar Acquisition Details7
Lidar System parameters
Acquisition Status Report and Flightlines8
Lidar Control
Airborn GPS Kinematic10
Generation and Calibration of Laser Points (raw data)10
Boresight and Relative accuracy 11
Preliminary Vertical Accuracy Assessment13
Lidar Processing & Qualitative Assessment15
Initial Processing15
Final Swath Vertical Accuracy Assessment15
Inter-Swath (Between Swath) Relative Accuracy17
Intra-Swath (Within a Single Swath) Relative Accuracy18
Horizontal Alignment19
Point Density and Spatial Distribution20
Data Classification and Editing 22
Lidar Qualitative Assessment
Visual Review
Data Voids
Artifacts 27
Bridge Removal Artifacts
Culverts and Bridges
Elevation Change Within Breaklines
Marsh Areas
NIR Depressions

High Water	36
Formatting	42
Derivative Lidar Products	44
Low Confidence Polygons	44
Lidar Positional Accuracy	47
Background	47
Survey Vertical Accuracy Checkpoints	48
Vertical Accuracy Test Procedures	55
NVA	55
VVA	55
Vertical Accuracy Results	55
Horizontal Accuracy Test Procedures	58
Horizontal Accuracy Results	59
Breakline Production & Qualitative Assessment Report	59
Breakline Production Methodology	59
Breakline Qualitative Assessment	59
Breakline Checklist	.61
Breakline Checklist Data Dictionary	
	.61
Data Dictionary	.61 .61
Data Dictionary Horizontal and Vertical Datum	.61 .61 .61
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection	61 61 61
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection Inland Streams and Rivers	61 61 61 62 62
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection Inland Streams and Rivers Feature Definition	61 61 61 62 62 62
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection Inland Streams and Rivers Feature Definition Inland Ponds and Lakes	61 61 61 62 62 62 64 66
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection Inland Streams and Rivers Feature Definition Inland Ponds and Lakes Bridge Saddle Breaklines	61 61 61 62 62 62 64 66
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection Inland Streams and Rivers Feature Definition Inland Ponds and Lakes Bridge Saddle Breaklines DEM Production & Qualitative Assessment	61 61 62 62 62 62 64 66 67
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection Inland Streams and Rivers Feature Definition Inland Ponds and Lakes Bridge Saddle Breaklines DEM Production & Qualitative Assessment DEM Production Methodology	61 61 61 62 62 62 64 67 67 67 69
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection Inland Streams and Rivers Feature Definition Inland Ponds and Lakes Bridge Saddle Breaklines DEM Production & Qualitative Assessment DEM Production Methodology DEM Qualitative Assessment	61 61 61 62 62 62 62 64 66 67
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection Inland Streams and Rivers Feature Definition Inland Ponds and Lakes Bridge Saddle Breaklines DEM Production & Qualitative Assessment DEM Production Methodology DEM Qualitative Assessment DEM Vertical Accuracy Results	61 61 .62 .62 .64 .67 .67 .67 .69 .70 .73
Data Dictionary Horizontal and Vertical Datum Coordinate System and Projection Inland Streams and Rivers Feature Definition Inland Ponds and Lakes Bridge Saddle Breaklines DEM Production & Qualitative Assessment DEM Production Methodology DEM Qualitative Assessment DEM Qualitative Assessment DEM Vertical Accuracy Results DEM Checklist	61 61 61 62 62 62 62 64 67 67 70 75

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 4 of 97

Executive Summary

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the LA DOTD Amite Watershed Lidar Project.

PROJECT AREA

The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 1500m by 1500m. A total of 2410 tiles were produced for the project encompassing an area of approximately 1884 sq. miles.

THE PROJECT TEAM

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, Digital Elevation Model (DEM) production, and quality assurance.

Forte and Tablada completed ground surveying for the project and delivered surveyed checkpoints. Their task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model. He also verified the GPS base station coordinates used during lidar data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A and Appendix B to view the separate Survey Report that was created for this portion of the project.

Precision Aerial Reconnaissance (PAR) completed lidar data acquisition and data calibration for the project area.

SURVEY AREA

The project area addressed by this report falls within the Lousiana parishes of East Feliciana, St. Helena, East Baton Rouge, Livingston, Iberville, and Ascension, and the Mississippi counties of Amite, Wilkinson, Franklin, and Lincoln.

DATE OF SURVEY

The lidar aerial acquisition was conducted from March 01, 2018 thru April 12, 2018.

COORDINATE REFERENCE SYSTEM

Data produced for the project were delivered in the following reference system.

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))

Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)

Coordinate System: UTM Zone 15

Units: Horizontal units are in meters, Vertical units are in meters.

Geiod Model: Geoid12B (Geoid 12B was used to convert ellipsoid heights to orthometric heights).

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 5 of 97

LIDAR VERTICAL ACCURACY

For the LA DOTD Amite Watershed Lidar Project, the tested $RMSE_z$ of the classified lidar data for checkpoints in non-vegetated terrain equaled **3.6 cm** compared with the 10 cm specification; and the NVA of the classified lidar data computed using $RMSE_z \times 1.9600$ was equal to 7 **cm**, compared with the 19.6 cm specification.

For the LA DOTD Amite Watershed Lidar Project, the tested VVA of the classified lidar data computed using the 95th percentile was equal to **11.6 cm**, compared with the 29.4 cm specification.

Additional accuracy information and statistics for the classified lidar data, raw swath data, and bare earth DEM data are found in the following sections of this report.

PROJECT DELIVERABLES

The deliverables for the project are listed below.

- 1. Classified Point Cloud Data (Tiled)
- 2. Bare Earth Surface (Raster DEM IMG Format)
- 3. Intensity Images (8-bit gray scale, tiled, GeoTIFF format)
- 4. Breakline Data (File GDB)
- 5. Independent Survey Checkpoint Data (Report, Photos, & Points)
- 6. Calibration Points
- 7. Metadata
- 8. Project Report (Acquisition, Processing, QC)
- 9. Project Extents, Including a shapefile derived from the lidar deliverable

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 6 of 97

PROJECT TILING FOOTPRINT

Two thousand four hundred and ten (2,410) tiles were delivered for the project. Each tile's extent is 1,500 meters by 1,500 meters (see Appendix C for a complete listing of delivered tiles).

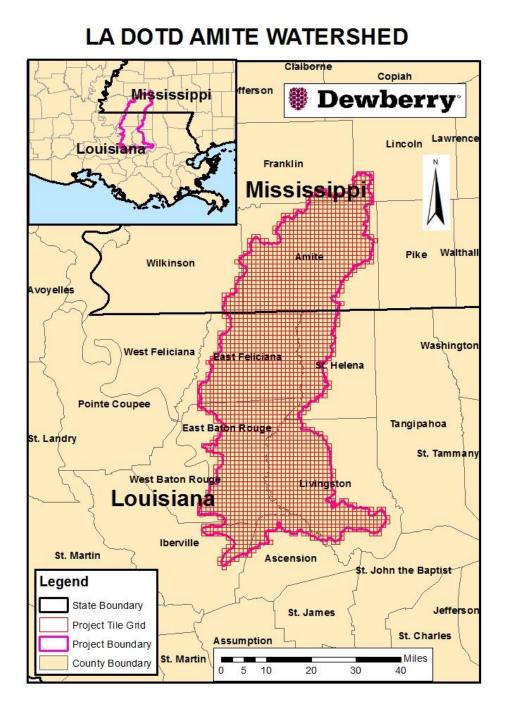


Figure 1 - Project Map

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 7 of 97

Lidar Acquisition Report

Dewberry elected to subcontract the lidar acquisition and calibration activities to Precision Aerial Reconnaissance (PAR). Precision Aerial Reconnaissance (PAR) was responsible for providing lidar acquisition, calibration and delivery of lidar data files to Dewberry.

Dewberry received calibrated swath data from Precision Aerial Reconnaissance (PAR) on March 13, 2018 and final project deliverables on May 14, 2018.

LIDAR ACQUISITION DETAILS

Precision Aerial Reconnaissance (PAR) planned 310 passes for the project area as a series of parallel flight lines with cross flightlines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, Precision Aerial Reconnaissance (PAR) followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, includes the following criteria:

• A digital flight line layout using LEICA MISSION PRO flight design software for direct integration into the aircraft flight navigation system.

- Planned flight lines; flight line numbers; and coverage area.
- Lidar coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.

• Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally, Precision Aerial Reconnaissance (PAR) will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission.

Precision Aerial Reconnaissance (PAR) monitored weather and atmospheric conditions and conducted lidar missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. Lidar systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. Precision Aerial Reconnaissance (PAR) accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition.

Within 72-hours prior to the planned day(s) of acquisition, Precision Aerial Reconnaissance (PAR) closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis.

Precision Aerial Reconnaissance (PAR) lidar sensors are calibrated at a designated site located at the Shreveport Downtown Airport in Shreveport, Louisiana and are periodically checked and adjusted to minimize corrections at project sites.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 8 of 97

LIDAR SYSTEM PARAMETERS

Precision Aerial Reconnaissance (PAR) operated a Cessna U206G (Tail # N799AC) and a Cessna 206 (Tail # 6461Z) outfitted with a LEICA ALS70-HP LiDAR system during the Amite Watershed aerial survey. Table 1 illustrates Precision Aerial Reconnaissance (PAR) system parameters for lidar acquisition on this project.

Item	Parameter
System	Leica ALS-70 HP
Altitude (AGL meters)	1152
Approx. Flight Speed (knots)	115
Scanner Pulse Rate (kHz)	450
Scan Frequency (hz)	42.3
Pulse Duration of the Scanner (nanoseconds)	9
Pulse Width of the Scanner (m)	0.2
Swath width (m)	838.59
Central Wavelength of the Sensor Laser (nanometers) Did the Sensor Operate with Multiple Pulses in The Air?	1064
(yes/no)	yes
Beam Divergence (milliradians)	0.22
Nominal Swath Width on the Ground (m)	1252.54
Swath Overlap (%)	30
Total Sensor Scan Angle (degree)	40
Computed Down Track spacing (m) per beam	1.22
Computed Cross Track Spacing (m) per beam	0.44
Nominal Pulse Spacing (single swath), (m)	0.33
Nominal Pulse Density (single swath) (ppsm), (m)	9.18
Aggregate NPS (m) (if ANPS was designed to be met through single coverage, ANPS and NPS will be equal)	0.33
Aggregate NPD (m) (if ANPD was designed to be met through single coverage, ANPD and NPD will be equal)	9.18
Maximum Number of Returns per Pulse	7

Table 1: Precision Aerial Reconnaissance (PAR) lidar system parameters

ACQUISITION STATUS REPORT AND FLIGHTLINES

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. The Acquisition Manager contacted air traffic control and coordinated flight pattern requirements. Lidar acquisition began immediately upon notification that control base stations were in place. During flight operations, the flight crew monitored weather and atmospheric conditions. Lidar missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of PDOPs, and performed the first Q/C review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines impacted by unfavorable conditions were marked as invalid and re-flown immediately or at an optimal time.

Figure 2 shows the combined trajectory of the flightlines.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 9 of 97

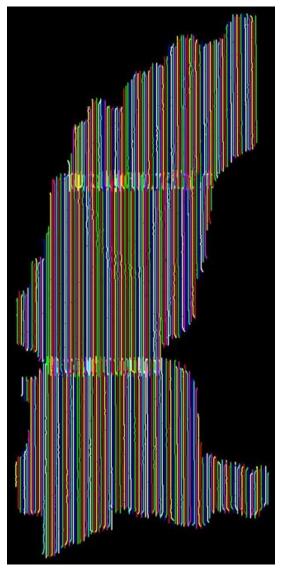


Figure 2: Trajectories as flown by Precision Aerial Reconnaissance (PAR)

LIDAR CONTROL

Two existing NGS monuments were used to control the lidar acquisition for the LA DOTD Amite Watershed Lidar Project area. The coordinates of all used base stations are provided in the table below. All control and calibration points are also provided in shapefile format as part of the final deliverables.

Name	NAD83(2	2011) UTM 15	Ellipsoid Ht	Orthometric Ht (NAVD88 Geoid12I	
	Easting X (m)	Northing Y (m)	(NAD83(2011), m)	m)	
McComb Baton Rouge	740860.6217 677199.3355	3452620.068 3378390.39	97.008 -8.507	123.6 18.606	

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 10 of 97

Table 2 – Base stations used to control lidar acquisition

AIRBORN GPS KINEMATIC

Airborne GPS data was processed using the Inertial Explorer software suite. Flights were flown with a minimum of 13 satellites in view (12° above the horizon) and with a PDOP of better than 3. Distances from base station to aircraft were kept to a maximum of 70 km.

For all flights, the GPS data can be classified as excellent, with GPS residuals of no larger than 10 cm being recorded.

GPS processing reports and GPS figures for each mission are included in Appendix A, while flightlogs are available in Appendix B.

GENERATION AND CALIBRATION OF LASER POINTS (RAW DATA)

The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete.

Subsequently the mission points are output using Leica Cloud Pro, initially with default values from Leica or the last mission calibrated for the system. Bayes StripAlign software (version 2.04B) was utilized for LiDAR calibration, assessment of calibration validity, and assessment of point cloud alignment to control. If a calibration error greater than specification is observed within the mission, the roll, pitch and scanner scale corrections that need to be applied are calculated. The missions with the new calibration values are regenerated and validated internally once again to ensure quality.

Data collected by the lidar unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

On a project level, a supplementary coverage check is carried out to ensure no data voids unreported by Field Operations are present.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 11 of 97

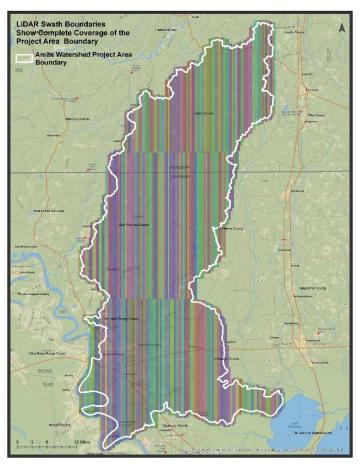


Figure 3 – Lidar swath output showing complete coverage.

BORESIGHT AND RELATIVE ACCURACY

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the lidar unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 12 of 97

For this project the specifications used are as follow:

Relative accuracy <= 6 cm maximum difference within individual swaths and <=8 cm RMSDz between adjacent and overlapping swaths.

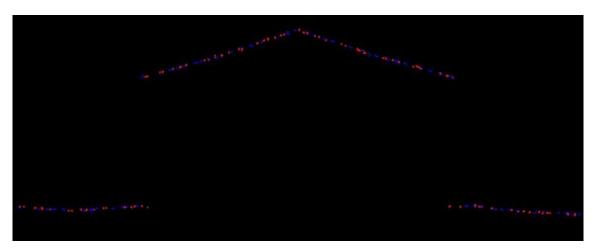


Figure 4 – Profile views showing correct roll and pitch adjustments.

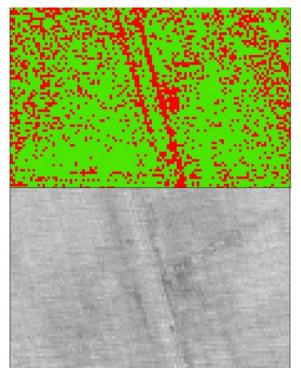


Figure 5. Relative accuracy of swath data over road and pasture. Top view illustrates green points representing elevation offsets between adjacent points that are within 6 cm. Red points represent elevation offsets greater than 6 cm. Bottom view shows lidar intensity image of the road.

A different set of QC blocks are generated for final review after all transformations have been applied.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 13 of 97

PRELIMINARY VERTICAL ACCURACY ASSESSMENT

A preliminary $RMSE_z$ error check is performed by Precision Aerial Reconnaissance (PAR) at this stage of the project life cycle in the raw lidar dataset against GPS static and kinematic data and compared to $RMSE_z$ project specifications. The lidar data is examined in non-vegetated, flat areas away from breaks. Lidar ground points for each flight line generated by an automatic classification routine are used.

Prior to delivery to Dewberry, the elevation data was verified internally to ensure it met Non-vegetated Vertical Accuracy (NVA) requirements ($RMSE_z \le 10 \text{ cm}$ and $Accuracy_z$ at the 95% confidence level $\le 19.6 \text{ cm}$) when compared to static and kinematic GPS checkpoints. Below is a summary for the test:

The calibrated LA DOTD Amite Watershed Lidar Project dataset was tested to 0.072 m vertical accuracy at 95% confidence level based on RMSE_z (0.0367 m x 1.9600) when compared to 70 GPS static check points.

The following are the final statistics for the GPS static checkpoints used by Precision Aerial Reconnaissance (PAR) to internally verify vertical accuracy.

Number	NAD83(2011) UTM 15		NAVD88 (Geoid 12B)	Laser Z (m)	Delta Z	
	Easting X (m)	Northing Y (m)	Known Z (m)	Laser Z (III)	Della L	
8CCP1	3355852.011	623628.131	20.302	20.276	-0.03	
8CCP3	3351193.969	652003.476	11.929	11.934	0.005	
8CCP4	3372158.637	660119.613	12.093	12.136	0.043	
8CCP5	3452376.568	650242.041	9.941	9.798	-0.14	
8CCP8	3353160.934	678851.847	34.97	34.822	-0.15	
8CCP8	3353160.934	678851.847	34.97	34.852	-0.12	
8CCP10	3404810.104	672855.934	21.499	21.601	0.101	
8CCP11	3430687.199	678190.943	12.241	12.233	-0.01	
8CCP12	3454810.406	678418.344	18.284	18.218	-0.07	
8CCP14	3350717.306	705322.146	50.121	49.997	-0.12	
8CCP15	3378150.653	704636.835	63.205	63.181	-0.02	
8CCP16	3404266.999	705675.266	36.709	36.601	-0.11	
8CCP17	3430144.761	704424.594	24.514	24.597	0.083	
8CCP18	3454813.329	703805.646	26.119	26.008	-0.11	
8CCP19	3351406.397	732359.547	58.409	58.369	-0.04	
8CCP20	3378741.373	731243.607	49.029	49.169	0.14	
8CCP21	3404655.213	731723.041	51.946	52.157	0.211	
8CCP22	3429642.481	730999.177	51.585	51.555	-0.03	
8CCP23	3456753.876	729910.709	37.854	37.619	-0.23	
8CCP24	3348397.508	756232.308	66.844	67.096	0.252	
8CCP25	3377273.101	757516.382	70.22	70.1845	-0.04	
8CCP26	3404075.714	757489.861	69.518	69.514	0	
8CCP28	3459410.994	757460.726	65.446	65.456	0.01	
8CCP29	3350700.759	783676.714	93.245	93.385	0.14	

Dewberry

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 14 of 97

8CCP30	3377323.44	784015.792	103.31	103.296	-0.01
8CCP31	3405693.957	785029.168	89.918	89.702	-0.22
8CCP32	3428478.167	778480.961	98.353	98.338	-0.02
8CCP33	3329638.308	809943.774	126.637	126.467	-0.17
8CCP34	3347501.04	810289.92	133.511	133.418	-0.09
8CCP35	3374763.088	810937.515	140.105	140.174	0.069
8CCP35	3374763.088	810937.515	140.105	140.198	0.093
8CCP37	3430690.762	811133.381	120.328	120.317	-0.01
8CCP38	3348047.678	835657.813	160.03	159.8745	-0.16
8CCP39	3383150.094	836054.955	211.07	211.205	0.135
8CCP40	3413414.364	837405.916	202.241	202.085	-0.16
8CCP41	3429005.713	834415.198	155.669	155.684	0.015
8CCP42	3460123.556	835191.89	251.434	251.566	0.132
8CCP43	3350147.047	861306.788	248.944	248.8085	-0.14
8CCP44	3378285.158	860426.694	186.07	185.9685	-0.1
8CCP45	3403379.622	864545.447	252.89	252.831	-0.06
8CCP46	3427527.133	868940.251	180.873	180.8675	-0.01
8CCP47	3457773.423	863683.774	295.971	296.111	0.14
8CCP48	3352325.205	890819.56	315.594	315.605	0.011
8CCP49	3378976.131	885471.865	302.123	301.986	-0.14
8CCP50	3401262.598	888629.294	306.549	306.469	-0.08
8CCP51	3429760.026	889765.174	191.191	191.065	-0.13
8CCP52	3459046.511	888261.394	254.206	254.307	0.101
8CCP53	3352999.639	916889.01	336.03	335.962	-0.07
8CCP53	3352999.639	916889.01	336.03	335.978	-0.05
8CCP54	3375452.158	905428.502	325.039	325.108	0.069
8CCP56	3433783.034	918498.308	217.917	218.019	0.102
8CCP57	3456391.985	914921.747	342.53	342.698	0.168
8CCP58	3379881.368	944615.71	377.933	378.104	0.171
8CCP59	3403144.762	941059.761	331.368	331.454	0.086
8CCP59	3403144.762	941059.761	331.368	331.465	0.096
8CCP60	3428659.224	941956.699	263.018	263.2345	0.217
8CCP61	3449320.308	943565.358	359.557	359.595	0.038
8CCP62	3377113.763	969712.852	391.388	391.543	0.155
8CCP63	3406683.689	968201.299	385.053	385.261	0.208
8CCP64	3431378.255	969746.961	310.689	310.871	0.182
8CCP65	3456403.629	969607.207	385.082	385.233	0.151
8CCP66	3483965.366	970993.456	354.813	354.854	0.041
8CCP67	3513042.45	967784.739	431.188	431.2005	0.012
8CCP69	3455608.496	996652.348	426.02	426.167	0.147
8CCP70	3483025.61	994141.605	377.484	377.491	0.007
8CCP71	3510731.197	994140.593	438.005	437.886	-0.12
8CCP72 8CCP73	3457061.622 3480796.511	1021903.137	433.074 462.326	433.2925 462.2865	0.219
8CCP/3 8CCP74	3508219.946	1021332.079 1021126.329			-0.04
8CCP76	3509233.785	1047188.283	417.7 423.967	417.646 424.084	-0.05 0.117
	3009233./05	104/100.203	423.90/	424.004	0.11/

Table 3 - Static GPS Points

100 % of Totals	# of Points	RMSEz (m) NVA Spec=0.1 m	NVA at 95% Spec=0.196 m	Mean (m)	Std Dev (m)	Min (m)	Max (m)
Non- Vegetated Terrain	70	0.367	0.072	0.004	0.036	-0.072	0.077

Table 4 - Static GPS Vertical Accuracy Results

Overall the calibrated lidar data products collected by Precision Aerial Reconnaissance (PAR) meet or exceed the requirements set out in the Statement of Work. The quality control requirements of Precision Aerial Reconnaissance (PAR) quality management program were adhered to throughout the acquisition stage for this project to ensure product quality.

Lidar Processing & Qualitative Assessment

INITIAL PROCESSING

Once Dewberry receives the calibrated swath data from the acquisition provider, Dewberry performs several validations on the dataset prior to starting full-scale production on the project. These validations include vertical accuracy of the swath data, inter-swath (between swath) relative accuracy validation, intra-swath (within a single swath) relative accuracy validation, verification of horizontal alignment between swaths, and confirmation of point density and spatial distribution. This initial assessment allows Dewberry to determine if the data are suitable for full-scale production. Addressing issues at this stage allows the data to be corrected while imposing the least disruption possible on the overall production workflow and overall schedule.

Final Swath Vertical Accuracy Assessment

Once Dewberry received the calibrated swath data from Precision Aerial Reconnaissance (PAR), Dewberry tested the vertical accuracy of the non-vegetated terrain swath data prior to additional processing. Dewberry tested the vertical accuracy of the swath data using the fifty-five nonvegetated (open terrain and urban) independent survey check points. The vertical accuracy is tested by comparing survey checkpoints in non-vegetated terrain to a triangulated irregular network (TIN) that is created from the raw swath points. Only checkpoints in non-vegetated terrain can be tested against raw swath data because the data has not undergone classification techniques to remove vegetation, buildings, and other artifacts from the ground surface. Checkpoints are always compared to interpolated surfaces from the lidar point cloud because it is unlikely that a survey checkpoint will be located at the location of a discrete lidar point. Dewberry typically uses LP360 software to test the swath lidar vertical accuracy, Terrascan software to test the classified lidar vertical accuracy, and Esri ArcMap to test the DEM vertical accuracy so that three different software programs are used to validate the vertical accuracy for each project. Project specifications require a NVA of 19.6 cm based on the $RMSE_z$ (10 cm) x 1.96. The dataset for the LA DOTD Amite Watershed Lidar Project satisfies this criteria. This raw lidar swath data set was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSE_z Vertical Accuracy Class. Actual NVA accuracy was found to be $RMSE_z = 3.6$ cm, equating to +/-7 cm at 95% confidence level. The table below shows all calculated statistics for the raw swath data.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 16 of 97

100 % of Totals	# of Points	RMSE _z NVA Spec=0.10 m	NVA –Non- vegetated Vertical Accuracy (RMSE _z x 1.9600) Spec=0.196 m	Mean (m)	Median (m)	Skew	Std Dev (m)	Min (m)	Max (m)	Kurtosis
Non- Vegetated Terrain	71	0.036	0.070	-0.003	-0.005	-0.189	0.036	-0.100	0.074	-0.331

Table 5: NVA at 95% Confidence Level for Raw Swaths

Three checkpoints (NVA56, ENVA9, and ENVA14) were removed from the raw swath vertical accuracy testing due to their location outside the project boundary. Only non-vegetated terrain checkpoints are used to test the raw swath data because the raw swath data has not been classified to remove vegetation, structures, and other above ground features from the ground classification. Table 4, below, provides the coordinates for these. Figure 4, below, shows a project map and the location of the checkpoints outside the project boundary.

Point ID	NAD83(20	NAD83(2011) UTM 15		Lidar Z	Delta Z	AbsDeltaZ
	Easting X (ft)	Northing Y (ft)	Survey Z (ft)	(ft)		ADSDCITAL
NVA56	3400946.520	624330.980	14.150	outside		
ENVA9	707943.048	3393466.063	33.670	outside		
ENVA14	696593.871	3352074.451	6.429	outside		

Table 6: Checkpoints removed from raw swath vertical accuracy testing.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 17 of 97

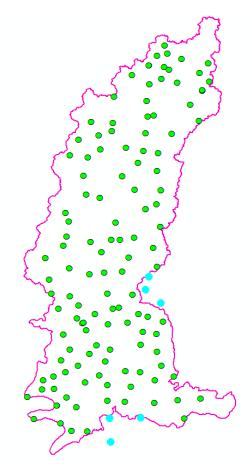


Figure 6 – Checkpoints NVA56, ENVA9, and ENVA14 (along with 3 VVA excluded points), shown here highlighted in blue, are located outside the project boundary. These points were removed from raw swath vertical accuracy testing.

Inter-Swath (Between Swath) Relative Accuracy

Dewberry verified inter-swath or between swath relative accuracy of the dataset by creating Delta-Z (DZ) orthos. According to the SOW, USGS Lidar Base Specifications v1.2, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet inter-swath relative accuracy of 8 cm RMSDz or less with maximum differences less than 16 cm. These measurements are to be taken in non-vegetated and flat open terrain using single or only returns from all classes. Measurements are calculated in the DZ orthos on 1-meter pixels or cell sizes. Areas in the dataset where overlapping flight lines are within 8 cm of each other within each pixel are colored green, areas in the dataset where overlapping flight lines have elevation differences in each pixel between 8 cm to 16 cm are colored yellow, and areas in the dataset where overlapping flight lines have elevation differences in each pixel greater than 16 cm are colored red. Pixels that do not contain points from overlapping flight lines are colored according to their intensity values. Areas of vegetation and steep slopes (slopes with 16 cm or more of valid elevation change across 1 linear meter) are expected to appear yellow or red in the DZ orthos. If the project area is heavily vegetated, Dewberry may also create DZ Orthos from the initial ground classification only, while keeping all other parameters consistent. This allows Dewberry to review the ground classification relative accuracy beneath vegetation and to ensure flight line ridges or other issues do not exist in the final classified data.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 18 of 97

Flat, open areas are expected to be green in the DZ orthos. Large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data, especially when these yellow/red sections follow the flight lines and not the terrain or areas of vegetation. The DZ orthos for LA DOTD Amite Watershed Lidar Project are shown in the figure below; this project meets inter-swath relative accuracy specifications.

Figure 7– Single return DZ Orthos for the LA DOTD Amite Watershed Lidar Project. Inter-swath relative accuracy passes specifications. Due to the very dense vegetation in this project, many areas of the DZ Orthos show failing in red, however this data passes inter-swath accuracy in the flat open areas.

Intra-Swath (Within a Single Swath) Relative Accuracy

Dewberry verifies the intra-swath or within swath relative accuracy by using ArcMap and visual reviews. ArcMap is used to calculate the maximum difference of all points within each 1-meter pixel/cell size of each swath. Dewberry analysts then identify planar surfaces acceptable for

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 19 of 97

repeatability testing and analysts review the QTM results in those areas. According to the SOW, USGS Lidar Base Specifications v1.2, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet intra-swath relative accuracy of 6 cm maximum difference or less. The image below shows an example of the intra-swath relative accuracy of LA DOTD Amite Watershed Lidar Project; this project meets intra-swath relative accuracy specifications.

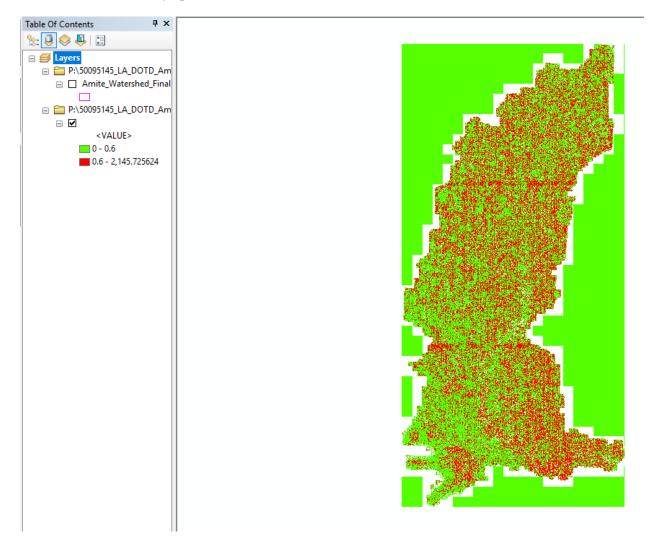


Figure 8–Intra-swath relative accuracy. The image shows the full project area; areas where the maximum difference is ≤6 cm per pixel within each swath are colored green and areas exceeding 6 cm are colored red. Again, areas shown in red are heavily vegetated and the open flat areas are acceptable. Intra-swath relative accuracy passes specifications.

Horizontal Alignment

To ensure horizontal alignment between adjacent or overlapping flight lines, Dewberry uses QTM scripting and visual reviews. QTM scripting is used to create files similar to DZ orthos for each swath but this process highlights planar surfaces, such as roof tops. In particular, horizontal shifts or misalignments between swaths on roof tops and other elevated planar surfaces are highlighted. Visual reviews of these features, including additional profile verifications, are used to confirm the results of this process. The image below shows an example

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 20 of 97

of the horizontal alignment between swaths for LA DOTD Amite Watershed Lidar Project; no horizontal alignment issues were identified.

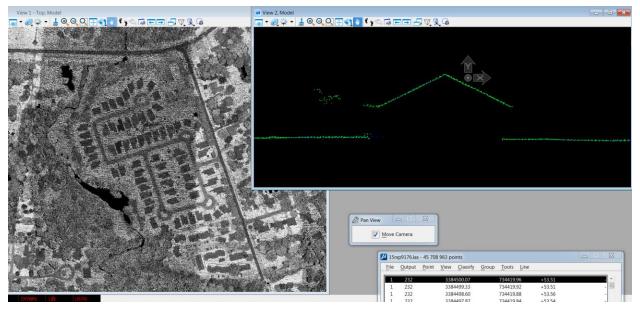


Figure 9– Horizontal Alignment. Two separate flight lines differentiated by color (Green/Blue) are shown in this profile. There is no visible offset between these two flight lines. No horizontal alignment issues were identified.

Point Density and Spatial Distribution

The required Aggregate Nominal Point Spacing (ANPS) for this project is no greater than 0.35 meters, which equates to an Aggregate Nominal Point Density (ANPD) of 9 points per square meter or greater. Density calculations were performed using first return data only located in the geometrically usable center portion (typically ~90%) of each swath. By utilizing statistics, the project area was determined to have an ANPS of 0.4 meters or an ANPD of 10.41 points per square meter which satisfies the project requirements. A visual review of a 1-square meter density grid (figure below) shows that there are some 1-meter cells that do not contain 9 points per square meter (red areas) due to large areas of water. Most 1-square meter cells contain at least 9 points per square meter (green areas) and when density is viewed/analyzed by representative 1-square kilometer areas (to account for the irregular spacing of lidar point clouds), density passes with no issues.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 21 of 97

Figure 10–Most 1-sqaure meter cells contain at least 9 points per square meter (green areas) showing there are no systematic density issues. However there were a few swaths that did not contain at least 9 points per square meter. At closer inspection it was determined that these areas were due to large areas of open water. When density is viewed/analyzed by representative 1-square kilometer areas, density passes with no issues.

The spatial distribution of points must be uniform and free of clustering. This specification is tested by creating a grid with cell sizes equal to the design NPS*2. ArcGIS tools are then used to calculate the number of first return points of each swath within each grid cell. At least 90% of the cells must contain 1 lidar point, excluding acceptable void areas such as water or low NIR reflectivity features, i.e. some asphalt and roof composition materials. This project passes spatial distribution requirements, as shown in the image below.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 22 of 97



Figure 11– Spatial Distribution. All cells (2*NPS cellsize) containing at least one lidar point are colored green. Cells that do not contain a lidar point, including water bodies which are acceptable NoData area, are colored red. Without removing acceptable NoData areas due to water, 97.48% of cells contain at least one lidar point.

DATA CLASSIFICATION AND EDITING

Once the calibration, absolute swath vertical accuracy, and relative accuracy of the data was confirmed, Dewberry utilized a variety of software suites for data processing. The data was processed using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classifies any obvious low outliers in the dataset to class 7 and high outliers in the dataset to class 18. Points along flight line edges that are geometrically unusable are identified as withheld and classified to a separate class so that they will not be used in the initial ground algorithm. After points that could negatively affect the ground are removed from class 1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model.

This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window"

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 23 of 97

with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model.

Each tile was then imported into Terrascan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing conducted by Dewberry. Dewberry analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. Bridge decks are classified to class 17 using bridge breaklines compiled by Dewberry. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled by Dewberry to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. During this water classification routine, points that are within 1x NPS or less of the hydrographic features are moved to class 10, an ignored ground due to breakline proximity. Overage points are then identified in Terrascan and GeoCue is used to set the overlap bit for the overage points and the withheld bit is set on the withheld points previously identified in Terrascan before the ground classification routine was performed.

The lidar tiles were classified to the following classification schema:

- Class 1 = Unclassified, used for all other features that do not fit into the Classes 2, 7, 9, 10, 17, or 18, including vegetation, buildings, etc.
- Class 2 = Bare-Earth Ground
- Class 7 = Low Noise
- Class 8 = Model Key Points
- Class 9 = Water, points located within collected breaklines
- Class 10 = Ignored Ground due to breakline proximity
- Class 17 = Bridge Decks
- Class 18 = High Noise

After manual classification, the LAS tiles were peer reviewed and then underwent a final QA/QC. After the final QA/QC and corrections, all headers, appropriate point data records, and variable length records, including spatial reference information, are updated in GeoCue software and then verified using proprietary Dewberry tools.

Lidar Qualitative Assessment

Dewberry's qualitative assessment utilizes a combination of statistical analysis and interpretative methodology or visualization to assess the quality of the data for a bare-earth digital terrain model (DTM). This includes creating pseudo image products such as lidar orthos produced from the

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 24 of 97

intensity returns, Triangular Irregular Network (TIN)'s, Digital Elevation Models (DEM) and 3dimensional models as well as reviewing the actual point cloud data. This process looks for anomalies in the data, areas where man-made structures or vegetation points may not have been classified properly to produce a bare-earth model, and other classification errors. This report will present representative examples where the lidar and post processing had issues as well as examples of where the lidar performed well.

VISUAL REVIEW

The following sections describe common types of issues identified in lidar data and the results of the visual review for LA DOTD Amite Watershed Lidar Project.

Data Voids

The Amite dataset has a void 274,427.58 square meters (0.1 sq miles) in size, located in tiles 15RXP7252 and 15RXP7254. This void is occurring at the edge of two flight lines, shown in the image below. Based on the geometry of the artifact, this can only be explained as range based artifact. Since the system flown was a Leica ALS, this system is susceptible to a limited range gate in the multiple pulses in air operation.

When multiple pulses are in the air, the unambiguous ranges are limited to a range window, depending on the flight parameters this window may be as narrow as a few hundred meters from min to max range. In the case that the aircraft flies too high or changes in topography increase there can be the chance that the collection of points is cut out due to the range being outside the min/max range of the range gate. Additional consideration must be made for the fact that the range changes across track from nadir to the swath edge, depending on flying height and field of view, this variation can also be considerable.

In this example, the data was just at the edge of the range gate threshold, which is why the very edge of the flight line is cut out. At the edge points that are closer to the aircraft (higher) are recorded while points farther in range (lower and at a higher scan angle) are missing.

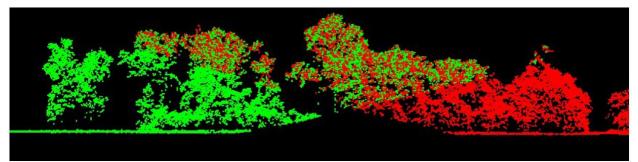


Figure 12-Profile of point cloud colored by flight line where red and green each represent different flight lines. Data are missing in the center where they are out of the min/max range of the range gate.

In plan view a void is visible along this edge which opens up wider towards the flight line ends.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 25 of 97

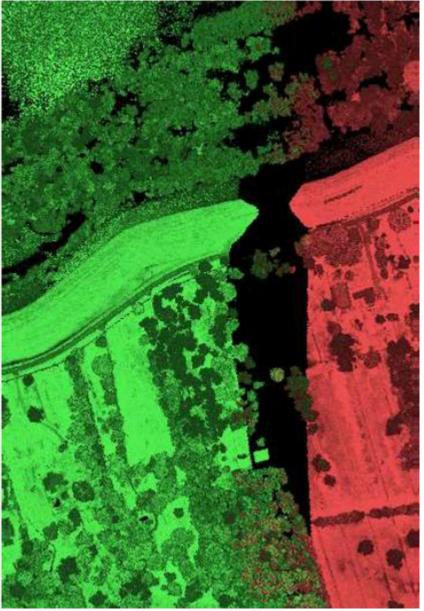


Figure 13-Plan view of lidar point cloud colored by flight line (green, red). A void (black area) is visible between these two flight lines.

It is also noticeable that the levee running east-west has slightly more data recorded than the surrounding area. This correlates with the range theory as this data is slightly lower in range than the surrounding area.

This artifact can also be observed in other flight lines as a dropout of ground points at the edge of flight lines, shown in the image below. The very edge extent of the magenta flight line is not fully reaching the ground level. Based on the geometry of this edge, this again is very likely the same range gate based artifact. In these cases however there is enough overlap between flight lines without range issues that the artifact is not of concern and does not cause data voids or gaps in coverage.

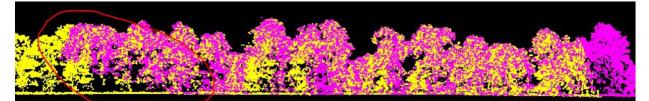


Figure 14-Profile of point cloud colored by flight line where yellow and magenta each represent different flight lines. Data are missing at ground level along the western edge of the magenta flight line where they are out of the min/max range of the range gate. However, overlap from adjacent flight lines fill this area and prevents a void from occurring.

The full dataset was reviewed for the existence of additional voids and no other voids were identified. As the only solution to fill this data would be a re-flight, the data was processed as-is with this small void. This void is identified by a shapefile in the final deliverables and a statement identifying this void is also provided in the metadata.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 27 of 97

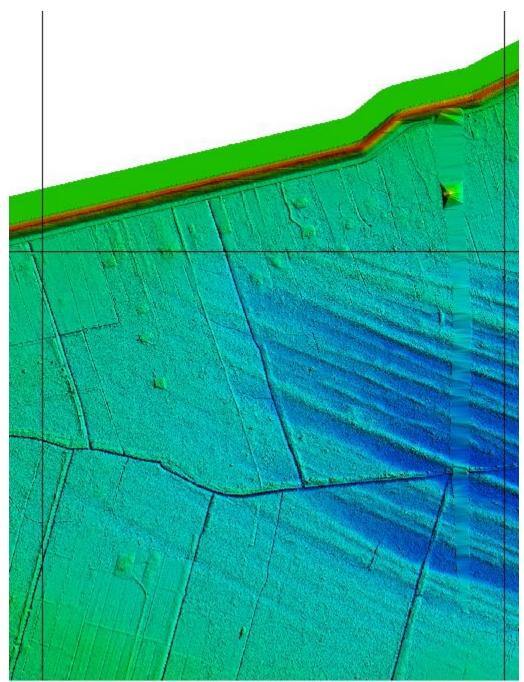


Figure 15- Tiles 15RXP7252 and 15RXP7254 show where the above void area appears in the DEM.

Artifacts

Artifacts are caused by the misclassification of ground points and usually represent vegetation and/or man-made structures. The artifacts identified are usually low lying structures, such as porches or low vegetation used as landscaping in neighborhoods and other developed areas. These low lying features are extremely difficult for the automated algorithms to detect as non-

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 28 of 97

ground and must be removed manually. The vast majority of these features have been removed but a small number of these features are still in the ground classification. The limited numbers of features remaining in the ground are usually 0.3 meters or less above the actual ground surface, and should not negatively impact the usability of the dataset.

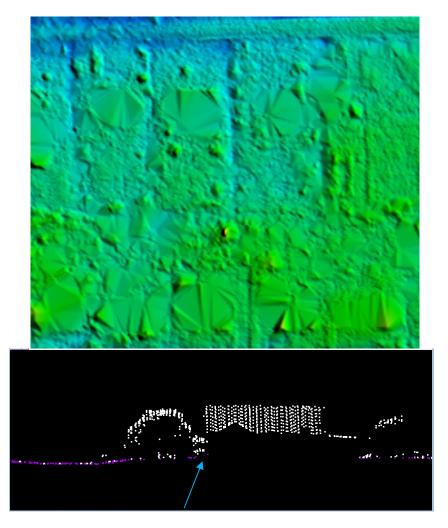


Figure 16 – Tile number 15RXP8469. Profile with points colored by class (class 1=white, class 2=purple) is shown in the bottom view and a TIN of the surface is shown in the top view. The arrow identifies low vegetation points. A limited number of these small features are still classified as ground but do not impact the usability of the dataset.

Bridge Removal Artifacts

The DEM surface models are created from TINs or Terrains. TIN and Terrain models create continuous surfaces from the inputs. Because a continuous surface is being created, the TIN or Terrain will use interpolation to continue the surface beneath the bridge where no lidar data was

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 29 of 97

acquired. Locations where bridges were removed will generally contain less detail in the bareearth surface because these areas are interpolated.

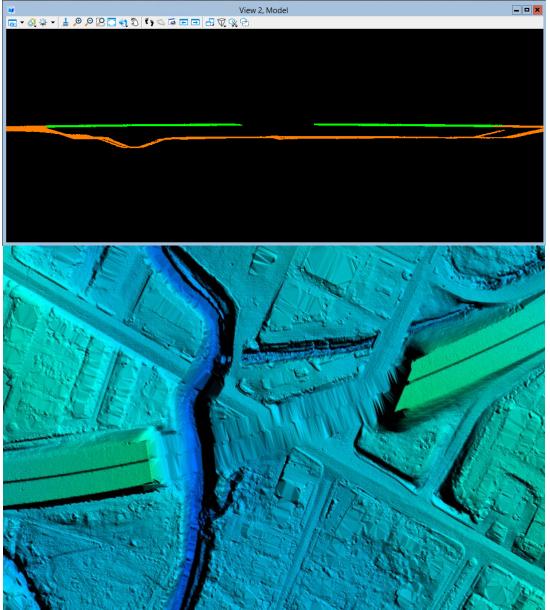


Figure 17 – Tile number 15RXP8266. The DEM in the bottom view shows an area where a bridge has been removed from ground. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This results in less detail where the surface must be interpolated. The profile in the top view shows the lidar points of this particular feature colored by class. All bridge points have been removed from ground (brown) and have been moved to class 17 bridge deck (green).

Culverts and Bridges

Bridges have been removed from the bare earth surface while culverts remain in the bare earth surface. In instances where it is difficult to determine if the feature is a culvert or bridge, such as with some small bridges, Dewberry erred on assuming they would be

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 30 of 97

culverts especially if they are on secondary or tertiary roads. Below is an example of a culvert that has been left in the ground surface.

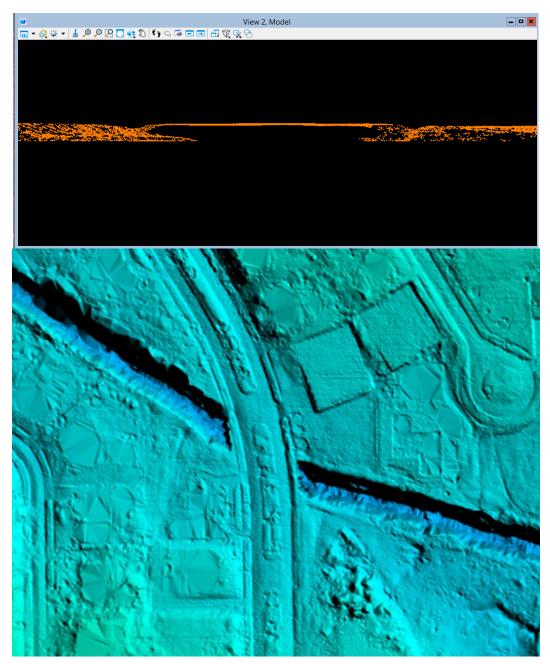
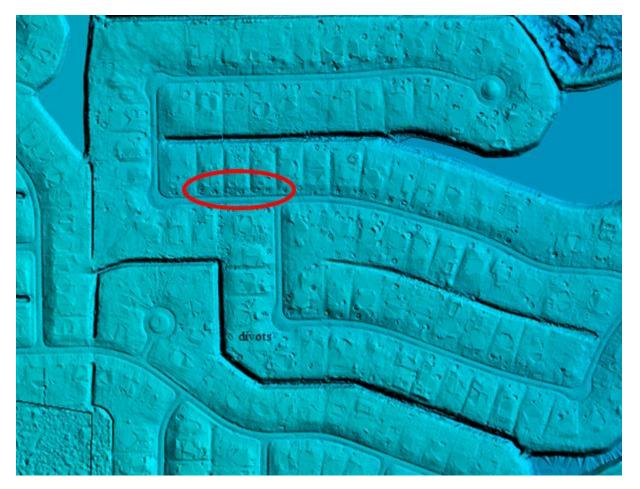


Figure 18– Tile number 15RXP8267. The DEM in the bottom view shows an area where a culvert has been left in the bare earth surface. The top view shows a profile with culvert area left as ground points colored in brown. Bridges have been removed from the bare earth surface and classified to class 17.


Divots

Divots caused by sensor issues beneath single standing trees were found throughout this data. A series of macros were run to help remove these divots along with manual fixes, however some of

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 31 of 97

these divots still remain in areas where no lidar points were available to accurately model the ground beneath the tree.

Dewberry

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 32 of 97

Dewberry

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 33 of 97

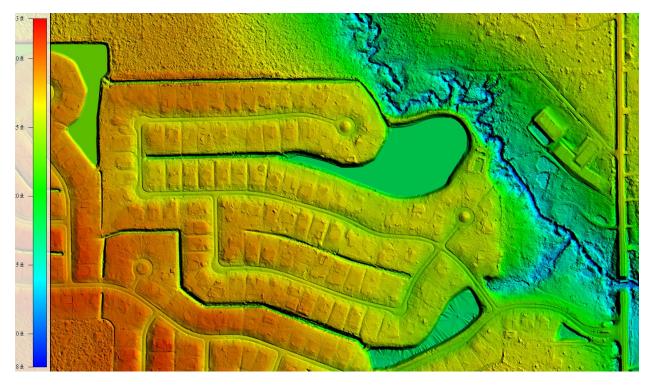


Figure 19– Tile number 15RYP0564. The DEM in the top view shows an area with divots left in the bare earth surface. In the intensity and color imagery, single trees can easily be seen in the area above where the divots appear. The DEM in the bottom view shows the same subdivision where the majority of these divots were able to be removed with during the editing process.

Elevation Change Within Breaklines

While water bodies are flattened in the final DEMs, other features such as linear hydrographic features can have significant changes in elevation within a small distance. In linear hydrographic features, this is often due to the presence of a structure that affects flow such as a dam or spillway. Dewberry has reviewed the DEMs to ensure that changes in elevation are shown from bank to bank. These changes are often shown as steps to reduce the presence of artifacts while ensuring consistent downhill flow. An example is shown below.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 34 of 97

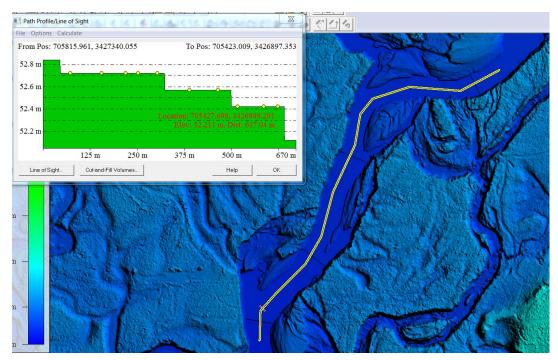


Figure 20 – Tile number 15RYQ0526. Elevation change has been stair stepped. The steps are flat from bank to bank and flow consistently downhill.

Marsh Areas

It is sometimes difficult to determine true ground in low wet areas; the lowest points available are used to represent ground. Marsh areas are present within the project area and were not collected with breaklines as they are not open bodies of water. As these areas are not included in the collected breaklines, marsh areas were not flattened in the final DEMs. While low points are used to determine ground in marsh areas, there is often greater variation within the low points due to wet soils that cause greater interpolation between points, and undulating or uneven ground. An example is shown below.

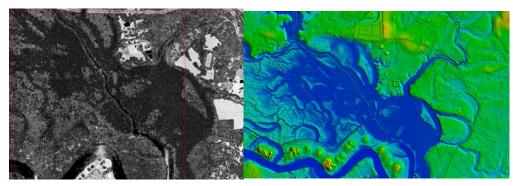


Figure 21 - Tiles 15RYP0558 and 15RYP0658. The intensity on the left shows a marsh area that was not included in the collected breaklines. The same area is shown in the DEM on the right. Due to wet soils and broken terrain, the point density in marsh areas is sparser than surrounding areas and there is more variation in the low points representing ground.

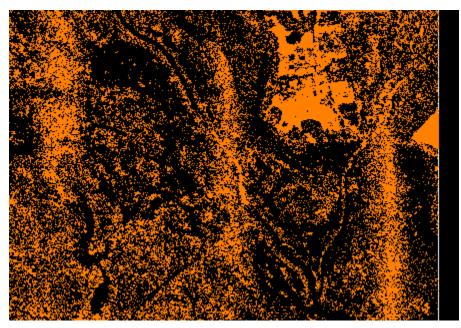
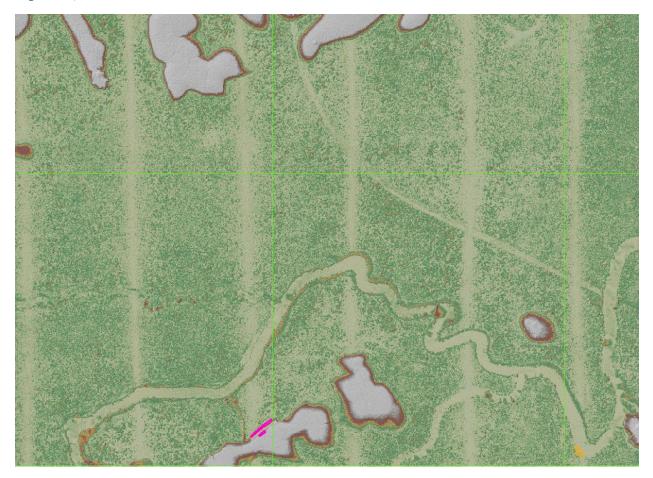


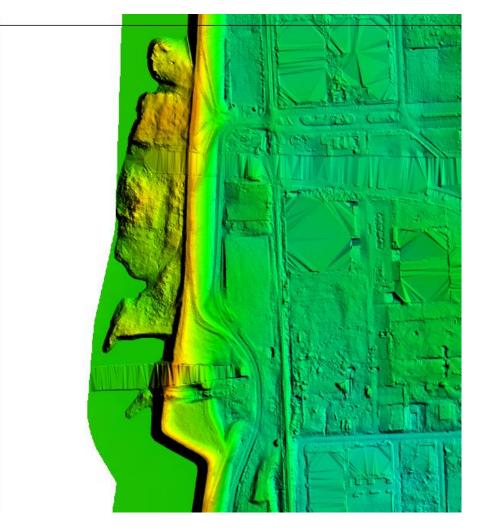
Figure 22 - Tile 15RYP0558. The same marsh area shown in the figure above is shown in this image with the points colored by class 2= brown. Though ground points are sparse they are present, indicating that the area is wet but should not be classified as water (class 9). Doing so would strip the detail from this area and result in incorrectly flattening ground as part of the hydro mask.

NIR Depressions

Marsh areas within the project contain north-south strips of minimally "depressed" NIR data at nadir. The cause of these artifacts is due to high reflectivity in extremely shallow waters, or high absorption of the NIR wavelength in saturated soils. These depressions are a characteristic of the NIR wavelength and do not negatively impact the overall usability of the data. An example is shown below.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 36 of 97

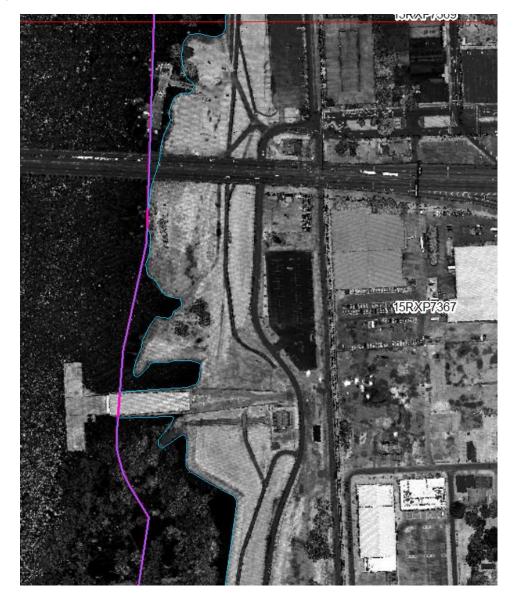
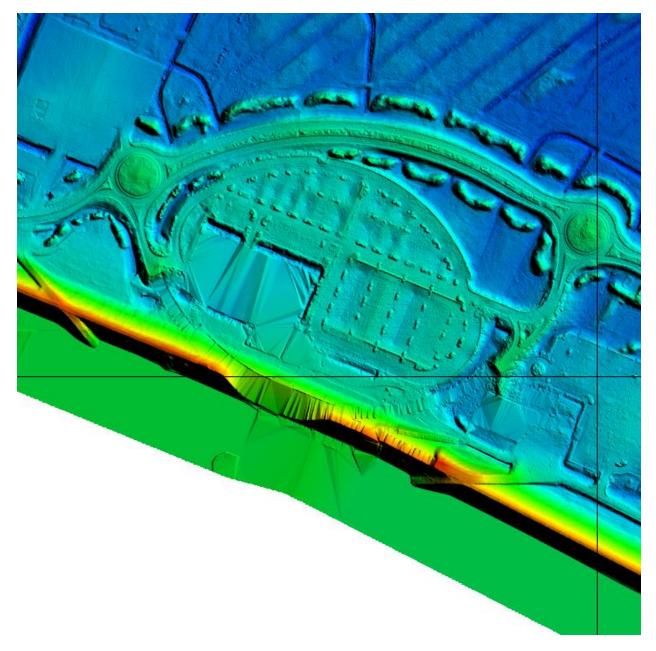


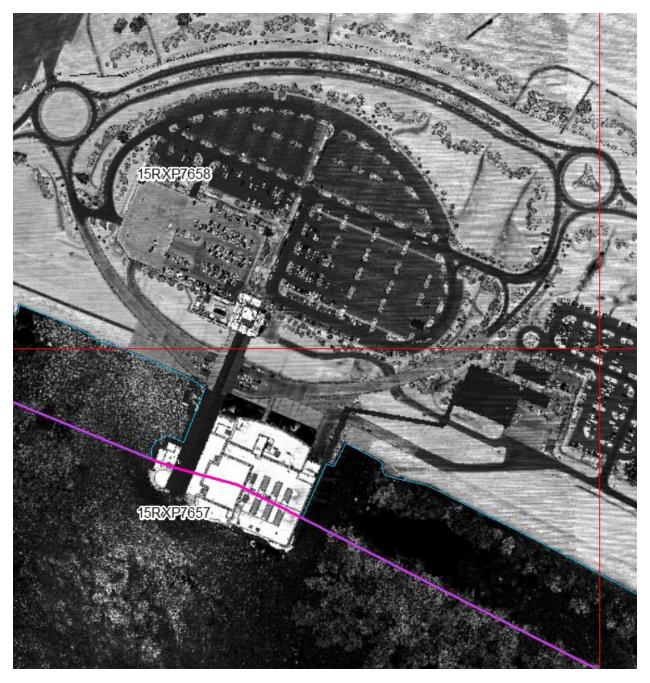

Figure 23 - Tile numbers 15RYP2052, 15RYP1852, 15RYP1854, and 15RYP1854. The DEM shows strips of minimally depressed NIR data, following a north-south direction. These strips are a characteristic of the NIR wavelength in saturated soils in marshy areas, and do not negatively impact the overall usability of the data.

High Water

At the time of lidar acquisition, the water level of the Mississippi River was extremely high and exceeded normal water levels. As a result, there are many buildings, structures, and roads along the shoreline which were flooded. Because these features would not normally be hydro-flattened, Dewberry collected the river around these features, where they could be discerned, so they would not be hydro-flattened in these bare earth DEMs either. The exclusion of the flooded features from the breaklines does cause several of these areas to look like artifacts in the water. However, comparing these locations to the intensity imagery will show they are a result of not having ground points on these flooded features but that these areas should not be hydro-flattened as they are not normally part of the riverine system.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 37 of 97


Figure 24 - Tile number 15RXP7367. The DEM image on top shows what looks to be artifacts in the water, however in the intensity image and basemap imagery on the bottom, a pier can easily be seen above the water (shown in blue, with the project buffered boundary shown in pink). Given that the water elevation was so high at the time of acquisition, the water is nearly covering the pier. Since the water is abnormally high here, the decision was made to leave the remaining ground points in the data, making it appear as if there are artifacts in the water.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 40 of 97

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 41 of 97

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 42 of 97

Figure 25 - Tile numbers 15RXP7657 and 15RXP7658. The DEM image on top shows what looks to be artifacts in the water and also missing ground, however in the intensity image and basemap imagery on the bottom, a structure, along with both a beach area and grassy vegetated area, can easily be seen here. Given that the water elevation was so high at the time of acquisition, the water would be covering the structure and also the surrounding area. Since the water is abnormally high here, the river (shown in blue, with the pink being the project boundary) was drawn around the structure, and

the decision was made to leave the remaining ground points in the data, making it appear as artifacts in the water.

Dewberry

FORMATTING

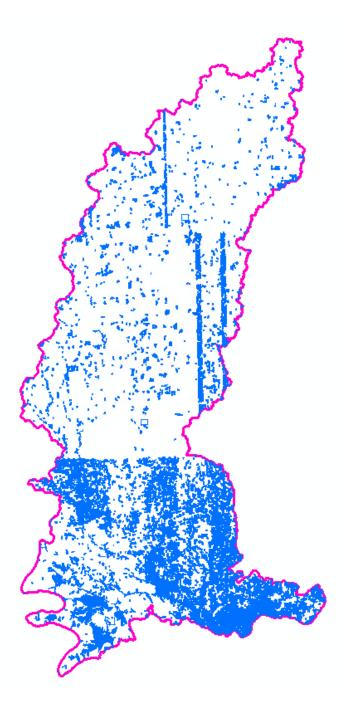
LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 43 of 97

After the final QA/QC is performed and all corrections have been applied to the dataset, all lidar files are updated to the final format requirements and the final formatting, header information, point data records, and variable length records are verified using Dewberry proprietary tools. The table below lists some of the main lidar header fields that are updated and verified.

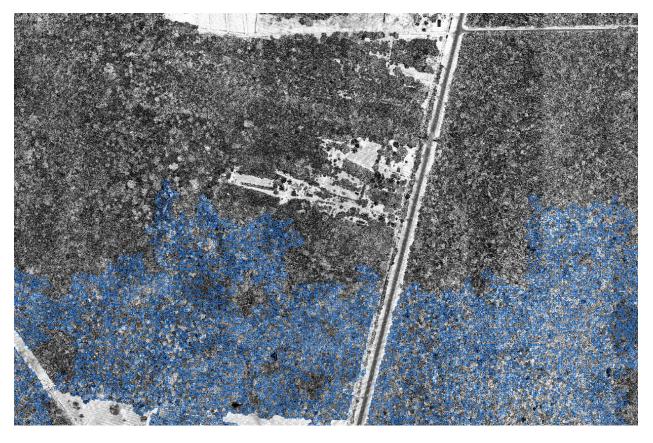
	Classified Lidar Formatting	
Parameter	Requirement	Pass/Fail
LAS Version	1.4	Pass
Point Data Format	Format 6	Pass
Coordinate Reference System	NAD83 (2011) UTM Zone 15, meters and NAVD88 (Geoid 12B), meters in WKT Format	Pass
Global Encoder Bit	Should be set to 17 for Adjusted GPS Time	Pass
Time Stamp	Adjusted GPS Time (unique timestamps)	Pass
System ID	Should be set to the processing system/software and is set to NIIRS10 for GeoCue software	Pass
Multiple Returns	The sensor shall be able to collect multiple returns per pulse and the return numbers are recorded	Pass
Intensity	16 bit intensity values are recorded for each pulse	Pass
Classification	Required Classes include: Class 1: Unclassified Class 2: Ground Class 7: Low Noise Class 8: Model Key Points Class 9: Water Class 10: Ignored Ground Class 17: Bridge Decks Class 18: High Noise	Pass
Overlap and Withheld Points	Overlap (Overage) and Withheld points are set to the Overlap and Withheld bits	Pass
Scan Angle	Recorded for each pulse	Pass
XYZ Coordinates	Unique Easting, Northing, and Elevation coordinates are recorded for each pulse	Pass

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 44 of 97

Derivative Lidar Products


USGS required several derivative lidar products to be created. Each type of derived product is described below.

LOW CONFIDENCE POLYGONS


Low confidence polygons have been delivered with this dataset. These polygons represent areas where heavy vegetation greatly diminishes penetration of the lidar pulse, resulting in a bare earth surface that is potentially less accurate due to the lack of lidar returns from the ground beneath the vegetation. Low confidence polygons delineate areas where conformance to VVA standards may not be met. The low confidence polygons created for this dataset were delineated according to the criteria and assumptions outlined in the ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014). Low confidence areas are identified using a ground density raster. All areas with a Nominal Ground Point Density less than a specified threshold are identified as low confidence cells in the ground density raster. The low confidence cells are exported to polygons and aggregated into larger shapes. Areas of expected low density in the ground, such as water or where buildings/structures have been removed, are deleted from the aggregated low confidence polygons. The size of all polygons are then calculated and polygons below the minimum size threshold are removed from the final low confidence polygon dataset.

When reviewing the low confidence polygons for the Amite dataset, there is a noticeable increase in the number and size of low confidence polygons in the southern portion of the dataset and several individual flight lines in the northern portion of the dataset, as shown in the image below. The Amite dataset was acquired March 1, 2018 thru April 12, 2018. The northern portion of the AOI was acquired first (March) whereas the southern portion and the re-flights were acquired later (April). The later flights acquired in April encountered much more vegetation and leaf-on conditions. This increase in foliage resulted in poorer lidar penetration to the ground in the southern areas and re-flights, which is reflected in the low confidence polygons.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 45 of 97

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 46 of 97

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 47 of 97

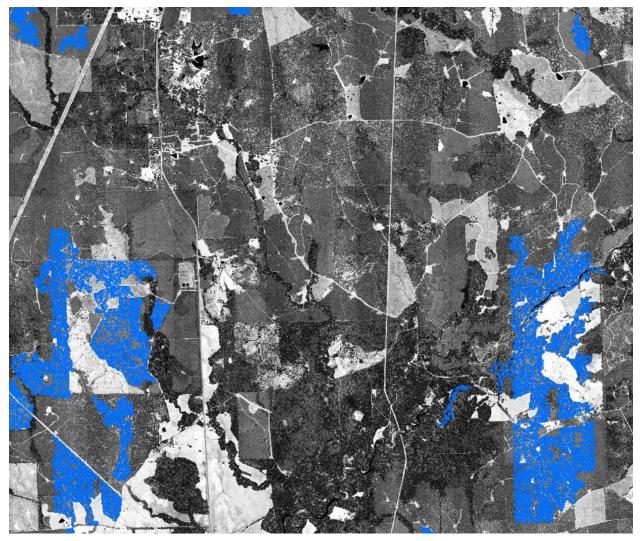


Figure 26 - The image on top shows the full AOI boundary (magenta outline) overlaid with the low confidence polygons (blue outline). More low confidence polygons are present in the southern portion of the dataset and in individual flight lines in the north (re-flights) where acquisition dates were late spring and increased foliage was present. The images on the bottom show a close-up view of the low confidence polygons overlaid on intensity imagery. The major difference in low confidence polygon generation is not due to land cover change or terrain or processing but is due to time of acquisition and increased foliage or leaf-on conditions in portions of the AOI.

Lidar Positional Accuracy

BACKGROUND

Dewberry quantitatively tested the dataset by testing the vertical accuracy of the lidar. The vertical accuracy is tested by comparing the discreet measurement of the survey checkpoints to that of the interpolated value within the three closest lidar points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the lidar data is actually tested. However there is an increased level of confidence with lidar data due to the relative accuracy. This relative accuracy in turn is based on how well one lidar point "fits"

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 48 of 97

in comparison to the next contiguous lidar measurement, and is verified as part of the initial processing. If the relative accuracy of a dataset is within specifications and the dataset passes vertical accuracy requirements at the location of survey checkpoints, the vertical accuracy results can be applied to the whole dataset with high confidence due to the passing relative accuracy. Dewberry typically uses LP360 software to test the swath lidar vertical accuracy, Terrascan software to test the classified lidar vertical accuracy, and Esri ArcMap to test the DEM vertical accuracy for each project.

Dewberry also tests the horizontal accuracy of lidar datasets when checkpoints are photoidentifiable in the intensity imagery. Photo-identifiable checkpoints in intensity imagery typically include checkpoints located at the ends of paint stripes on concrete or asphalt surfaces or checkpoints located at 90 degree corners of different reflectivity, e.g. a sidewalk corner adjoining a grass surface. The XY coordinates of checkpoints, as defined in the intensity imagery, are compared to surveyed XY coordinates for each photo-identifiable checkpoint. These differences are used to compute the tested horizontal accuracy of the lidar. As not all projects contain photoidentifiable checkpoints, the horizontal accuracy of the lidar cannot always be tested.

SURVEY VERTICAL ACCURACY CHECKPOINTS

For the vertical accuracy assessment, one hundred thirty one (131) check points were surveyed for the project and are located within bare earth/open terrain, grass/weeds/crops, and forested/fully grown land cover categories. Please see appendix A to view the survey report which details and validates how the survey was completed for this project.

Checkpoints were evenly distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

1	an checkpoints s	surveyed for verti	cal accuracy testing	g purposes are listed in ti	lie lollowing table.
		Horizontal Datum/Projection Easting X (m) Northing Y (m)		NAVD88 (Geoid 12B)	I AND COVED
	Point ID			Elevation (m)	LAND COVER
			(

All checkpoints surveyed for vertical accuracy testing purposes are listed in the following table.

	Easting X (m)	Northing Y (m)	Elevation (m)	
ENVA1	715544.136	3464237.920	126.307	
ENVA2	697923.344	3455564.010	126.333	
ENVA ₃	709052.106	3465512.308	131.724	
ENVA4	708053.963	3443672.199	112.413	
ENVA5	693163.427	3442996.823	86.652	
ENVA6	711533.678	3420887.866	76.451	
ENVA7	694007.079	3405482.054	45.128	
ENVA8	681950.984	3407524.262	59.824	
ENVA9	707943.048	3393466.063	33.670	
ENVA10	711489.496	3379208.277	14.608	
ENVA11	692369.415	3375628.399	16.699	
ENVA12	678762.281	3365571.378	10.623	
ENVA13	675169.990	3361487.389	6.830	
ENVA14	696593.871	3352074.451	6.429	
ENVA15	684566.656	3348050.423	4.390	

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 49 of 97

	600000 800	3365881.151	11.877	
ENVA16	693239.832 720237.587	3352135.787	2.767	
ENVA17	694799.855	3398952.104	37.440	
ENVA18 EVVA1	713965.880	3465047.156	129.530	
EVVA1 EVVA2	725941.495	3457495.235	130.593	
EVVA2 EVVA3	725966.384	3457587.097	133.752	
EVVA3 EVVA4	707398.315	3438053.712	111.758	
EVVA4 EVVA6	712917.450	3425359.598	64.832	
EVVA0 EVVA7	710415.932	3406974.133	51.523	
EVVA8	683828.411	3400413.202	38.002	
EVVA9	705775.276	3385635.187	21.673	
EVVA10	710936.359	3364396.359	3.854	
EVVA11	682676.986	3366877.989	14.832	
EVVA12	679798.248	3356293.594	6.452	
EVVA40	679798.247	3356293.594	6.445	
NVA1	714023.701	3471988.435	143.566	
NVA2	690250.345	3372881.366	13.335	
NVA3	709052.106	3465512.308	131.724	
NVA4	718095.760	3459970.772	127.240	
NVA5	728319.513	3460358.197	130.851	
NVA6	724979.137	3447797.358	125.029	
NVA7	710622.504	3449534.393	122.850	
NVA8	708712.326	3449107.772	107.098	
NVA9	712016.968	3437369.291	78.225	
NVA10	690734.116	3447382.937	93.507	
NVA11	701737.622	3439001.861	83.749	
NVA12	684049.231	3436668.714	110.616	
NVA13	698433.511	3415044.198	80.964	
NVA14	693447.660	3422944.324	79.865	
NVA15	704594.863	3425553.805	58.228	
NVA16	712610.681	3413594.539	85.658	
NVA17	687917.870	3382663.398	19.902	
NVA18	683577.674	3415456.133	76.049	
NVA19	676174.501	3403686.519	45.069	
NVA20	690241.220	3398371.464	39.071	
NVA21	702692.167	3403874.935	50.588	
NVA22	703887.245	3391913.226	28.847	
NVA23	697695.463	3387364.565	23.976	
NVA24	677485.456	3396655.883	34.668	
NVA25	688223.599	3382846.493	20.137	
NVA26	696113.124	3382307.174 3384739.479	17.294 21.248	
NVA27	708795.425 711649.602	3384/39.4/9 3373614.512	11.018	
NVA28 NVA29	696761.306	3374281.550	14.615	
	675585.860	3364361.356	6.349	
NVA30 NVA31	683982.172	3374193.407	13.723	
NVA31 NVA32	672638.045	3351920.231	8.172	
	0/200040	00017-01201	0.1/2	

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 50 of 97

NVA33	688872.820	3363637.529	7.841	
NVA34	701561.726	3367273.839	10.528	
NVA35	717027.405	3365510.351	6.766	
NVA36	725411.668	3358506.262	4.265	
NVA37	701391.475	3357535.541	6.515	
NVA38	703360.230	3362318.357	5.500	
NVA39	682942.466	3358890.747	3.699	
NVA40	680958.336	3350557.269	7.132	
NVA41	700622.930	3399339.393	37.610	
NVA41 NVA42	690613.858	3408896.398	64.589	
NVA42 NVA43	688349.425	3430140.007	90.752	
	693624.768	3438529.970		
NVA44	716369.339	3443626.616	91.755	
NVA45			92.434	
NVA46	722212.148	3452945.023	124.380	
NVA47	709313.258	3459498.158	115.824	
NVA48	714886.023	3469353.870	138.589	
NVA49	725117.229	3463097.199	124.063	
NVA50	686833.421	3388449.333	25.789	
NVA51	710769.534	3357074.757	2.763	
NVA52	697599.693	3447106.437	114.913	
NVA53	689157.831	3380460.342	18.692	
NVA54	678159.127	3392299.790	30.058	
NVA55	670535.571	3358975.984	9.601	
NVA56	697015.789	3344518.408	4.312	
VVA1	711683.926	3468685.848	125.396	
VVA2	719493.540	3467603.189	135.991	
VVA3	727969.946	3466290.790	133.487	
VVA4	713115.977	3461230.174	135.544	
VVA5	708409.614	3454056.538	126.768	
VVA6	703670.002	3462383.874	133.656	
VVA7	697324.551	3444494.016	110.618	
VVA8	686786.752	3441696.393	111.627	
VVA9	700583.446	3429962.335	68.346	
VVA10	689141.360	3423989.943	92.152	
VVA11	682531.874	3418126.678	87.348	
VVA12	699852.950	3409520.561	61.643	
VVA13	707978.466	3419451.326	59.838	
VVA14	704353.818	3410249.315	59.440	
VVA15	697048.607	3409480.947	70.277	
VVA16	682903.642	3410624.122	68.162	
VVA17	711730.151	3431624.454	104.439	
VVA18	711635.138	3400817.401	51.455	
VVA19	708994.393	3397649.597	45.100	
VVA20	712832.226	3389054.927	21.243	
VVA20 VVA21	695879.767	3392270.570	23.857	
VVA21 VVA22	683906.916	3391434.352	27.236	
VVA22 VVA23	680388.986	3387364.725	22.770	
v v n23	000300.900	000/0040/20		

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 51 of 97

VVA24	686224.986	3384248.044	20.404	
VVA25	691882.320	3385634.430	20.486	
VVA26	699490.483	3387672.620	24.237	
VVA27	707123.445	3379853.557	16.183	
VVA28	706490.871	3352335.793	3.888	
VVA29	681269.887	3370813.289	15.834	
VVA30	689598.100	3347863.700	2.808	
VVA31	678958.407	3361634.077	5.402	
VVA32	695837.303	3357761.475	6.991	
VVA33	686638.169	3369092.096	12.801	
VVA34	695930.390	3362749.836	6.340	
VVA35	695230.389	3370473.620	11.596	
VVA36	706508.847	3375855.537	14.731	
VVA37	706241.019	3367045.849	6.459	
VVA38	686033.975	3355663.574	4.328	
VVA39	718142.009	3357990.483	4.257	
VVA40	713065.017	3368978.865	7.971	
VVA41	702288.164	3382886.937	19.323	
VVA42	681987.201	3379136.125	16.779	
VVA43	713528.575	3383204.314	18.422	
VVA44	689748.362	3435924.057	103.796	
VVA45	705665.537	3434297.628	65.518	

Table 7: LA DOTD Amite Watershed Lidar Project surveyed accuracy checkpoints

There were six checkpoints that were removed from vertical accuracy testing because they fell outside the project boundary, and one checkpoint that was removed because no data was sent with it. Even with the removal of these seven points, there are enough total checkpoints and enough checkpoints per land cover category to satisfy project requirements. The image below shows a graphic of the checkpoints located outside the project boundary.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 52 of 97

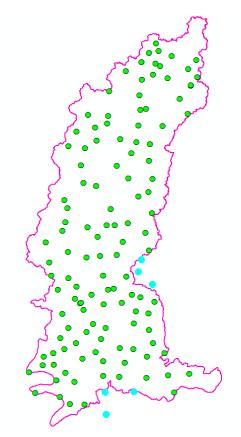


Figure 27-Image of the project area showing checkpoints. Checkpoints in green are within the project boundary, the seven checkpoints highlighted in blue are outside the Amite project boundary.

The coordinates of these seven checkpoints outside the project boundary are provided in the table below.

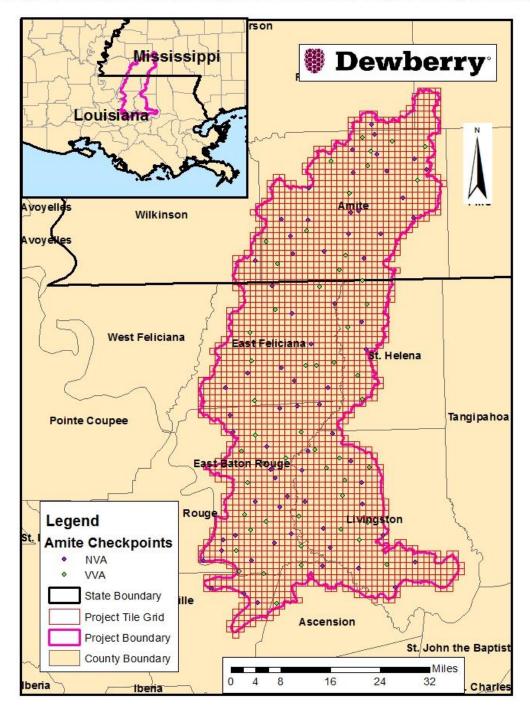

Point ID	NAD83(20	911) UTM 15	NAVD88 (Geoid 12B)	Lidar Z	Delta Z	AbsDeltaZ
	Easting X (ft)	Northing Y (ft)	Survey Z (ft)	(ft)		105001112
NVA56	697015.789	3344518.408	4.312	outside		
VVA20	712832.226	3389054.927	21.243	outside		
VVA28	706490.871	3352335.793	3.888	outside		
ENVA9	707943.048	3393466.063	33.670	outside		
ENVA14	696593.871	3352074.451	6.429	outside		
VVA19	708994.393	3397649.597	45.100	45.120	0.020	

 Table 8: Checkpoints removed from vertical accuracy testing due to their location outside the project boundary.

The figure below shows the location of the QA/QC checkpoints used to test the positional accuracy of the dataset.

LA DOTD AMITE WATERSHED CHECKPOINT LOCATIONS

Figure 28 – Location of QA/QC Checkpoints

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 55 of 97

VERTICAL ACCURACY TEST PROCEDURES

NVA (Non-vegetated Vertical Accuracy) is determined with check points located only in nonvegetated terrain, including open terrain (grass, dirt, sand, and/or rocks) and urban areas, where there is a very high probability that the lidar sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The NVA determines how well the calibrated lidar sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSE_z) of the checkpoints x 1.9600. For the LA_DOTD Amite Watershed Lidar Project, vertical accuracy must be 19.6 cm or less based on an RMSE_z of 10 cm x 1.9600.

VVA (Vegetated Vertical Accuracy) is determined with all checkpoints in vegetated land cover categories, including tall grass, weeds, crops, brush and low trees, and fully forested areas, where there is a possibility that the lidar sensor and post-processing may yield elevation errors that do not follow a normal error distribution. VVA at the 95% confidence level equals the 95th percentile error for all checkpoints in all vegetated land cover categories combined. The LA_DOTD Amite Watershed Lidar Project VVA standard is 29.4 cm based on the 95th percentile. The VVA is accompanied by a listing of the 5% outliers that are larger than the 95th percentile used to compute the VVA; these are always the largest outliers that may depart from a normal error distribution. Here, Accuracy_z differs from VVA because Accuracy_z assumes elevation errors follow a normal error may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

The relevant testing criteria are summarized in Table 4.

Quantitative Criteria	Measure of Acceptability
Non-Vegetated Vertical Accuracy (NVA) in open terrain and urban land cover categories using ${ m RMSE}_z$ *1.9600	19.6 cm (based on RMSE _z (10 cm) * 1.9600)
Vegetated Vertical Accuracy (VVA) in all vegetated land cover categories combined at the 95% confidence level	29.4 cm (based on combined 95 th percentile)

Table 9 – Acceptance Criteria

The primary QA/QC vertical accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications.
- 2. Next, Dewberry interpolated the bare-earth lidar DTM to provide the z-value for every checkpoint.
- 3. Dewberry then computed the associated z-value differences between the interpolated z-value from the lidar data and the ground truth survey checkpoints and computed NVA, VVA, and other statistics.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

VERTICAL ACCURACY RESULTS

The table below summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the fully classified lidar LAS files.

Land Cover Category	# of Points	NVA – Non-vegetated Vertical Accuracy (RMSE _z x 1.9600) Spec=19.6 cm	VVA – Vegetated Vertical Accuracy (95th Percentile) Spec=29.4 cm
NVA	71	0.070	
VVA	54		0.116

Table 10 - Tested NVA and VVA

This lidar dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be $RMSE_z = 7$ cm, equating to +/- 10 cm at 95% confidence level. Actual VVA accuracy was found to be +/- 11.6 cm at the 95th percentile.

The figure below illustrates the magnitude of the differences between the QA/QC checkpoints and lidar data. This shows that the majority of lidar elevations were within +/-5 cm of the checkpoints elevations, but there were some outliers where lidar and checkpoint elevations differed by up to +10 cm.

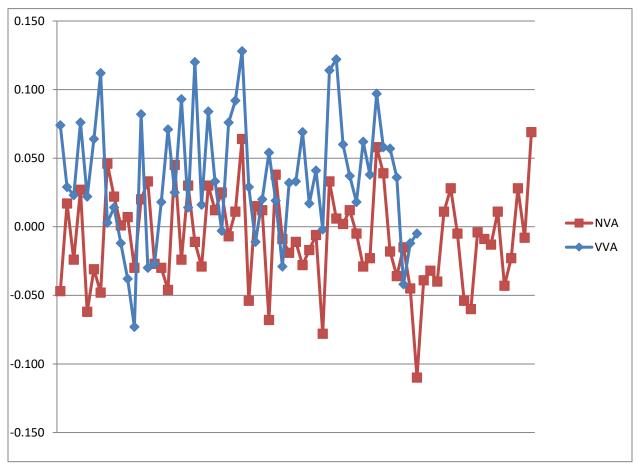


Figure 29 – Magnitude of elevation discrepancies per land cover categor

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 57 of 97

Point ID	NAD83(2011) UTM Zone 15 Point ID		NAVD88 (Geoid 12B)	Lidar Z	Delta Z	AbsDeltaZ
			Survey Z (m)	(m)	Deita Z	ADSDERAZ
VVA23	680388.986	3387364.725	22.770	22.890	0.120	0.12
VVA31	678958.407	3361634.077	5.402	5.530	0.128	0.128
VVA45	705665.537	3434297.628	65.518	65.640	0.122	0.122

Table 6 lists the 5% outliers that are larger than the VVA 95th percentile.

Table 11 – 5% Outliers

Table 7 provides overall descriptive statistics.

100 % of Totals	# of Points	RMSEz (m) NVA Spec=0.1 m	Mean (m)	Median (m)	Skew	Std Dev (m)	Kurtosis	Min (m)	Max (m)
NVA	71	0.036	-0.008	-0.009	-0.138	0.035	0.056	-0.110	0.069
VVA	54	N/A	0.037	0.033	0.026	0.046	-0.380	-0.073	0.128

Table 12 – Overall Descriptive Statistics

The figure below illustrates a histogram of the associated elevation discrepancies between the QA/QC checkpoints and elevations interpolated from the lidar triangulated irregular network (TIN). The frequency shows the number of discrepancies within each band of elevation differences. Although the discrepancies vary between a low of -0.11 meters and a high of +0.128 meters, the histogram shows that the majority of the discrepancies are skewed on the positive side. The vast majority of points are within the ranges of -0.05 meters to +0.05 meters.

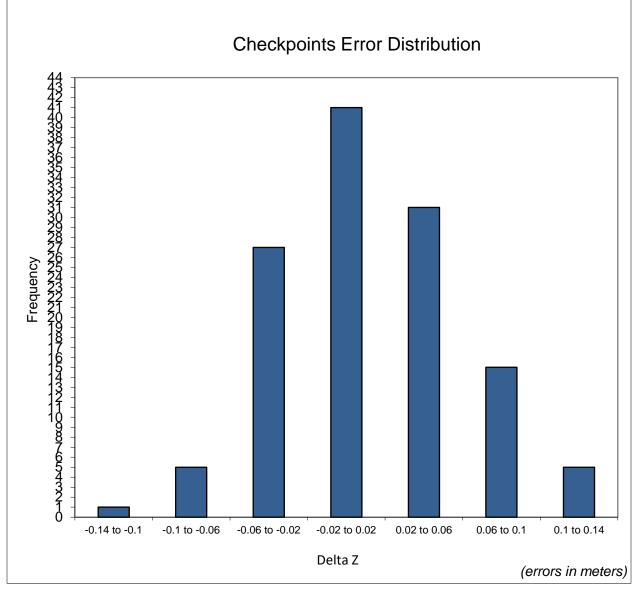


Figure 30 – Histogram of Elevation Discrepancies with errors in meters

Based on the vertical accuracy testing conducted by Dewberry, the lidar dataset for the LA DOTD Amite Watershed Lidar Project satisfies the project's pre-defined vertical accuracy criteria.

HORIZONTAL ACCURACY TEST PROCEDURES

Horizontal accuracy testing requires well-defined checkpoints that can be identified in the dataset. Elevation datasets, including lidar datasets, do not always contain well-defined checkpoints suitable for horizontal accuracy assessment. However, the ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) recommends at least half of the NVA vertical check points should be located at the ends of paint stripes or other point features visible on the lidar intensity image, allowing them to double as horizontal check points.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 59 of 97

Dewberry reviews all NVA checkpoints to determine which, if any, of these checkpoints are located on photo-identifiable features in the intensity imagery. This subset of checkpoints are then used for horizontal accuracy testing.

The primary QA/QC horizontal accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications and tried to locate half of the NVA checkpoints on features photo-identifiable in the intensity imagery.
- 2. Next, Dewberry identified the well-defined features in the intensity imagery.
- 3. Dewberry then computed the associated xy-value differences between the coordinates of the well-defined feature in the lidar intensity imagery and the ground truth survey checkpoints.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. Horizontal accuracy was assessed using NSSDA methodology where horizontal accuracy is calculated at the 95% confidence level. This report provides the results of the horizontal accuracy testing.

HORIZONTAL ACCURACY RESULTS

No checkpoints were photo-identifiable in the intensity imagery; horizontal accuracy could not be tested on this dataset.

Breakline Production & Qualitative Assessment Report

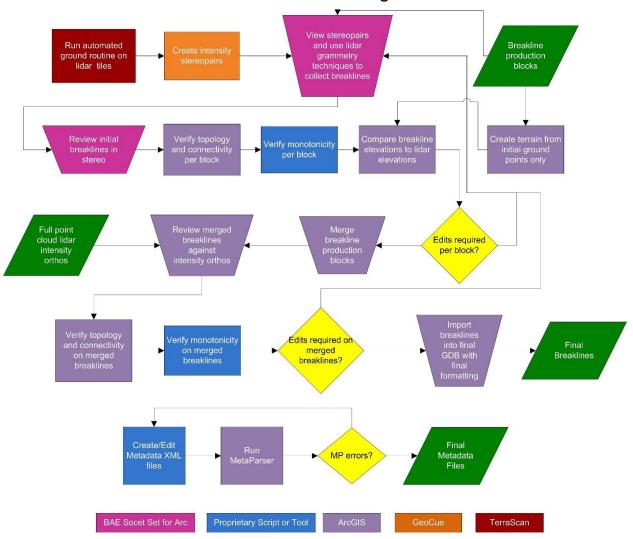
BREAKLINE PRODUCTION METHODOLOGY

Dewberry used GeoCue software to develop lidar stereo models of the project area so the lidar derived data could be viewed in 3-D stereo using Socet Set softcopy photogrammetric software. Using lidargrammetry procedures with lidar intensity imagery, Dewberry used the stereo models to stereo-compile the two types of hydrographic breaklines in accordance with the project's Data Dictionary.

All drainage breaklines are monotonically enforced to show downhill flow. Water bodies are at a constant elevation where the lowest elevation of the water body has been applied to the entire water body.

BREAKLINE QUALITATIVE ASSESSMENT

Dewberry completed breakline qualitative assessments according to a defined workflow. The following workflow diagram represents the steps taken by Dewberry to provide a thorough qualitative assessment of the breakline data.


Completeness and horizontal placement is verified through visual reviews against lidar intensity imagery. Automated checks are applied on all breakline features to validate topology, including the 3D connectivity of features, enforced monotonicity on linear hydrographic breaklines, and flatness on water bodies.

The next step is to compare the elevation of the breakline vertices against the ground elevation extracted from the ESRI Terrain built from the lidar ground points, keeping in mind that a

discrepancy is expected because of the hydro-enforcement applied to the breaklines and because of the interpolated imagery used to acquire the breaklines. A given tolerance is used to validate if the elevations differ too much from the lidar.

After all corrections and edits to the breakline features, the breaklines are imported into the final GDB and verified for correct formatting.

Elevation Data Processing-Breaklines

Figure 31-Breakline QA/QC workflow

Figure x-Breakline QA/QC workflow

BREAKLINE CHECKLIST

The following table represents a portion of the high-level steps in Dewberry's Production and QA/QC checklist that were performed for this project.

Pass/Fail	Validation Step
Pass	Use lidar-derived data, which may include intensity imagery, stereo pairs, bare earth ground models, density models, slope models, and terrains, to collect breaklines according to project specifications.
Pass	In areas of heavy vegetation or where the exact shoreline is hard to delineate, it is better to err on placing the breakline <i>slightly</i> inside or seaward of the shoreline (breakline can be inside shoreline by 1x-2x NPS).
Pass	After each producer finishes breakline collection for a block, each producer must perform a completeness check, breakline variance check, and all automated checks on their block before calling that block complete and ready for the final merge and QC
Pass	After breaklines are completed for production blocks, all production blocks should be merged together and completeness and automated checks should be performed on the final, merged GDB. Ensure correct snapping-horizontal (x,y) and vertical (z)-between all production blocks.
Pass	Check entire dataset for missing features that were not captured, but should be to meet baseline specifications or for consistency. Features should be collected consistently across tile bounds. Check that the horizontal placement of breaklines is correct. Breaklines should be compared to full point cloud intensity imagery and terrains
Pass	Breaklines are correctly edge-matched to adjoining datasets in completion, coding, and horizontal placement.
Pass	Using a terrain created from lidar ground (all ground including 2, 8, and 10) and water points (class 9), compare breakline Z values to interpolated lidar elevations.
Pass	Perform all Topology and Data Integrity Checks
Pass	Perform hydro-flattening and hydro-enforcement checks including monotonicity and flatness from bank to bank on linear hydrographic features and flatness of water bodies. Tidal waters should preserve as much ground as possible and can include variations or be non-monotonic.

 Table 13-A subset of the high-level steps from Dewberry's Production and QA/QC checklist performed for this project.

DATA DICTIONARY

The following data dictionary was used for this project.

Horizontal and Vertical Datum

The horizontal datum shall be North American Datum of 1983(2011), Units in Meters. The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88), Units in Meters. Geoid12B shall be used to convert ellipsoidal heights to orthometric heights.

Coordinate System and Projection

All data shall be projected to UTM Zone 15, Horizontal Units in Meters and Vertical Units in Meters.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 62 of 97

Inland Streams and Rivers

Feature Dataset: BREAKLINES Feature Type: Polygon Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: STREAMS_AND_RIVERS Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

Description

This polygon feature class will depict linear hydrographic features with a width greater than 100 feet.

Table Definition

Field Name	Data Type	Allow Null Values	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID						Assigned by Software
SHAPE	Geometry						Assigned by Software
SHAPE_LENGTH	Double	Yes		0	0		Calculated by Software
SHAPE_AREA	Double	Yes		0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Streams and Rivers	Linear hydrographic features such as streams, rivers, canals, etc. with an average width greater than 100 feet. In the case of embankments, if the feature forms a natural dual line channel, then capture it consistent with the capture rules. Other natural or manmade embankments will not qualify for this project.	Capture features showing dual line (one on each side of the feature). Average width shall be greater than 100 feet to show as a double line. Each vertex placed should maintain vertical integrity. Generally both banks shall be collected to show consistent downhill flow. There are exceptions to this rule where a small branch or offshoot of the stream or river is present. The banks of the stream must be captured at the same elevation to ensure flatness of the water feature. If the elevation of the banks appears to be different see the task manager or PM for further guidance. Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding lidar points. Acceptable variance in the negative direction will be defined for each project individually. These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is measured.
		is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the

elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.
Every effort should be made to avoid breaking a stream or river into segments.
Dual line features shall break at road crossings (culverts). In areas where a bridge is present the dual line feature shall continue through the bridge.
Islands: The double line stream shall be captured around an island if the island is greater than 1 acre. In this case a segmented polygon shall be used around the island in order to allow for the island feature to remain as a "hole" in the feature.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 64 of 97

Inland Ponds and Lakes

Feature Dataset: BREAKLINES Feature Type: Polygon Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: PONDS_AND_LAKES Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

Description

This polygon feature class will depict closed water body features that are at a constant elevation.

Table Definition

Field Name	Data Type	Allow Null Values	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID						Assigned by Software
SHAPE	Geometry						Assigned by Software
SHAPE_LENGTH	Double	Yes		0	0		Calculated by Software
SHAPE_AREA	Double	Yes		0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
		Water bodies shall be captured as closed polygons with the water feature to the right. <u>The compiler shall take care</u> to ensure that the z-value remains consistent for all vertices placed on the water body.
Ponds and Lakes	Land/Water boundaries of constant elevation water bodies such as lakes, reservoirs, ponds, etc. Features shall be defined as closed polygons and contain an elevation value that reflects the best estimate of the water elevation at the time of data capture. Water body features will be captured for features 2 acres in size or greater. "Donuts" will exist where there are islands within a closed water body feature.	Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding lidar points. Acceptable variance in the negative direction will be defined for each project individually. An Island within a Closed Water Body Feature that is 1 acre in size or greater will also have a "donut polygon" compiled. These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly- indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath

	the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.
--	---

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 66 of 97

Bridge Saddle Breaklines Feature Dataset: BREAKLINES

Feature Dataset: BREAKLINES Feature Type: Polyline Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: Bridge_Breaklines Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

Description

This polyline feature class is used to enforce terrain beneath bridge decks where ground data may not have been acquired. Enforcing the terrain beneath bridge decks prevents bridge saddles.

Table Definition

Field Name	Data Type	Allow Null Values	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID						Assigned by Software
SHAPE	Geometry						Assigned by Software
SHAPE_LENGTH	Double	Yes		0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Bridge Saddle Breaklines	Bridge saddle Breaklines should be used where necessary to enforce terrain beneath bridge decks and to prevent bridge saddles in the bare earth DEMs.	Bridge saddle breaklines should be collected beneath bridges where bridge saddles exist or are likely to exist in the bare earth DEMs.Bridge saddle breaklines should be collected perpendicular to the bridge deck so that the endpoints are on either side of the bridge deck. Typically two bridge breaklines are collected per bridge deck, one at either end of the bridge deck to enforce the terrain under the full bridge deck.The endpoints of the bridge breaklines will match the elevation of the ground at their xy position to enforce the ground/bare earth elevations beneath the bridge deck and prevent bridge saddles from forming.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 67 of 97

DEM Production & Qualitative Assessment

DEM PRODUCTION METHODOLOGY

Dewberry utilized ESRI software and Global Mapper for the DEM production and QC process. ArcGIS software is used to generate the products and the QC is performed in both ArcGIS and Global Mapper. The figure below shows the entire process necessary for bare earth DEM production, starting from the lidar swath processing.

The final bare-earth lidar points are used to create a terrain. The final 3D breaklines collected for the project are also enforced in the terrain. The terrain is then converted to raster format using linear interpolation. For most projects, a single terrain/DEM can be created for the whole project. For very large projects, multiple terrains/DEMs may be created. The DEM(s) is reviewed for any issues requiring corrections, including remaining lidar mis-classifications, erroneous breakline elevations, poor hydro-flattening or hydro-enforcement, and processing artifacts. After corrections are applied, the DEM(s) is then split into individual tiles following the project tiling scheme. The tiles are verified for final formatting and then loaded into Global Mapper to ensure no missing or corrupt tiles and to ensure seamlessness across tile boundaries.

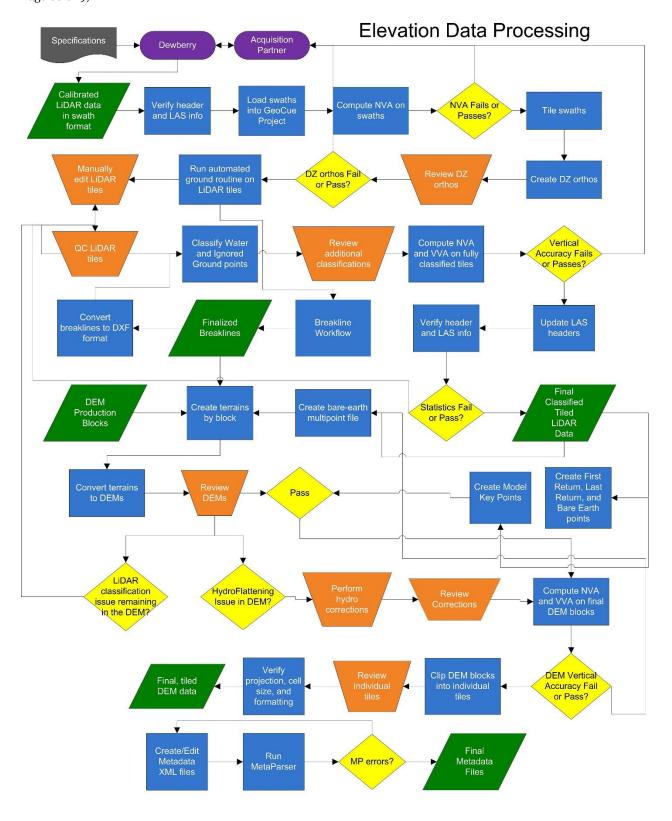


Figure 32-DEM Production Workflow

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 69 of 97

DEM QUALITATIVE ASSESSMENT

Dewberry performed a comprehensive qualitative assessment of the bare earth DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. This process was performed in ArcGIS software with the use of a tool set Dewberry has developed to verify that the raster extents match those of the tile grid and contain the correct projection information. The DEM data was reviewed at a scale of 1:5000 to review for artifacts caused by the DEM generation process and to review the hydro-flattened features. To perform this review Dewberry creates HillShade models and overlays a partially transparent colorized elevation model to review for these issues. All corrections are completed using Dewberry's proprietary correction workflow. Upon completion of the corrections, the DEM data is loaded into Global Mapper for its second review and to verify corrections. Once the DEMs are tiled out, the final tiles are again loaded into Global Mapper to ensure coverage, extents, and that the final tiles are seamless.

The images below show an example of a bare earth DEM.

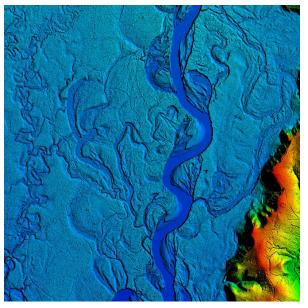


Figure 33-Tile 15RYQ0527. The bare earth DEM.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 70 of 97

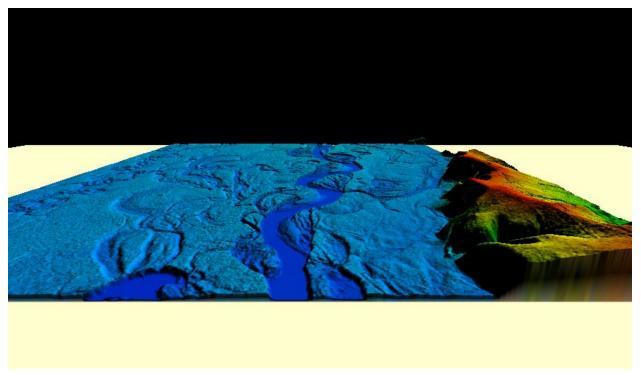


Figure 34-Tile 15RYQ0527. 3D Profile view of the bare earth DEM

When some bridges are removed from the ground surface, the distance from bridge abutment to bridge abutment is small enough that the DEM interpolates across the entire bridge opening, forming 'bridge saddles.' Dewberry collected 3D bridge saddle breaklines in locations where bridge saddles were present and enforced these breaklines in the final DEM creation to help mitigate the bridge saddle artifacts. The image below on the left shows a bridge saddle while the image below on the right shows the same bridge after bridge breaklines have been enforced.

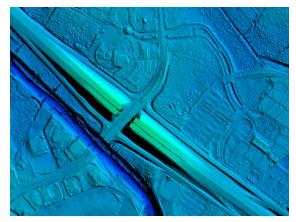


Figure 35-Tile 15RXP8263. The DEM shows the bridge after breaklines have been enforced.

DEM VERTICAL ACCURACY RESULTS

The same 131 checkpoints that were used to test the vertical accuracy of the lidar were used to validate the vertical accuracy of the final DEM products as well. Accuracy results may vary

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 71 of 97

between the source lidar and final DEM deliverable. DEMs are created by averaging several lidar points within each pixel which may result in slightly different elevation values at each survey checkpoint when compared to the source LAS, which does not average several lidar points together but may interpolate (linearly) between two or three points to derive an elevation value. The vertical accuracy of the DEM is tested by extracting the elevation of the pixel that contains the x/y coordinates of the checkpoint and comparing these DEM elevations to the surveyed elevations. Dewberry typically uses LP360 software to test the swath lidar vertical accuracy, Terrascan software to test the classified lidar vertical accuracy, and Esri ArcMap to test the DEM vertical accuracy so that three different software programs are used to validate the vertical accuracy for each project.

Out of the 131 checkpoints received from the surveyor, there were six checkpoints that were removed from vertical accuracy testing because they fell outside the project boundary, and one checkpoint that was removed because no data was sent with it. The coordinates for the removed checkpoints are provided below.

Point ID	NAD83(2011)	NAVD88 (Geoid 12B)	DEM Z	Delta Z	AbsDeltaZ	
	Easting X (m)	Northing Y (m)	Survey Z (m)	(m)	Delta Z	
NVA56	697015.789	3344518.408	4.312	outside		
VVA20	712832.226	3389054.927	21.243	outside		
VVA28	706490.871	3352335.793	3.888	outside		
ENVA9	707943.048	3393466.063	33.670	outside		
ENVA14	696593.871	3352074.451	6.429	outside		
VVA19	708994.393	3397649.597	45.100	45.120	0.020	

Table 14 – Checkpoint omitted from the DEM accuracy testing.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 72 of 97

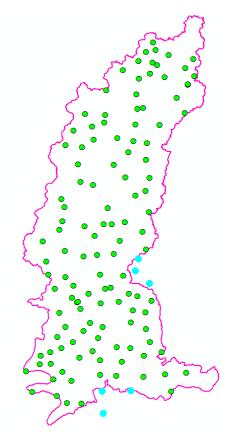


Figure 36-Image of the project area showing checkpoints. Checkpoints in green are within the project boundary, the seven checkpoints highlighted in blue are outside the Amite project boundary.

Table 9 summarizes the tested vertical accuracy results from a comparison of the surveyed checkpoints to the elevation values present within the final DEM dataset.

Land Cover Category	# of Points	NVA – Non-vegetated Vertical Accuracy (RMSE _z x 1.9600) Spec=19.6 cm	VVA – Vegetated Vertical Accuracy (95th Percentile) Spec=29.4 cm
NVA	71	0.068	
VVA	54		0.108

This DEM dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be $RMSE_z = 6.8$ cm, equating to +/- 10 cm at 95% confidence level. Actual VVA accuracy was found to be +/- 10.8 cm at the 95th percentile.

Table 10 lists the 5% outliers that are larger than the VVA 95th percentile.

Point ID	NAD83(2011) UTM Zone 15		NAVD88 (Geoid 12B)	DEM Z	Delta Z	AbsDeltaZ
	Easting X (m)	Northing Y (m)	Survey Z (m)	(m)	Denta Z	mospenuz
NVA38	703360.230	3362318.357	5.500	5.380	-0.120	0.12
VVA23	680388.986	3387364.725	22.770	22.902	0.132	0.132
VVA31	678958.407	3361634.077	5.402	5.523	0.121	0.12
VVA44	689748.362	3435924.057	103.796	103.908	0.112	0.112

Table 16 - 5% Outliers

Table 11 provides overall descriptive statistics.

100 % of Totals	# of Points	RMSEz (m) NVA Spec=0.1 m	Mean (m)	Median (m)	Skew	Std Dev (m)	Kurtosis	Min (m)	Max (m)
NVA	71	0.035	-0.008	-0.008	-0.109	0.034	0.917	-0.120	0.078
VVA	54	N/A	0.038	0.034	-0.037	0.044	-0.128	-0.076	0.132

Table 17 – Overall Descriptive Statistics

Based on the vertical accuracy testing conducted by Dewberry, the DEM dataset for the LA DOTD Amite Watershed Lidar Project satisfies the project's pre-defined vertical accuracy criteria.

DEM CHECKLIST

The following table represents a portion of the high-level steps in Dewberry's bare earth DEM Production and QA/QC checklist that were performed for this project.

Pass/Fai l	Validation Step
Pass	Masspoints (LAS to multipoint) are created from ground points only (class 2 and class 8 if model key points created, but no class 10 ignored ground points or class 9 water points
Pass	Create a terrain for each production block using the final bare earth lidar points and final breaklines.
Pass	Convert terrains to rasters using project specifications for grid type, formatting, and cell size
Pass	Create hillshades for all DEMs
Pass	Manually review bare-earth DEMs in ArcMap with hillshades to check for issues
Pass	DEMs should be hydro-flattened or hydro-enforced as required by project specifications
Pass	DEMs should be seamless across tile boundaries
Pass	Water should be flowing downhill without excessive water artifacts present
Pass	Water features should NOT be floating above surrounding
Pass	Bridges should NOT be present in bare-earth DEMs.

Pass	Any remaining bridge saddles where below bridge breaklines were not used need to be fixed by adding below bridge breaklines and re-processing.
Pass	All qualitative issues present in the DEMs as a result of lidar processing and editing issues must be marked for corrections in the lidar These DEMs will need to be recreated after the lidar has been corrected.
Pass	Calculate DEM Vertical Accuracy including NVA, VVA, and other statistics
Pass	Split the DEMs into tiles according to the project tiling scheme
Pass	Verify all properties of the tiled DEMs, including coordinate reference system information, cell size, cell extents, and that compression has not been applied to the tiled DEMs
Pass	Load all tiled DEMs into Global Mapper to verify complete coverage to the (buffered) project boundary and that no tiles are corrupt.

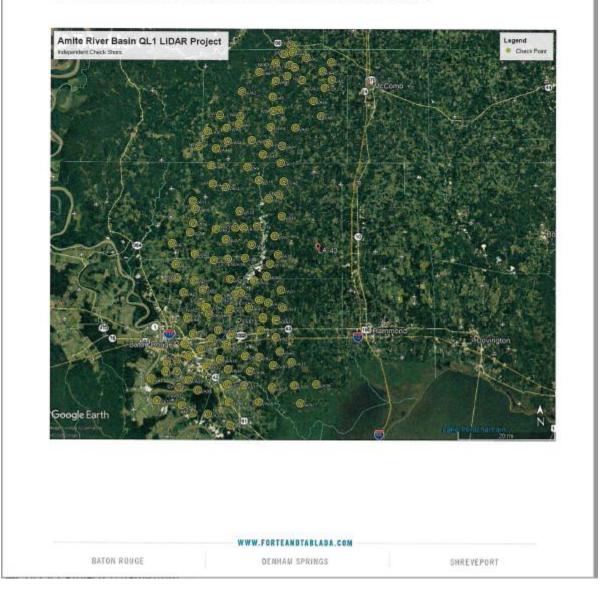
Table 18-A subset of the high-level steps from Dewberry's bare earth DEM Production and QA/QC checklist performed for this project.

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 75 of 97

Γ

Appendix A: Checkpoint Survey Report

	18, 2018
Assoc Dewit 2835	am Crampton, P.E., CFM ciate Vice President berry Brandywine Road, Suite 100 ta, GA 30341
RE:	Ryan Ligon Amite River Basin QL1 LiDAR Project Independent Check Points Forte and Tablada Project #: 161605.01R
Attn:	Mr. Ligon:
have and is in the	mitted herewith is the completed survey for the captioned project. This field survey is certified to been performed within acceptable standards set forth ASPRS guidelines, has been reviewed, checke considered to be correct within those guidelines. Ross A Wilson will be certifying all surveyed point State of Mississippi and Steve A LeBlanc will be certifying all points in Louisiana. This transmittal des the following:
1	Excel spreadsheet of all surveyed points.
2	Field notes of all surveyed points
3.	Pictures/images of all surveyed points
4.	KML file of all surveyed points (Check Shots.kml)
This p LiDAF	<u>ct Summary</u> project scope required the survey of Independent Check Points for the use to test the accuracy of the data and derivative products. All points have been selected by Forte and Tablada and approved by perry called ARB Task Order 3 (Check Shots) _revised. The collection of the data was surveyed as close LiDAR acquisition timeframe as possible. The timeframe in which the survey took place started on


1

Point of Contact

The surveyors in charge for this project are Steve A. LeBlanc and Ross A. Wilson. Mr. Leblanc will be certifying all surveyed points in Louisiana. Mr. Wilson will be certifying all surveyed points that continued in Mississippi. Field crew supervisors in charge of gather the survey data was Madison Mills and Steven Sullivan.

Project Area

For the location of the surveyed Independent Check Shots, see (Check Shots.kml).

Dewberry

Survey Equipment & Network Design

The main equipment used for this project was survey grade GPS system. The GPS rover receiver used was a Trimble R-10 receiver along with a Trimble TCS3 data collector. RTN system was utilized to derive the coordinates of each surveyed point. The RTN system used was Leica Smartnet.

Survey Point Detail

Check shots were dispersed based on ASPRS guideline. Where possible, check shots were place at a locate that had relatively flat terrain. Also, points were placed at locations where LiDAR intensity-visible features. Locations the had tall vertical objects nearby were avoided or kept a minimum distance of 5 meters away from the structure.

Field Survey Procedure and Analysis

Before the Independent Check points were surveyed a check was performed on control point number 14. The origin of point 14 was provided from an ongoing LA DOTD project, State Project No. H004100.5 and was transformed to coordinated system UTM 15N. Control sketch for point 14 will be attached to deliverable. To establish an additional control point a minimum of three separate three minute (180 epochs) are taken and averaged together. To establish a check shot, one occupation of 180 epochs was observed. After the first observation initialization between the base and rover was "broken" and then re-initialized. Once regained a second occupation of 180 epochs was observed. The point was considered acceptable if both observations meet a tolerance of 0.05 cm. If the tolerance was not met a third occupation was observed and compared and the outlier was discarded. The two acceptable observations were then averaged and the check shot's coordinates were established. Elevation mask for satellites was set at 12 degrees and PDOPs were set a 6.0.

Data Processing and Quality Control Procedure

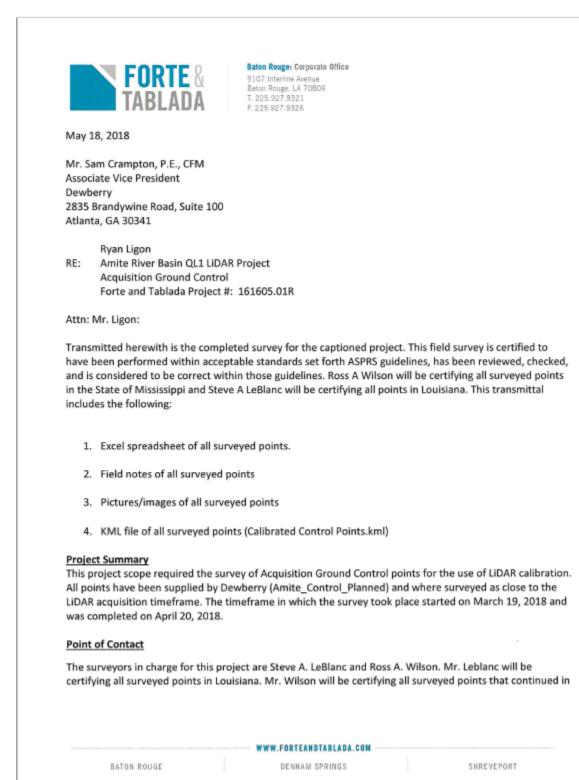
For validation of the survey data, 50% of the check shots were re-observed at different date using the same procedure. If the re-observation was not within a tolerance of 0.05 cm the check shot was observed a third time at a later date and time. Once the third observation was collected the outlier was discarded and the last observed coordinates were held and accepted.

Final Coordinates

See excel spreadsheet for coordinates. The format for the excel spreadsheet is as followed: Easting, Northing, Elevation, Point ID, Type of Survey, Description, Date surveyed, Spatial reference, and Check shot.

BATON ROUGE

WWW.FORTEANDTABLADA.COM DENHAM SPRINGS


SHREVEPORT

	FORTE & Baton Rouge: Corporate Office 9107 Interline Avenue Baton Rouge, LA 70809 T. 225.927.9321 F. 225.927.9326
May 1	8, 2018
Associ Dewbe 2835 E	im Crampton, P.E., CFM ate Vice President erry Brandywine Road, Suite 100 a, GA 30341
RE:	Ryan Ligon Amite River Basin QL1 LiDAR Project Independent Check Points Forte and Tablada Project #: 161605.01R
Attn: M	Mr. Ligon:
in the	
	State of Mississippi and Steve A LeBlanc will be certifying all points in Louisiana. This transmittal es the following: Excel spreadsheet of all surveyed points.
1.	es the following:
1. 2.	Excel spreadsheet of all surveyed points.
1. 2. 3.	es the following: Excel spreadsheet of all surveyed points. Field notes of all surveyed points
1. 2. 3. 4. Projec This pr LiDAR Dewbe to the	es the following: Excel spreadsheet of all surveyed points. Field notes of all surveyed points Pictures/images of all surveyed points
1. 2. 3. 4. Projec This pr LiDAR Dewbe to the	es the following: Excel spreadsheet of all surveyed points. Field notes of all surveyed points Pictures/images of all surveyed points KML file of all surveyed points (Check Shots.kml) <u>t Summary</u> roject scope required the survey of Independent Check Points for the use to test the accuracy of the data and derivative products. All points have been selected by Forte and Tablada and approved by erry called ARB Task Order 3 (Check Shots) _revised. The collection of the data was surveyed as closs LiDAR acquisition timeframe as possible. The timeframe in which the survey took place started on

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 79 of 97

Appendix B: Ground Control Survey Report

Mississippi. Field crew supervisors in charge of gather the survey data was Madison Mills and Steven Sullivan. Project Area For the location of the surveyed Acquisition Ground Control Points (Calibrated Control Points), see (Calibrated Control Points.kml). Amite River Basin QL1 LIDAR Project Legend cruisition Ground Control - Calibrated Control R A CCO Google Earth Survey Equipment & Network Design The main equipment used for this project was survey grade GPS system. The GPS rover receiver used was a Trimble R-10 receiver along with a Trimble TCS3 data collector. RTN system was utilized to derive the WWW.FORTEANDTABLADA.COM BATON ROUGE DENHAM SPRINGS SHREVEPORT

coordinates of each surveyed point. The RTN system used was Leica Smartnet.

Field Survey Procedure and Analysis

Before the Calibrated Control Points (CCP) were surveyed a check was performed on control point number 14. The origin of point 14 was provided from an ongoing LA DOTD project, State Project No. H004100.5 and was transformed to coordinated system UTM 15N. Control sketch for point 14 will be attached to deliverable. To establish an additional control point a minimum of three separate three minute (180 epochs) are taken and averaged together. To establish a CCP, one occupation of 180 epochs was observed. After the first observation initialization between the base and rover was "broken" and then re-initialized. Once regained a second occupation of 180 epochs was observed. The point was considered acceptable if both observations meet a tolerance of 0.05 cm. If the tolerance was not met a third occupation was observed and compared and the outlier was discarded. The two acceptable observations were then averaged and the CCP coordinates were established. Elevation mask for satellites was set at 12 degrees and PDOPs were set a 6.0.

Data Processing and Quality Control Procedure

For validation of the survey data, 50% of the CCP were re-observed at different date using the same procedure. If the re-observation was not within a tolerance of 0.05 cm the CCP was observed a third at a later date and time. Once the third observation was collected the outlier was discarded and the last observed coordinates were held and accepted.

Final Coordinates

See excel spreadsheet for coordinates. The format for the excel spreadsheet is as followed: Easting, Northing, Elevation, Point ID, Type of Survey, Description, Date surveyed, Spatial reference, and Check shot.

Should you have any questions or require any further assistance, please do not hesitate to contact me.

STEVE A. LeBLANC License No. 5143 PROFESSIONAL SURVER Steve A. LeBlanc, P.L.S.	-	PS-27607 PS-27607 PS-27607 OF-MISSISSING Ross A. Wilson, P.S., P.L.S., R.P.L.S.
	WWW.FORTEANDTABLADA.CO	M

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 82 of 97

Appendix C: Complete List of Delivered Tiles

15RXP6958	15RXP7361	15RXP7596	15RXP7840	15RXP7940
15RXP6960	15RXP7363	15RXP7597	15RXP7842	15RXP7942
15RXP6961	15RXP7364	15RXP7599	15RXP7843	15RXP7943
15RXP6996	15RXP7366	15RXP7640	15RXP7845	15RXP7945
15RXP6997	15RXP7367	15RXP7642	15RXP7851	15RXP7946
15RXP6999	15RXP7369	15RXP7651	15RXP7852	15RXP7949
15RXP7051	15RXP7379	15RXP7652	15RXP7854	15RXP7951
15RXP7052	15RXP7381	15RXP7654	15RXP7855	15RXP7952
15RXP7054	15RXP7382	15RXP7657	15RXP7857	15RXP7954
15RXP7058	15RXP7384	15RXP7658	15RXP7858	15RXP7955
15RXP7060	15RXP7394	15RXP7660	15RXP7860	15RXP7957
15RXP7061	15RXP7396	15RXP7661	15RXP7861	15RXP7958
15RXP7063	15RXP7397	15RXP7663	15RXP7863	15RXP7960
15RXP7082	15RXP7399	15RXP7664	15RXP7864	15RXP7961
15RXP7096	15RXP7551	15RXP7666	15RXP7866	15RXP7963
15RXP7097	15RXP7552	15RXP7667	15RXP7867	15RXP7964
15RXP7099	15RXP7554	15RXP7669	15RXP7869	15RXP7966
15RXP7251	15RXP7558	15RXP7670	15RXP7870	15RXP7967
15RXP7252	15RXP7560	15RXP7672	15RXP7872	15RXP7969
15RXP7254	15RXP7561	15RXP7673	15RXP7873	15RXP7970
15RXP7258	15RXP7563	15RXP7675	15RXP7875	15RXP7972
15RXP7260	15RXP7564	15RXP7676	15RXP7876	15RXP7973
15RXP7261	15RXP7566	15RXP7678	15RXP7878	15RXP7975
15RXP7263	15RXP7567	15RXP7679	15RXP7879	15RXP7976
15RXP7264	15RXP7569	15RXP7681	15RXP7881	15RXP7978
15RXP7266	15RXP7570	15RXP7682	15RXP7882	15RXP7979
15RXP7281	15RXP7572	15RXP7684	15RXP7884	15RXP7981
15RXP7282	15RXP7573	15RXP7685	15RXP7885	15RXP7982
15RXP7294	15RXP7575	15RXP7687	15RXP7887	15RXP7984
15RXP7296	15RXP7579	15RXP7688	15RXP7888	15RXP7985
15RXP7297	15RXP7581	15RXP7691	15RXP7890	15RXP7987
15RXP7299	15RXP7582	15RXP7693	15RXP7891	15RXP7988
15RXP7351	15RXP7584	15RXP7694	15RXP7893	15RXP7990
15RXP7352	15RXP7585	15RXP7696	15RXP7894	15RXP7991
15RXP7354	15RXP7591	15RXP7697	15RXP7896	15RXP7993
15RXP7358	15RXP7593	15RXP7699	15RXP7897	15RXP7994
15RXP7360	15RXP7594	15RXP7839	15RXP7899	15RXP7996

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 83 of 97

15RXP7997	15RXP8243	15RXP8449	15RXP8555	15RXP8761
15RXP7999	15RXP8245	15RXP8451	15RXP8557	15RXP8763
15RXP8142	15RXP8246	15RXP8452	15RXP8558	15RXP8764
15RXP8143	15RXP8248	15RXP8454	15RXP8560	15RXP8766
15RXP8145	15RXP8249	15RXP8455	15RXP8561	15RXP8767
15RXP8146	15RXP8251	15RXP8457	15RXP8563	15RXP8769
15RXP8148	15RXP8252	15RXP8458	15RXP8564	15RXP8770
15RXP8149	15RXP8254	15RXP8460	15RXP8566	15RXP8772
15RXP8151	15RXP8255	15RXP8461	15RXP8567	15RXP8773
15RXP8152	15RXP8257	15RXP8463	15RXP8569	15RXP8775
15RXP8154	15RXP8258	15RXP8464	15RXP8570	15RXP8776
15RXP8155	15RXP8260	15RXP8466	15RXP8572	15RXP8778
15RXP8157	15RXP8261	15RXP8467	15RXP8573	15RXP8779
15RXP8158	15RXP8263	15RXP8469	15RXP8575	15RXP8781
15RXP8160	15RXP8264	15RXP8470	15RXP8576	15RXP8782
15RXP8161	15RXP8266	15RXP8472	15RXP8578	15RXP8784
15RXP8163	15RXP8267	15RXP8473	15RXP8579	15RXP8785
15RXP8164	15RXP8269	15RXP8475	15RXP8581	15RXP8787
15RXP8166	15RXP8270	15RXP8476	15RXP8582	15RXP8788
15RXP8167	15RXP8272	15RXP8478	15RXP8584	15RXP8790
15RXP8169	15RXP8273	15RXP8479	15RXP8585	15RXP8791
15RXP8170	15RXP8275	15RXP8481	15RXP8587	15RXP8793
15RXP8172	15RXP8276	15RXP8482	15RXP8588	15RXP8794
15RXP8173	15RXP8278	15RXP8484	15RXP8590	15RXP8796
15RXP8175	15RXP8279	15RXP8485	15RXP8591	15RXP8797
15RXP8176	15RXP8281	15RXP8487	15RXP8593	15RXP8799
15RXP8178	15RXP8282	15RXP8488	15RXP8594	15RXP8845
15RXP8179	15RXP8284	15RXP8490	15RXP8596	15RXP8846
15RXP8181	15RXP8285	15RXP8491	15RXP8597	15RXP8848
15RXP8182	15RXP8287	15RXP8493	15RXP8599	15RXP8849
15RXP8184	15RXP8288	15RXP8494	15RXP8743	15RXP8851
15RXP8185	15RXP8290	15RXP8496	15RXP8745	15RXP8852
15RXP8187	15RXP8291	15RXP8497	15RXP8746	15RXP8854
15RXP8188	15RXP8293	15RXP8499	15RXP8748	15RXP8855
15RXP8190	15RXP8294	15RXP8543	15RXP8749	15RXP8857
15RXP8191	15RXP8296	15RXP8545	15RXP8751	15RXP8858
15RXP8193	15RXP8297	15RXP8546	15RXP8752	15RXP8860
15RXP8194	15RXP8299	15RXP8548	15RXP8754	15RXP8861
15RXP8196	15RXP8443	15RXP8549	15RXP8755	15RXP8863
15RXP8197	15RXP8445	15RXP8551	15RXP8757	15RXP8864
15RXP8199	15RXP8446	15RXP8552	15RXP8758	15RXP8866
15RXP8242	15RXP8448	15RXP8554	15RXP8760	15RXP8867

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 84 of 97

15RXP8869	15RXP9078	15RXP9188	15RXP9399	15RXP9664
15RXP8870	15RXP9079	15RXP9190	15RXP9448	15RXP9666
15RXP8872	15RXP9081	15RXP9191	15RXP9452	15RXP9667
15RXP8873	15RXP9082	15RXP9193	15RXP9454	15RXP9669
15RXP8875	15RXP9084	15RXP9194	15RXP9455	15RXP9670
15RXP8876	15RXP9085	15RXP9196	15RXP9457	15RXP9672
15RXP8878	15RXP9087	15RXP9197	15RXP9458	15RXP9673
15RXP8879	15RXP9088	15RXP9199	15RXP9460	15RXP9675
15RXP8881	15RXP9090	15RXP9348	15RXP9461	15RXP9676
15RXP8882	15RXP9091	15RXP9349	15RXP9463	15RXP9678
15RXP8884	15RXP9093	15RXP9351	15RXP9464	15RXP9679
15RXP8885	15RXP9094	15RXP9352	15RXP9466	15RXP9681
15RXP8887	15RXP9096	15RXP9354	15RXP9467	15RXP9682
15RXP8888	15RXP9097	15RXP9355	15RXP9469	15RXP9684
15RXP8890	15RXP9099	15RXP9357	15RXP9470	15RXP9685
15RXP8891	15RXP9148	15RXP9358	15RXP9472	15RXP9687
15RXP8893	15RXP9149	15RXP9360	15RXP9473	15RXP9688
15RXP8894	15RXP9151	15RXP9361	15RXP9475	15RXP9690
15RXP8896	15RXP9152	15RXP9363	15RXP9476	15RXP9691
15RXP8897	15RXP9154	15RXP9364	15RXP9478	15RXP9693
15RXP8899	15RXP9155	15RXP9366	15RXP9479	15RXP9694
15RXP9046	15RXP9157	15RXP9367	15RXP9481	15RXP9696
15RXP9048	15RXP9158	15RXP9369	15RXP9482	15RXP9697
15RXP9049	15RXP9160	15RXP9370	15RXP9484	15RXP9699
15RXP9051	15RXP9161	15RXP9372	15RXP9485	15RXP9752
15RXP9052	15RXP9163	15RXP9373	15RXP9487	15RXP9754
15RXP9054	15RXP9164	15RXP9375	15RXP9488	15RXP9755
15RXP9055	15RXP9166	15RXP9376	15RXP9490	15RXP9757
15RXP9057	15RXP9167	15RXP9378	15RXP9491	15RXP9758
15RXP9058	15RXP9169	15RXP9379	15RXP9493	15RXP9760
15RXP9060	15RXP9170	15RXP9381	15RXP9494	15RXP9761
15RXP9061	15RXP9172	15RXP9382	15RXP9496	15RXP9763
15RXP9063	15RXP9173	15RXP9384	15RXP9497	15RXP9764
15RXP9064	15RXP9175	15RXP9385	15RXP9499	15RXP9766
15RXP9066	15RXP9176	15RXP9387	15RXP9652	15RXP9767
15RXP9067	15RXP9178	15RXP9388	15RXP9654	15RXP9769
15RXP9069	15RXP9179	15RXP9390	15RXP9655	15RXP9770
15RXP9070	15RXP9181	15RXP9391	15RXP9657	15RXP9772
15RXP9072	15RXP9182	15RXP9393	15RXP9658	15RXP9773
15RXP9073	15RXP9184	15RXP9394	15RXP9660	15RXP9775
15RXP9075	15RXP9185	15RXP9396	15RXP9661	15RXP9776
15RXP9076	15RXP9187	15RXP9397	15RXP9663	15RXP9778

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 85 of 97

15RXP9779	15RXP9994	15RXQ7603	15RXQ7909	15RXQ8135
15RXP9781	15RXP9996	15RXQ7605	15RXQ7911	15RXQ8136
15RXP9782	15RXP9997	15RXQ7606	15RXQ7912	15RXQ8138
15RXP9784	15RXP9999	15RXQ7608	15RXQ7914	15RXQ8200
15RXP9785	15RXQ6900	15RXQ7609	15RXQ7915	15RXQ8202
15RXP9787	15RXQ6902	15RXQ7611	15RXQ7917	15RXQ8203
15RXP9788	15RXQ6903	15RXQ7612	15RXQ7918	15RXQ8205
15RXP9790	15RXQ6905	15RXQ7614	15RXQ7920	15RXQ8206
15RXP9791	15RXQ7000	15RXQ7615	15RXQ7921	15RXQ8208
15RXP9793	15RXQ7002	15RXQ7617	15RXQ7923	15RXQ8209
15RXP9794	15RXQ7003	15RXQ7618	15RXQ7924	15RXQ8211
15RXP9796	15RXQ7005	15RXQ7620	15RXQ7926	15RXQ8212
15RXP9797	15RXQ7200	15RXQ7621	15RXQ7927	15RXQ8214
15RXP9799	15RXQ7202	15RXQ7623	15RXQ7929	15RXQ8215
15RXP9952	15RXQ7203	15RXQ7800	15RXQ7930	15RXQ8217
15RXP9954	15RXQ7205	15RXQ7802	15RXQ7932	15RXQ8218
15RXP9955	15RXQ7206	15RXQ7803	15RXQ7933	15RXQ8220
15RXP9957	15RXQ7208	15RXQ7805	15RXQ7935	15RXQ8221
15RXP9958	15RXQ7212	15RXQ7806	15RXQ7936	15RXQ8223
15RXP9960	15RXQ7300	15RXQ7808	15RXQ8100	15RXQ8224
15RXP9961	15RXQ7302	15RXQ7809	15RXQ8102	15RXQ8226
15RXP9963	15RXQ7303	15RXQ7811	15RXQ8103	15RXQ8227
15RXP9964	15RXQ7305	15RXQ7812	15RXQ8105	15RXQ8229
15RXP9966	15RXQ7306	15RXQ7814	15RXQ8106	15RXQ8230
15RXP9967	15RXQ7308	15RXQ7815	15RXQ8108	15RXQ8232
15RXP9969	15RXQ7309	15RXQ7817	15RXQ8109	15RXQ8233
15RXP9970	15RXQ7311	15RXQ7818	15RXQ8111	15RXQ8235
15RXP9972	15RXQ7312	15RXQ7820	15RXQ8112	15RXQ8236
15RXP9973	15RXQ7314	15RXQ7821	15RXQ8114	15RXQ8238
15RXP9975	15RXQ7500	15RXQ7823	15RXQ8115	15RXQ8239
15RXP9976	15RXQ7502	15RXQ7829	15RXQ8117	15RXQ8241
15RXP9978	15RXQ7503	15RXQ7830	15RXQ8118	15RXQ8242
15RXP9979	15RXQ7505	15RXQ7832	15RXQ8120	15RXQ8248
15RXP9981	15RXQ7506	15RXQ7833	15RXQ8121	15RXQ8400
15RXP9982	15RXQ7508	15RXQ7835	15RXQ8123	15RXQ8402
15RXP9984	15RXQ7509	15RXQ7836	15RXQ8124	15RXQ8403
15RXP9985	15RXQ7511	15RXQ7900	15RXQ8126	15RXQ8405
15RXP9987	15RXQ7512	15RXQ7902	15RXQ8127	15RXQ8406
15RXP9988	15RXQ7514	15RXQ7903	15RXQ8129	15RXQ8408
15RXP9990	15RXQ7515	15RXQ7905	15RXQ8130	15RXQ8409
15RXP9991	15RXQ7600	15RXQ7906	15RXQ8132	15RXQ8411
15RXP9993	15RXQ7602	15RXQ7908	15RXQ8133	15RXQ8412

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 86 of 97

15RXQ8414	15RXQ8527	15RXQ8738	15RXQ8844	15RXQ9048
15RXQ8415	15RXQ8529	15RXQ8739	15RXQ8845	15RXQ9050
15RXQ8417	15RXQ8530	15RXQ8741	15RXQ8847	15RXQ9051
15RXQ8418	15RXQ8532	15RXQ8742	15RXQ8848	15RXQ9053
15RXQ8420	15RXQ8533	15RXQ8744	15RXQ8850	15RXQ9054
15RXQ8421	15RXQ8535	15RXQ8745	15RXQ8851	15RXQ9056
15RXQ8423	15RXQ8536	15RXQ8747	15RXQ8853	15RXQ9057
15RXQ8424	15RXQ8538	15RXQ8748	15RXQ8854	15RXQ9100
15RXQ8426	15RXQ8539	15RXQ8750	15RXQ8856	15RXQ9102
15RXQ8427	15RXQ8541	15RXQ8751	15RXQ8857	15RXQ9103
15RXQ8429	15RXQ8542	15RXQ8753	15RXQ9000	15RXQ9105
15RXQ8430	15RXQ8544	15RXQ8754	15RXQ9002	15RXQ9106
15RXQ8432	15RXQ8545	15RXQ8756	15RXQ9003	15RXQ9108
15RXQ8433	15RXQ8547	15RXQ8800	15RXQ9005	15RXQ9109
15RXQ8435	15RXQ8548	15RXQ8802	15RXQ9006	15RXQ9111
15RXQ8436	15RXQ8550	15RXQ8803	15RXQ9008	15RXQ9112
15RXQ8438	15RXQ8551	15RXQ8805	15RXQ9009	15RXQ9114
15RXQ8439	15RXQ8700	15RXQ8806	15RXQ9011	15RXQ9115
15RXQ8441	15RXQ8702	15RXQ8808	15RXQ9012	15RXQ9117
15RXQ8442	15RXQ8703	15RXQ8809	15RXQ9014	15RXQ9118
15RXQ8444	15RXQ8705	15RXQ8811	15RXQ9015	15RXQ9120
15RXQ8447	15RXQ8706	15RXQ8812	15RXQ9017	15RXQ9121
15RXQ8448	15RXQ8708	15RXQ8814	15RXQ9018	15RXQ9123
15RXQ8450	15RXQ8709	15RXQ8815	15RXQ9020	15RXQ9124
15RXQ8500	15RXQ8711	15RXQ8817	15RXQ9021	15RXQ9126
15RXQ8502	15RXQ8712	15RXQ8818	15RXQ9023	15RXQ9127
15RXQ8503	15RXQ8714	15RXQ8820	15RXQ9024	15RXQ9129
15RXQ8505	15RXQ8715	15RXQ8821	15RXQ9026	15RXQ9130
15RXQ8506	15RXQ8717	15RXQ8823	15RXQ9027	15RXQ9132
15RXQ8508	15RXQ8718	15RXQ8824	15RXQ9029	15RXQ9133
15RXQ8509	15RXQ8720	15RXQ8826	15RXQ9030	15RXQ9135
15RXQ8511	15RXQ8721	15RXQ8827	15RXQ9032	15RXQ9136
15RXQ8512	15RXQ8723	15RXQ8829	15RXQ9033	15RXQ9138
15RXQ8514	15RXQ8724	15RXQ8830	15RXQ9035	15RXQ9139
15RXQ8515	15RXQ8726	15RXQ8832	15RXQ9036	15RXQ9141
15RXQ8517	15RXQ8727	15RXQ8833	15RXQ9038	15RXQ9142
15RXQ8518	15RXQ8729	15RXQ8835	15RXQ9039	15RXQ9144
15RXQ8520	15RXQ8730	15RXQ8836	15RXQ9041	15RXQ9145
15RXQ8521	15RXQ8732	15RXQ8838	15RXQ9042	15RXQ9147
15RXQ8523	15RXQ8733	15RXQ8839	15RXQ9044	15RXQ9148
15RXQ8524	15RXQ8735	15RXQ8841	15RXQ9045	15RXQ9150
15RXQ8526	15RXQ8736	15RXQ8842	15RXQ9047	15RXQ9151

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 87 of 97

15RXQ9153	15RXQ9402	15RXQ9609	15RXQ9714	15RXQ9914
15RXQ9154	15RXQ9403	15RXQ9611	15RXQ9715	15RXQ9915
15RXQ9156	15RXQ9405	15RXQ9612	15RXQ9717	15RXQ9917
15RXQ9300	15RXQ9406	15RXQ9614	15RXQ9718	15RXQ9918
15RXQ9302	15RXQ9408	15RXQ9615	15RXQ9720	15RXQ9920
15RXQ9303	15RXQ9409	15RXQ9617	15RXQ9721	15RXQ9921
15RXQ9305	15RXQ9411	15RXQ9618	15RXQ9723	15RXQ9923
15RXQ9306	15RXQ9412	15RXQ9620	15RXQ9724	15RXQ9924
15RXQ9308	15RXQ9414	15RXQ9621	15RXQ9726	15RXQ9926
15RXQ9309	15RXQ9415	15RXQ9623	15RXQ9727	15RXQ9927
15RXQ9311	15RXQ9417	15RXQ9624	15RXQ9729	15RXQ9929
15RXQ9312	15RXQ9418	15RXQ9626	15RXQ9730	15RXQ9930
15RXQ9314	15RXQ9420	15RXQ9627	15RXQ9732	15RXQ9932
15RXQ9315	15RXQ9421	15RXQ9629	15RXQ9733	15RXQ9933
15RXQ9317	15RXQ9423	15RXQ9630	15RXQ9735	15RXQ9935
15RXQ9318	15RXQ9424	15RXQ9632	15RXQ9736	15RXQ9936
15RXQ9320	15RXQ9426	15RXQ9633	15RXQ9738	15RXQ9938
15RXQ9321	15RXQ9427	15RXQ9635	15RXQ9739	15RXQ9939
15RXQ9323	15RXQ9429	15RXQ9636	15RXQ9741	15RXQ9941
15RXQ9324	15RXQ9430	15RXQ9638	15RXQ9742	15RXQ9942
15RXQ9326	15RXQ9432	15RXQ9639	15RXQ9744	15RXQ9944
15RXQ9327	15RXQ9433	15RXQ9641	15RXQ9745	15RXQ9945
15RXQ9329	15RXQ9435	15RXQ9642	15RXQ9747	15RXQ9947
15RXQ9330	15RXQ9436	15RXQ9644	15RXQ9748	15RXQ9948
15RXQ9332	15RXQ9438	15RXQ9645	15RXQ9750	15RXQ9950
15RXQ9333	15RXQ9439	15RXQ9647	15RXQ9751	15RXQ9951
15RXQ9335	15RXQ9441	15RXQ9648	15RXQ9753	15RXQ9953
15RXQ9336	15RXQ9442	15RXQ9650	15RXQ9754	15RXQ9954
15RXQ9338	15RXQ9444	15RXQ9651	15RXQ9756	15RXQ9956
15RXQ9339	15RXQ9445	15RXQ9653	15RXQ9757	15RXQ9957
15RXQ9341	15RXQ9447	15RXQ9654	15RXQ9759	15RXQ9959
15RXQ9342	15RXQ9448	15RXQ9659	15RXQ9760	15RXQ9960
15RXQ9344	15RXQ9450	15RXQ9660	15RXQ9762	15RXQ9962
15RXQ9345	15RXQ9451	15RXQ9700	15RXQ9900	15RXQ9963
15RXQ9347	15RXQ9453	15RXQ9702	15RXQ9902	15RXQ9965
15RXQ9348	15RXQ9454	15RXQ9703	15RXQ9903	15RYP0052
15RXQ9350	15RXQ9600	15RXQ9705	15RXQ9905	15RYP0054
15RXQ9351	15RXQ9602	15RXQ9706	15RXQ9906	15RYP0055
15RXQ9353	15RXQ9603	15RXQ9708	15RXQ9908	15RYP0057
15RXQ9354	15RXQ9605	15RXQ9709	15RXQ9909	15RYP0058
15RXQ9356	15RXQ9606	15RXQ9711	15RXQ9911	15RYP0060
15RXQ9400	15RXQ9608	15RXQ9712	15RXQ9912	15RYP0061

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 88 of 97

15RYP0063	15RYP0276	15RYP0390	15RYP0655	15RYP0872
15RYP0064	15RYP0278	15RYP0391	15RYP0657	15RYP0873
15RYP0066	15RYP0279	15RYP0393	15RYP0658	15RYP0875
15RYP0067	15RYP0281	15RYP0394	15RYP0660	15RYP0876
15RYP0069	15RYP0282	15RYP0396	15RYP0661	15RYP0878
15RYP0070	15RYP0284	15RYP0397	15RYP0663	15RYP0879
15RYP0072	15RYP0285	15RYP0399	15RYP0664	15RYP0881
15RYP0073	15RYP0287	15RYP0552	15RYP0666	15RYP0882
15RYP0075	15RYP0288	15RYP0554	15RYP0667	15RYP0884
15RYP0076	15RYP0290	15RYP0555	15RYP0669	15RYP0885
15RYP0078	15RYP0291	15RYP0557	15RYP0670	15RYP0887
15RYP0079	15RYP0293	15RYP0558	15RYP0672	15RYP0888
15RYP0081	15RYP0294	15RYP0560	15RYP0673	15RYP0896
15RYP0082	15RYP0296	15RYP0561	15RYP0675	15RYP0897
15RYP0084	15RYP0297	15RYP0563	15RYP0676	15RYP0899
15RYP0085	15RYP0299	15RYP0564	15RYP0678	15RYP0949
15RYP0087	15RYP0351	15RYP0566	15RYP0679	15RYP0951
15RYP0088	15RYP0352	15RYP0567	15RYP0681	15RYP0952
15RYP0090	15RYP0354	15RYP0569	15RYP0682	15RYP0954
15RYP0091	15RYP0355	15RYP0570	15RYP0684	15RYP0955
15RYP0093	15RYP0357	15RYP0572	15RYP0685	15RYP0957
15RYP0094	15RYP0358	15RYP0573	15RYP0687	15RYP0958
15RYP0096	15RYP0360	15RYP0575	15RYP0688	15RYP0960
15RYP0097	15RYP0361	15RYP0576	15RYP0690	15RYP0961
15RYP0099	15RYP0363	15RYP0578	15RYP0694	15RYP0963
15RYP0251	15RYP0364	15RYP0579	15RYP0696	15RYP0964
15RYP0252	15RYP0366	15RYP0581	15RYP0697	15RYP0966
15RYP0254	15RYP0367	15RYP0582	15RYP0699	15RYP0967
15RYP0255	15RYP0369	15RYP0584	15RYP0851	15RYP0969
15RYP0257	15RYP0370	15RYP0585	15RYP0852	15RYP0970
15RYP0258	15RYP0372	15RYP0587	15RYP0854	15RYP0972
15RYP0260	15RYP0373	15RYP0588	15RYP0855	15RYP0973
15RYP0261	15RYP0375	15RYP0590	15RYP0857	15RYP0975
15RYP0263	15RYP0376	15RYP0591	15RYP0858	15RYP0976
15RYP0264	15RYP0378	15RYP0593	15RYP0860	15RYP0978
15RYP0266	15RYP0379	15RYP0594	15RYP0861	15RYP0979
15RYP0267	15RYP0381	15RYP0596	15RYP0863	15RYP0981
15RYP0269	15RYP0382	15RYP0597	15RYP0864	15RYP0982
15RYP0270	15RYP0384	15RYP0599	15RYP0866	15RYP0984
15RYP0272	15RYP0385	15RYP0651	15RYP0867	15RYP0985
15RYP0273	15RYP0387	15RYP0652	15RYP0869	15RYP0987
15RYP0275	15RYP0388	15RYP0654	15RYP0870	15RYP0988

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 89 of 97

15RYP0999	15RYP1270	15RYP1555	15RYP1857	15RYP2752
15RYP1149	15RYP1272	15RYP1557	15RYP1858	15RYP2754
15RYP1151	15RYP1273	15RYP1558	15RYP1860	15RYP2755
15RYP1152	15RYP1275	15RYP1560	15RYP1861	15RYP2757
15RYP1154	15RYP1276	15RYP1561	15RYP2049	15RYP2758
15RYP1155	15RYP1278	15RYP1563	15RYP2051	15RYP2760
15RYP1157	15RYP1279	15RYP1564	15RYP2052	15RYP2952
15RYP1158	15RYP1281	15RYP1566	15RYP2054	15RYP2954
15RYP1160	15RYP1282	15RYP1567	15RYP2055	15RYP2955
15RYP1161	15RYP1284	15RYP1569	15RYP2057	15RYP2957
15RYP1163	15RYP1285	15RYP1570	15RYP2058	15RYP2958
15RYP1164	15RYP1287	15RYP1572	15RYP2060	15RYP2960
15RYP1166	15RYP1448	15RYP1573	15RYP2061	15RYP3051
15RYP1167	15RYP1449	15RYP1575	15RYP2063	15RYP3052
15RYP1169	15RYP1451	15RYP1576	15RYP2152	15RYP3054
15RYP1170	15RYP1452	15RYP1578	15RYP2154	15RYP3055
15RYP1172	15RYP1454	15RYP1579	15RYP2155	15RYP3057
15RYP1173	15RYP1455	15RYP1581	15RYP2157	15RYP3058
15RYP1175	15RYP1457	15RYP1582	15RYP2158	15RYP3060
15RYP1176	15RYP1458	15RYP1748	15RYP2160	15RYP3251
15RYP1178	15RYP1460	15RYP1749	15RYP2161	15RYP3252
15RYP1179	15RYP1461	15RYP1751	15RYP2163	15RYP3254
15RYP1181	15RYP1463	15RYP1752	15RYP2352	15RYP3255
15RYP1182	15RYP1464	15RYP1754	15RYP2354	15RYP3257
15RYP1184	15RYP1466	15RYP1755	15RYP2355	15RYP3258
15RYP1185	15RYP1467	15RYP1757	15RYP2357	15RYP3351
15RYP1187	15RYP1469	15RYP1758	15RYP2358	15RYP3352
15RYP1199	15RYP1470	15RYP1760	15RYP2360	15RYP3354
15RYP1249	15RYP1472	15RYP1761	15RYP2361	15RYP3355
15RYP1251	15RYP1473	15RYP1763	15RYP2452	15RYP3357
15RYP1252	15RYP1475	15RYP1764	15RYP2454	15RYP3358
15RYP1254	15RYP1476	15RYP1766	15RYP2455	15RYP3360
15RYP1255	15RYP1478	15RYP1767	15RYP2457	15RYP3554
15RYP1257	15RYP1479	15RYP1770	15RYP2458	15RYP3555
15RYP1258	15RYP1481	15RYP1772	15RYP2460	15RYP3557
15RYP1260	15RYP1482	15RYP1773	15RYP2461	15RYP3558
15RYP1261	15RYP1484	15RYP1848	15RYP2652	15RYP3560
15RYP1263	15RYP1485	15RYP1849	15RYP2654	15RYP3655
15RYP1264	15RYP1549	15RYP1851	15RYP2655	15RYP3657
15RYP1266	15RYP1551	15RYP1852	15RYP2657	15RYQ0000
15RYP1267	15RYP1552	15RYP1854	15RYP2658	15RYQ0002
15RYP1269	15RYP1554	15RYP1855	15RYP2660	15RYQ0003

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 90 of 97

15RYQ0005	15RYQ0202	15RYQ0265	15RYQ0362	15RYQ0557
15RYQ0006	15RYQ0203	15RYQ0300	15RYQ0363	15RYQ0559
15RYQ0008	15RYQ0205	15RYQ0302	15RYQ0365	15RYQ0560
15RYQ0009	15RYQ0206	15RYQ0303	15RYQ0366	15RYQ0562
15RYQ0011	15RYQ0208	15RYQ0305	15RYQ0500	15RYQ0563
15RYQ0012	15RYQ0209	15RYQ0306	15RYQ0502	15RYQ0565
15RYQ0014	15RYQ0211	15RYQ0308	15RYQ0503	15RYQ0566
15RYQ0015	15RYQ0212	15RYQ0309	15RYQ0505	15RYQ0600
15RYQ0017	15RYQ0214	15RYQ0311	15RYQ0506	15RYQ0602
15RYQ0018	15RYQ0215	15RYQ0312	15RYQ0508	15RYQ0603
15RYQ0020	15RYQ0217	15RYQ0314	15RYQ0509	15RYQ0605
15RYQ0021	15RYQ0218	15RYQ0315	15RYQ0511	15RYQ0606
15RYQ0023	15RYQ0220	15RYQ0317	15RYQ0512	15RYQ0608
15RYQ0024	15RYQ0221	15RYQ0318	15RYQ0514	15RYQ0609
15RYQ0026	15RYQ0223	15RYQ0320	15RYQ0515	15RYQ0611
15RYQ0027	15RYQ0224	15RYQ0321	15RYQ0517	15RYQ0612
15RYQ0029	15RYQ0226	15RYQ0323	15RYQ0518	15RYQ0614
15RYQ0030	15RYQ0227	15RYQ0324	15RYQ0520	15RYQ0615
15RYQ0032	15RYQ0229	15RYQ0326	15RYQ0521	15RYQ0617
15RYQ0033	15RYQ0230	15RYQ0327	15RYQ0523	15RYQ0618
15RYQ0035	15RYQ0232	15RYQ0329	15RYQ0524	15RYQ0620
15RYQ0036	15RYQ0233	15RYQ0330	15RYQ0526	15RYQ0621
15RYQ0038	15RYQ0235	15RYQ0332	15RYQ0527	15RYQ0623
15RYQ0039	15RYQ0236	15RYQ0333	15RYQ0529	15RYQ0624
15RYQ0041	15RYQ0238	15RYQ0335	15RYQ0530	15RYQ0626
15RYQ0042	15RYQ0239	15RYQ0336	15RYQ0532	15RYQ0627
15RYQ0044	15RYQ0241	15RYQ0338	15RYQ0533	15RYQ0629
15RYQ0045	15RYQ0242	15RYQ0339	15RYQ0535	15RYQ0630
15RYQ0047	15RYQ0244	15RYQ0341	15RYQ0536	15RYQ0632
15RYQ0048	15RYQ0245	15RYQ0342	15RYQ0538	15RYQ0633
15RYQ0050	15RYQ0247	15RYQ0344	15RYQ0539	15RYQ0635
15RYQ0051	15RYQ0248	15RYQ0345	15RYQ0541	15RYQ0636
15RYQ0053	15RYQ0250	15RYQ0347	15RYQ0542	15RYQ0638
15RYQ0054	15RYQ0251	15RYQ0348	15RYQ0544	15RYQ0639
15RYQ0056	15RYQ0253	15RYQ0350	15RYQ0545	15RYQ0641
15RYQ0057	15RYQ0254	15RYQ0351	15RYQ0547	15RYQ0642
15RYQ0059	15RYQ0256	15RYQ0353	15RYQ0548	15RYQ0644
15RYQ0060	15RYQ0257	15RYQ0354	15RYQ0550	15RYQ0645
15RYQ0062	15RYQ0259	15RYQ0356	15RYQ0551	15RYQ0647
15RYQ0063	15RYQ0260	15RYQ0357	15RYQ0553	15RYQ0648
15RYQ0065	15RYQ0262	15RYQ0359	15RYQ0554	15RYQ0650
15RYQ0200	15RYQ0263	15RYQ0360	15RYQ0556	15RYQ0651

Dewberry

15RYQ0662	15RYQ0857	15RYQ0947	15RYQ1136	15RYQ1224
15RYQ0663	15RYQ0859	15RYQ0948	15RYQ1138	15RYQ1226
15RYQ0665	15RYQ0860	15RYQ0950	15RYQ1139	15RYQ1227
15RYQ0666	15RYQ0862	15RYQ0951	15RYQ1141	15RYQ1229
15RYQ0800	15RYQ0863	15RYQ0953	15RYQ1142	15RYQ1230
15RYQ0802	15RYQ0865	15RYQ0954	15RYQ1144	15RYQ1232
15RYQ0803	15RYQ0866	15RYQ0956	15RYQ1145	15RYQ1233
15RYQ0805	15RYQ0868	15RYQ0957	15RYQ1147	15RYQ1235
15RYQ0806	15RYQ0869	15RYQ0959	15RYQ1148	15RYQ1236
15RYQ0808	15RYQ0871	15RYQ0960	15RYQ1150	15RYQ1238
15RYQ0809	15RYQ0872	15RYQ0962	15RYQ1151	15RYQ1239
15RYQ0811	15RYQ0900	15RYQ0963	15RYQ1153	15RYQ1241
15RYQ0812	15RYQ0902	15RYQ0965	15RYQ1154	15RYQ1242
15RYQ0814	15RYQ0903	15RYQ0966	15RYQ1156	15RYQ1244
15RYQ0815	15RYQ0905	15RYQ0968	15RYQ1157	15RYQ1245
15RYQ0817	15RYQ0906	15RYQ0969	15RYQ1159	15RYQ1247
15RYQ0818	15RYQ0908	15RYQ0971	15RYQ1160	15RYQ1248
15RYQ0820	15RYQ0909	15RYQ0972	15RYQ1162	15RYQ1250
15RYQ0821	15RYQ0911	15RYQ1100	15RYQ1163	15RYQ1251
15RYQ0823	15RYQ0912	15RYQ1102	15RYQ1165	15RYQ1253
15RYQ0824	15RYQ0914	15RYQ1103	15RYQ1166	15RYQ1254
15RYQ0826	15RYQ0915	15RYQ1105	15RYQ1168	15RYQ1256
15RYQ0827	15RYQ0917	15RYQ1106	15RYQ1169	15RYQ1257
15RYQ0829	15RYQ0918	15RYQ1108	15RYQ1171	15RYQ1259
15RYQ0830	15RYQ0920	15RYQ1109	15RYQ1172	15RYQ1260
15RYQ0832	15RYQ0921	15RYQ1111	15RYQ1174	15RYQ1262
15RYQ0833	15RYQ0923	15RYQ1112	15RYQ1200	15RYQ1263
15RYQ0835	15RYQ0924	15RYQ1114	15RYQ1202	15RYQ1265
15RYQ0836	15RYQ0926	15RYQ1115	15RYQ1203	15RYQ1266
15RYQ0838	15RYQ0927	15RYQ1117	15RYQ1205	15RYQ1268
15RYQ0839	15RYQ0929	15RYQ1118	15RYQ1206	15RYQ1269
15RYQ0841	15RYQ0930	15RYQ1120	15RYQ1208	15RYQ1271
15RYQ0842	15RYQ0932	15RYQ1121	15RYQ1209	15RYQ1272
15RYQ0844	15RYQ0933	15RYQ1123	15RYQ1211	15RYQ1274
15RYQ0845	15RYQ0935	15RYQ1124	15RYQ1212	15RYQ1400
15RYQ0847	15RYQ0936	15RYQ1126	15RYQ1214	15RYQ1402

15RYQ0938

15RYQ0939

15RYQ0941

15RYQ0942

15RYQ0944

15RYQ0945

15RYQ1127

15RYQ1129

15RYQ1130

15RYQ1132

15RYQ1133

15RYQ1135

15RYQ1215 15RYQ1217

15RYQ1218 15RYQ1220

15RYQ1221

15RYQ1223

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 91 of 97

15RYQ0848

15RYQ0850

15RYQ0851

15RYQ0853

15RYQ0854

15RYQ0856

15RYQ0653

15RYQ0654

15RYQ0656

15RYQ0657

15RYQ0659

15RYQ0660

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 92 of 97

15RYQ1403	15RYQ1468	15RYQ1566	15RYQ1771	15RYQ2050
15RYQ1405	15RYQ1469	15RYQ1568	15RYQ1772	15RYQ2051
15RYQ1406	15RYQ1471	15RYQ1569	15RYQ1826	15RYQ2053
15RYQ1408	15RYQ1472	15RYQ1571	15RYQ1827	15RYQ2054
15RYQ1409	15RYQ1474	15RYQ1572	15RYQ1829	15RYQ2056
15RYQ1412	15RYQ1503	15RYQ1715	15RYQ1830	15RYQ2057
15RYQ1414	15RYQ1505	15RYQ1717	15RYQ1832	15RYQ2059
15RYQ1415	15RYQ1514	15RYQ1718	15RYQ1833	15RYQ2060
15RYQ1417	15RYQ1515	15RYQ1720	15RYQ1836	15RYQ2062
15RYQ1418	15RYQ1517	15RYQ1721	15RYQ1838	15RYQ2063
15RYQ1420	15RYQ1518	15RYQ1723	15RYQ1839	15RYQ2065
15RYQ1421	15RYQ1520	15RYQ1724	15RYQ1841	15RYQ2066
15RYQ1423	15RYQ1521	15RYQ1726	15RYQ1842	15RYQ2068
15RYQ1424	15RYQ1523	15RYQ1727	15RYQ1844	15RYQ2069
15RYQ1426	15RYQ1524	15RYQ1729	15RYQ1845	15RYQ2071
15RYQ1427	15RYQ1526	15RYQ1730	15RYQ1847	15RYQ2072
15RYQ1429	15RYQ1527	15RYQ1732	15RYQ1848	15RYQ2142
15RYQ1430	15RYQ1529	15RYQ1733	15RYQ1850	15RYQ2144
15RYQ1432	15RYQ1530	15RYQ1735	15RYQ1851	15RYQ2145
15RYQ1433	15RYQ1532	15RYQ1736	15RYQ1853	15RYQ2147
15RYQ1435	15RYQ1533	15RYQ1738	15RYQ1854	15RYQ2148
15RYQ1436	15RYQ1535	15RYQ1739	15RYQ1856	15RYQ2150
15RYQ1438	15RYQ1536	15RYQ1741	15RYQ1857	15RYQ2151
15RYQ1439	15RYQ1538	15RYQ1742	15RYQ1859	15RYQ2153
15RYQ1441	15RYQ1539	15RYQ1744	15RYQ1860	15RYQ2154
15RYQ1442	15RYQ1541	15RYQ1745	15RYQ1862	15RYQ2156
15RYQ1444	15RYQ1542	15RYQ1747	15RYQ1863	15RYQ2157
15RYQ1445	15RYQ1544	15RYQ1748	15RYQ1865	15RYQ2159
15RYQ1447	15RYQ1545	15RYQ1750	15RYQ1866	15RYQ2160
15RYQ1448	15RYQ1547	15RYQ1751	15RYQ1868	15RYQ2162
15RYQ1450	15RYQ1548	15RYQ1753	15RYQ1869	15RYQ2163
15RYQ1451	15RYQ1550	15RYQ1754	15RYQ1871	15RYQ2165
15RYQ1453	15RYQ1551	15RYQ1756	15RYQ1872	15RYQ2166
15RYQ1454	15RYQ1553	15RYQ1757	15RYQ2033	15RYQ2168
15RYQ1456	15RYQ1554	15RYQ1759	15RYQ2038	15RYQ2169
15RYQ1457	15RYQ1556	15RYQ1760	15RYQ2039	15RYQ2171
15RYQ1459	15RYQ1557	15RYQ1762	15RYQ2041	15RYQ2172
15RYQ1460	15RYQ1559	15RYQ1763	15RYQ2042	15RYQ2174
15RYQ1462	15RYQ1560	15RYQ1765	15RYQ2044	15RYQ2344
15RYQ1463	15RYQ1562	15RYQ1766	15RYQ2045	15RYQ2345
15RYQ1465	15RYQ1563	15RYQ1768	15RYQ2047	15RYQ2347
15RYQ1466	15RYQ1565	15RYQ1769	15RYQ2048	15RYQ2348

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 93 of 97

15RYQ2350	15RY GR971 2671	15RY92966	15 R3R2Q25 75	15R4582627647
15RYQ2351	15RYGRO72672	15RY9 RY68 968	15 R3R2Q 2777	15R1370028648
15RYQ2353	15RYGR\$72674	15RY9 RY62 969	15 R3R2Q28 78	15R132628650
15RYQ2354	15RYGR\$752675	15RY9202971	15 R3R2Q29 80	15R1372632651
15RYQ2356	15RYGRY72677	15RY92972	15 R3R2Q48 48	15R432633653
15RYQ2357	15RYGR\$722678	15RY92974	15 R3R2Q59 50	15R132632654
15RYQ2359	15RY GR&®2 680	15RY9202975	15 R3R2Q5 951	15R132038656
15RYQ2360	15RY GR747 2747	15RY9R902977	15 R3R2Q58 53	15R132627657
15RYQ2362	15RY GR742 2748	15RY9R902978	15 R3R2Q59 54	15R132633659
15RYQ2363	15RY GR759 2750	15RY92980	15 R3R2Q56 56	15R ¥3, 2662 660
15RYQ2365	15RY 9R751 2751	15RY98948	15 R3R2Q5 957	15R1382602662
15RYQ2366	15RY GR752 2753	15RY989050	15 R3R2Q5 959	15R1382603
15RYQ2368	15RY 9R754 2754	15RY987645051	15 R3R2Q69 60	15R432602665
15RYQ2369	15RY 9R756 2756	15RY93053	15 R3R2Q69 62	15R ¥3, 2003 666
15RYQ2371	15RY 9R757 2757	15RY937003054	15 R3R2Q68 63	15R ¥3, 2408 668
15RYQ2372	15RY 9R759 2759	15RY98969056	15 R3R2Q65 65	15R 43, 2603 669
15RYQ2374	15RY GR760 2760	15RY93963057	15 R3R3Q 3077	15R 13 24 03 769
15RYQ2375	15RY GR702 2762	15RY939069	15 R3R3Q38 78	15R 43B279 2771
15RYQ2445	15RYGR762763	15RYGB071	15 R3R3Q80 80	15R 13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15RYQ2447	15RY GR765 2765	15RY93072	15 R3R3Q56 56	15R ¥322/94 774
15RYQ2448	15RY 9R76 2766	15RY93074	15 R3R2Q27 77	15R ¥392492 474
15RYQ2450	15RY 9R762 768	15RY93075	15 R3R2Q2 878	15R ¥3P 249 3 475
15RYQ2451	15RY GR456 2456	15RY92460	15 R3R2Q65 65	15R 13 8 24 8 3 4 6 9
15RYQ2453	15RY GR457 2457	15RY92462	15 R3R2Q6 466	15R 438 2492471
15RYQ2454	15RY GR452 459	15R ¥9æ¥63 463	15 R3R2Q6 868	15R 13 8 24 9 2 4 7 2

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 94 of 97

Dewberry

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 95 of 97

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 96 of 97

Dewberry

LA DOTD Amite Watershed Lidar Project TO# 6 January 25, 2019 Page 97 of 97

Dewberry