NE Northeast Phase 2 Lidar Acquisition and Calibration Report

Report Date: 1/12/2021

SUBMITTED BY:

Ahtna Solutions, LLC 110 W 38th Ave., Ste 200L Anchorage, Alaska 99503 (907) 433-0755

SUBMITTED TO:

Dewberry 1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

Table of Contents

Overview	3
Project Area	3
Acquisition Dates	4
Datum Reference	4
Lidar Acquisition Details	5
Lidar System parameters	5
Acquisition Status Report and Flightlines	6
Acquisition Static Control	7
Airborne GNSS Kinematic	8
Generation and Calibration of Laser Points (raw data)	8
Boresight and Relative accuracy	9
Final Calibration Verification	11
Appendix A: GNSS and IMU Processing Reports for Each Mission	15
Appendix B: Following is a more detailed calibration workflow	68

Overview

Dewberry elected to subcontract the lidar acquisition and calibration activities for this USGS project to Ahtna Solutions, LLC (ASL). ASL was responsible for providing lidar acquisition, calibration, and delivery of lidar data files to Dewberry. Through ASL's Mentor-Protege relationship with Merrick & Company (Merrick), Merrick provided technical support under subcontract to ASL. The project was delivered in 3 separate block sections (North, Central, and South).

PROJECT AREA

The project area addressed by this report falls within several whole and partial counties in the state of Nebraska. The counties include Antelope, Boone, Boyd, Butler, Colfax, Dodge, Hamilton, Holt, Merrick, Platte, Polk, and Saunders. The total size of the project is approximately 7,415 square miles.

Figure 1 – Area of Interest

ACQUISITION DATES

The lidar survey was conducted between November 6, 2020 and December 9, 2020. Each mission represents a lift of the aircraft and system from the ground, data collection, and landing. Multiple lifts within a day are represented by Mission A, B, C, and D. The table below relates each mission to the date collected, the sensor and serial number used, and the actual average MSL in meters.

Mission(s)	Date	Sensor S/N	Actual Avg. MSL (m)
201106_A	November 6, 2020	5060449	3210
201116_A	November 16, 2020	5060449	3260
201117_A	November 17, 2020	5060449	3280
201117_B	November 17, 2020	5060449	3310
201118_A	November 18, 2020	5060449	3310
201119_A	November 19, 2020	5060449	3340
201122_A	November 22, 2020	5060449	3380
201126_A	November 26, 2020	5060449	3180
201127_A	November 27, 2020	5060449	3350
201128_A	November 28, 2020	5060449	3360
201128_B	November 28, 2020	5060449	3370
201130_A	November 30, 2020	5060449	3370
201130_B	November 30, 2020	5060449	3380
201201_A	December 1, 2020	5060449	3315
201202_A	December 2, 2020	5060449	3225
201204_A	December 4, 2020	5060449	3210
201205_A	December 5, 2020	5060449	3200
201207_A	December 7, 2020	5060449	3180
201208_A	December 8, 2020	5060449	3190
201209_A	December 9, 2020	5060449	3205
201209_B	December 9, 2020	5060449	3190

DATUM REFERENCE

Data produced for the project were delivered in the following reference system.

Horizontal Datum: North American Datum of 1983 (NAD 83), National Adjustment of 2011 (NA2011) (epoch 2010.00)

Vertical Datum: North American Vertical Datum of 1988 (NAVD 88); using the latest NGS-approved geoid (i.e., GEOID18)

Coordinate System: UTM Zone 14

Units: Horizontal units are in meters; Vertical units are in meters.

Geoid Model: Geoid18 (Geoid18 was used to convert ellipsoid heights to orthometric heights).

Lidar Acquisition Details

ASL planned 200 passes for the the project area as a series of parallel flight lines with cross flightlines for the purposes of quality control. In order to reduce any margin for error in the flight plan, ASL followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, including the following criteria:

- A digital flight line layout using Optech's FMS Planner flight design software for direct integration into the aircraft flight navigation system.
- Planned flight lines; flight line numbers; and coverage area.
- Lidar coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.
- Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally, ASL will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission.

ASL monitored weather and atmospheric conditions and conducted lidar missions only when no conditions existed below the sensor that would affect the collection of data, such as leaves on hardwoods, snow, rain, fog, smoke, mist and low clouds. ASL accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition.

Within 72-hours prior to the planned day(s) of acquisition, ASL closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis.

ASL lidar sensors are calibrated at designated sites and are periodically checked and adjusted to minimize corrections at project sites.

LIDAR SYSTEM PARAMETERS

ASL operated a fixed wing aircraft outfitted with a Galaxy Prime T2000 lidar system during the collection of the study area. Table 1 illustrates ASL system parameters for lidar acquisition on this project.

Item	Parameter
System	Galaxy Prime T2000 - SN5060449
Maximum Number of Returns per Pulse	8
Nominal Pulse Spacing (single swath), (m)	0.58
Nominal Pulse Density (single swath) (ppsm),	
(m)	3
Aggregate NPS (m) (if ANPS was designed to	
be met through single coverage, ANPS and	
NPS will be equal)	0.58
Aggregate NPD (m) (if ANPD was designed to	
be met through single coverage, ANPD and	
NPD will be equal)	3

Item	Parameter
Altitude (AGL meters)	2750
Approx. Flight Speed (knots)	170
Total Sensor Scan Angle (degree)	40
Scan Frequency (hz)	93
Scanner Pulse Rate (kHz)	1000
Pulse Duration of the Scanner (nanoseconds)	3.5
Pulse Width of the Scanner (m)	1.375
Central Wavelength of the Sensor Laser	
(nanometers)	1064
Did the Sensor Operate with Multiple Pulses	
in The Air? (yes/no)	Yes
Beam Divergence (milliradians)	0.25
Nominal Swath Width on the Ground (m)	2002
Swath Overlap (%)	30
Computed Down Track spacing (m) per beam	0.47
Computed Cross Track Spacing (m) per beam	0.47

Table 1: ASL Lidar System Parameters

ACQUISITION STATUS REPORT AND FLIGHTLINES

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. The Acquisition Manager contacted air traffic control and coordinated flight pattern requirements. During flight operations, the flight crew monitored weather and atmospheric conditions. Lidar missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of PDOPs, and performed the first Q/C review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines impacted by unfavorable conditions were marked as invalid and re-flown immediately or at an optimal time.

Figure 2 shows the combined trajectory of the flightlines.

Figure 2: Trajectories as flown by ASL

ACQUISITION STATIC CONTROL

ASL used Virtual Ground GNSS Base Station(s) to control the lidar airborne flight lines. Trimble CenterPoint[™] RTX[™] correction service is a high-accuracy, satellite-delivered global positioning service. This technology provides high-accuracy GNSS positioning without the use of traditional reference station-based differential RTK infrastructure and delivers very high cm level accuracy. In addition, CORS (Continually Operating Reference Stations) are at times used to further enhance the airborne solution.

AIRBORNE GNSS KINEMATIC

The airborne GNSS data was post-processed using Applanix POSPac Mobile Mapping Suite version 8.x. A fixed-bias carrier phase solution was computed in both the forward and reverse chronological directions. Whenever practical, lidar acquisition was limited to periods when the PDOP was less than 4.0. PDOP indicates satellite geometry relating to position. Generally, PDOP's of 4.0 or less result in a good quality solution, however PDOP's between 4.0 and 5.0 can still yield good results most of the time. PDOP's over 6.0 are of questionable results and PDOP's of over 7.0 usually result in a poor solution. Usually as the number of satellites increase, the PDOP decreases. Other quality control checks used for the GPS include analyzing the combined separation of the forward and reverse GPS processing from one base station and the results of the combined separation when processed from two different base stations. An analysis of the number of satellites, present during the flight and data collection times, is also performed.

The GNSS trajectory was combined with the raw IMU data and post-processed using POSPac Mobile Mapping Suite version 8.x. The SBET and refined attitude data are then utilized in the LMS Post Processor to compute the laser point-positions – the trajectory is combined with the altitude data and laser range measurements to produce the 3-dimensional coordinates of the mass points. Up to four return values are produced within the Optech LMS processor software for each pulse which ensures the greatest chance of ground returns in a heavily forested area.

GNSS processing reports for each mission are included in Appendix A.

GENERATION AND CALIBRATION OF LASER POINTS (RAW DATA)

ASL takes great care to ensure all lidar acquisition missions are carried out in a manner conducive to post-processing an accurate data set. This begins in the flight-planning stage with attention to GPS baseline distances and GPS satellite constellation geometry and outages. Proper AGPS surveying techniques are always followed including pre- and post-mission static initializations. In-air IMU alignments are performed both before and after on-site collection to ensure proper calibration of the IMU accelerometers and gyros.

A minimum of one cross-flight is planned throughout the project area across all flightlines and over roadways where possible. The cross-flight provides a common control surface used to remove any vertical discrepancies in the lidar data between flightlines. The cross-flight is critical to ensure flightline ties across the project area. The areas of overlap between flightlines are used to boresight (calibrate) the lidar point cloud to achieve proper flightline-to-lightline alignment in all three axes. This includes adjustment of both IMU and scanner-related variables such as roll, pitch, heading, timing interval (range), and torsion. Each lidar mission flown is accompanied by a hands-on boresight in the office.

A more detailed calibration workflow can be found in Appendix B.

Figure 3 – Lidar swath output showing complete coverage.

Boresight and Relative accuracy

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the lidar unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point-to-point, flight line-to-flight line and mission-to-mission agreement.

For this project the specifications used are as follow:

Relative accuracy <= 6 cm maximum differences within individual swaths and <=8 cm RMSDz between adjacent and overlapping swaths.

Figure 4 – Profile views showing correct roll and pitch adjustments.

Figure 5 – QC block colored by distance to ensure accuracy at swath edges.

A different set of QC blocks are generated for final review after all transformations have been applied.

Final Calibration Verification

ASL conducted the survey for 96 ground control points (GCPs) which were used to test the accuracy of the calibrated swath data. These 96 GCPs were available to use as control in case the swath data exhibited any biases which would need to be adjusted or removed. The coordinates of all GCPs are provided in table 3 and the accuracy results from testing the calibrated swath data against the GCPs by delivery block is provided in table 4.

ID	x	Y	Coverage	z	Z From LiDAR NVA or VVA	Z Error	Minimum Z	Median Z	Maximum Z	Intensity	Scan Angle Rank	Returns	Description	Comments
3075	543398.455	4741499.885	Yes	427.09	427.089	-0.001	427.087	427.09	427.108	1486	18	1,1,1	LIPT	
3076	482458.301	4756155.024	Yes	626.958	626.929	-0.029	626.92	626.924	626.931	1453	-1429	1,1,1	LIPT	
3077	522418.417	4759896.928	Yes	556.992	557.032	0.04	557.002	557.012	557.057	789	2018	1,1,1	LIPT	
3078	481393.142	4746327.514	Yes	584.619	584.626	0.007	584.584	584.63	584.644	1148	1527	1,1,1	LIPT	
3079	521035.985	4748234.438	Yes	519.168	519.139	-0.029	519.114	519.115	519.151	1088	-161	1,1,1	LIPT	
3080	543168.773	4753163.474	Yes	468.389	468.354	-0.035	468.312	468.357	468.357	977	-1336	1,1,1	LIPT	
3076B	496928.735	4755059.248	Yes	588.323	588.368	0.045	588.339	588.356	588.37	1003	146	1,1,1	LIPT	
ID	x	Y	Coverage	z	Z From LiDAR NVA or VVA	Z Error	Minimum Z	Median Z	Maximum Z	Intensity	Scan Angle Rank	Returns	Description	Comments
3052	504001.692	4707218.42	Yes	639.924	640	0.076	639.952	639.975	640.011	1015	-226	1,1,1	LIPT	
3061	488281.879	4715788.407	Yes	655.432	655.491	0.059	655.446	655.465	655.516	1140	176	1,1,1	LIPT	
3059	569535.179	4638336.848	Yes	593.941	593.999	0.058	593.989	594.006	594.018	1156	270	1,1,1	LIPT	
3049	547455.445	4701624.413	Yes	592.777	592.83	0.053	592.807	592.842	592.861	660	956	1,1,1	LIPT	
3071	544887.075	4687171.849	Yes	579.936	579.984	0.048	579.948	579.978	579.992	783	1648	1,1,1	LIPT	
3054B	575888.599	4648819.072	Yes	585.17	585.217	0.047	585.206	585.231	585.241	907	1096	1,1,1	LIPT	
3065	483100.32	4706080.08	Yes	679.987	680.021	0.034	680.017	680.021	680.06	1560	-743	1,1,1	LIPT	
3073	514331.289	4664453.497	Yes	668.876	668.906	0.03	668.875	668.88	668.916	1512	2543	1,1,1	LIPT	
3066	486980.223	4682819.234	Yes	708.269	708.296	0.027	708.29	708.291	708.299	1251	-2386	1,1,1	LIPT	
3055	562115.988	4614885.468	Yes	610.784	610.811	0.027	610.792	610.799	610.84	935	-2310	1,1,1	LIPT	
3048B	554363.284	4679172.213	Yes	564.339	564.361	0.022	564.337	564.356	564.374	828	2375	1,1,1	LIPT	
3074	572211.995	4600461.023	Yes	535.739	535.754	0.015	535.734	535.748	535.758	1101	2201	1,1,1	LIPT	
3053A	592976.623	4673174.612	Yes	535.896	535.904	0.008	535.888	535.904	535.906	1221	-69	1,1,1	LIPT	
3060	527944.193	4672572.346	Yes	626.083	626.086	0.003	626.065	626.082	626.106	978	33	1,1,1	LIPT	
3057	513660.431	4702980.069	Yes	619.556	619.559	0.003	619.533	619.544	619.603	699	-614	1,1,1	LIPT	
3067C	559848.924	4648623.664	Yes	629.799	629.799	0	629.795	629.807	629.81	827	1319	1,1,1	LIPT	
3054	578076.098	4655256.955	Yes	584.061	584.061	0	584.035	584.067	584.081	1112	-2789	1,1,1	LIPT	
3072	556173.626	4667916.706	Yes	604.592	604.59	-0.002	604.588	604.59	604.596	1150	2136	1,1,1	LIPT	
3070B	584700.508	4687829.109	Yes	566.997	566.991	-0.006	566.986	567.015	567.021	1058	1961	1,1,1	LIPT	
3063	528689.468	4690295.441	Yes	614.324	614.317	-0.007	614.275	614.321	614.328	729	997	1,1,1	LIPT	
3069B	501711.836	4672444.708	Yes	684.711	684.69	-0.021	684.678	684.694	684.694	773	41	1,1,1	LIPT	
3070	580138.195	4682641.387	Yes	590.613	590.59	-0.023	590.575	590.592	590.595	1279	291	1,1,1	LIPT	
3063B	528698.356	4686908.497	Yes	620.245	620.214	-0.031	620.184	620.212	620.222	828	2295	1,1,1	LIPT	
3056	494274.819	4661190.773	Yes	710.26	710.229	-0.031	710.196	710.226	710.269	926	79	1,1,1	LIPT	
3061B	495947.923	4717350.003	Yes	647.891	647.854	-0.037	647.837	647.849	647.895	1213	-973	1,1,1	LIPT	
3064	567687.866	4668833.984	Yes	546.147	546.105	-0.042	546.089	546.091	546.127	1007	-673	1,1,1	LIPT	
3062	591073.777	4695684.667	Yes	510.434	510.391	-0.043	510.389	510.395	510.396	861	-548	1,1,1	LIPT	
3058	528828.33	4661284.34	Yes	629.938	629.888	-0.05	629.879	629.893	629.902	1094	-144	1,1,1	LIPT	
3069A	503011.523	4689323.033	Yes	673.376	673.324	-0.052	673.311	673.366	673.411	546	402	1,1,1	LIPT	
3068	594395.02	4689435.96	Yes	536.714	536.64	-0.074	536.6	536.613	536.648	1180	-1539	1,1,1	LIPT	
3048	553790.853	4678752.249	Yes	566.361	566.278	-0.083	566.272	566.293	566.298	569	1688	1,1,1	LIPT	

January 2021 Page 12 of 68

ID	x	Y	Coverage	Z	Z From LIDAR NVA or VV	A Z Error	Minimum	Z Median Z	Maximum	Z Intensi	ty Scan Angle F	tank Retur	ns Descrip	tion Comments
3001	596998.512	4526851.048	Yes	533.926	534.012	0.086	533.953	534.029	534.033	393	1335	1.1.1	LIPT	
3002A	680616.188	4588684,443	Yes	394,451	394,449	-0.002	394,439	394.45	394.46	1038	779	1.1.1	LIPT	
3003	698986 596	4580440 313	Yes	389 551	389.53	-0.021	389 525	389 542	389 545	948	2119	1.1.1	ITPT	
3004	675787 485	4620154 119	Yes	444 213	444 179	-0.034	444 168	444 175	444 229	847	-2974	1.1.1	LIPT	
3005	611227.87	4574227 836	Vec	473 626	473 644	0.018	473 605	473 645	473 673	640	-2471	1 1 1	LIPT	
3005B	614074 717	4575000 338	Vec	460 406	469 461	0.055	469.435	469 461	469.469	015	909	1 1 1	LIPT	
30055	694227 954	4563945 588	Vec	414 814	414 934	0.02	414.82	414 848	405.405	597	-53	1 1 1	LIPT	
30068	670546 105	4555751 553	Vec	422.491	422 523	0.042	422.51	422 534	422 592	1122	-1264	1 1 1	LIPT	
3003	594303.036	4535751.555	Neo	422.401 EE0.100	922.525 EE0.014	0.032	922.01 EE0 00E	422.004 EE0 000	922.302 EE0 000	022	1200	1,1,1		
3007	504293.920	4503547,206	Nec.	552.192	400.057	0.022	400.050	552.220	400.076	1002	-1290	1,1,1		
3008	666830.157	4592547.380	res	408.996	408.967	-0.029	408.959	408.905	408.976	1092	-890	1,1,1		
3009	509920.008	45409/1.4/6	res	540.597	540.049	0.052	540.043	540.645	540.089	1007	-2219	1,1,1		
3010	6016/4.12	454/8/1.434	res	532.164	532.202	0.038	532.183	532.215	532.219	6/4	1070	1,1,1	ЦРГ	
3011	597598.6	4505944.223	Yes	526.043	526.042	-0.001	526.037	526.038	526.058	1034	-1189	1,1,1	ЦРГ	
3012	670142.272	4571665.157	Yes	459.454	459.477	0.023	459.473	459.488	459.491	930	722	1,1,1	ЦРТ	
3012B	672187.031	4576499.374	Yes	448.352	448.321	-0.031	448.314	448.321	448.343	887	756	1,1,1	LIPT	
3013	708007.064	4558086.996	Yes	343.644	343.677	0.033	343.665	343.681	343.704	1244	1310	1,1,1	LIPT	
3014	720976.004	4545220.994	Yes	333.537	333.568	0.031	333.529	333.57	333.581	711	-747	1,1,1	ЦРТ	
3015	621535.573	4560281.888	Yes	506.418	506.418	0	506.415	506.435	506.443	692	-2171	1,1,1	LIPT	
3015B	627125.268	4564411.485	Yes	502.889	502.898	0.009	502.888	502.9	502.955	1093	2887	1,1,1	LIPT	
3016	610661.116	4583454.111	Yes	477.667	477.684	0.017	477.682	477.686	477.71	1108	500	1,1,1	LIPT	
3017A	627554.013	4583754.503	Yes	451.618	451.639	0.021	451.622	451.637	451.648	833	443	1,1,1	LIPT	
3018	695850.036	4591806.596	Yes	376.889	376.87	-0.019	376.834	376.869	376.895	1270	1533	1,1,1	LIPT	
3019	591648.802	4567846.294	Yes	499.663	499.625	-0.038	499.607	499.626	499.631	749	-1765	1,1,1	LIPT	
3020	562164.194	4507144.074	Yes	571.399	571.363	-0.036	571.348	571.37	571.374	946	371	1,1,1	LIPT	
3021	577166.37	4568498.78	Yes	528.618	528.59	-0.028	528.586	528.597	528.607	1281	-536	1,1,1	LIPT	
3022	698308.42	4547333.548	Yes	365.282	365.316	0.034	365.276	365.299	365.348	1149	340	1,1,1	LIPT	
3023	571714.4	4518516.299	Yes	559.708	559.606	-0.102	559.602	559.607	559.658	698	2687	1,1,1	LIPT	
3024	627952.741	4601504.238	Yes	508.539	508.534	-0.005	508.524	508.535	508.538	833	552	1,1,1	LIPT	
3025	700851.258	4569205.951	Yes	373.291	373.325	0.034	373.307	373.314	373.336	575	1965	1,1,1	LIPT	
3025B	709324.792	4566834.417	Yes	369.599	369.574	-0.025	369.556	369.566	369.582	1217	2111	1,1,1	LIPT	
3026	659829.694	4619760.401	Yes	474.472	474.448	-0.024	474.425	474.459	474.492	810	-2410	1,1,1	LIPT	
3027	670864.18	4549108.477	Yes	449.476	449.459	-0.017	449.45	449.461	449.486	1129	2586	1,1,1	LIPT	
3028	608463.745	4612452.888	Yes	536.576	536.568	-0.008	536.554	536.58	536.582	1151	37	1,1,1	LIPT	
3028B	616662.452	4617425.396	Yes	514.059	514.064	0.005	514.058	514.063	514.067	1009	2365	1,1,1	LIPT	
3029	684063.767	4612269.984	Yes	418.364	418.307	-0.057	418.294	418.299	418.324	1072	-2792	1,1,1	LIPT	
ID	x	Y	Coverage	Z	Z From LIDAR NVA or VVA	Z Error	Minimum Z	Median Z	Maximum Z	Intensity S	ican Angle Rank	Returns	Description	Comments
3030	649047.219	4596627.997	Yes	450.855	450.815	-0.04	450.796	450.823	450.838	1426 -	232	1,1,1	LIPT	
3031	652033.89	4548717.378	Yes	462.713	462.782	0.069	462.759	462.781	462.788	1319 1	092	1,1,1	LIPT	
3032	634933.085	4577431.864	Yes	449.995	449.957	-0.038	449.928	449.953	449.967	921 -	2392	1,1,1	LIPT	
3032B	638553.299	4587693.551	Yes	439.386	439.419	0.033	439.416	439.422	439.427	1220 6	68	1,1,1	LIPT	
3033	661763.665	4606119.861	Yes	472.312	472.299	-0.013	472.297	472.304	472.31	811 -	2719	1,1,1	LIPT	
3033B	671294.867	4607131.972	Yes	423.291	423.231	-0.06	423.229	423.233	423.235	1012 4	55	1,1,1	LIPT	
3034	570808.265	4560332.114	Yes	532.999	533.033	0.034	533.02	533.033	533.044	624 1	327	1,1,1	LIPT	
3034B	561221.938	4560217.759	Yes	552.122	552.14	0.018	552.097	552.11	552.177	608 -	2304	1,1,1	LIPT	
3035	561950.92	4536106.694	Yes	552.095	552.124	0.029	552.122	552.123	552.127	568 -	818	1,1,1	LIPT	
3036	646470.848	4561593.983	Yes	476.635	476.675	0.04	476.659	476.68	476.715	884 8	2	1,1,1	LIPT	
3037	694621.67	4614981.528	Yes	381.348	381.3	-0.048	381.273	381.299	381.3	768 -	1444	1,1,1	LIPT	
3037B	696876.835	4612350	Yes	379.156	379.145	-0.011	379.145	379.145	379.153	1378 -	1765	1,1,1	LIPT	
3038	710771.462	4601618.185	Yes	367.596	367.599	0.003	367.597	367.599	367.617	1123 -	1855	1,1,1	LIPT	
3039	721601.825	4589019.385	Yes	351.638	351.618	-0.02	351.605	351.619	351.633	829 3	39	1,1,1	LIPT	
3040	707830.809	4623125.806	Yes	399.766	399.782	0.016	399.731	399.768	399.803	776 2	128	1,1,1	LIPT	
3041	715431.851	4576124.739	Yes	390.812	390.779	-0.033	390.773	390.783	390.801	743 1	512	1,1,1	LIPT	
3042	602021.719	4620354.54	Yes	559.93	559.86	-0.07	559.84	559.855	559.9	872 1	618	1,1,1	LIPT	
3043	632307.164	4548507.588	Yes	502.286	502.298	0.012	502.29	502.305	502.339	902 3	75	1,1,1	LIPT	
3044	618530.745	4592478.662	Yes	462.675	462.668	-0.007	462.636	462.637	462.677	1134 2	372	1,1,1	LIPT	
3044B	614768.07	4596476.725	Yes	527.55	527.572	0.022	527.548	527.562	527.592	1330 -	2217	1,1,1	LIPT	
3045	560714 200	4565084 106	Yes	533.199	533.221	0.022	533.199	533.232	533.236	785 2	077	1,1,1	LIPT	
2016	302/14.329	4505004.200												
3046	637297.364	4619388.382	Yes	499.851	499.787	-0.064	499.782	499.8	499.824	1038 -	2292	1,1,1	LIPT	
3046	637297.364 600240.383	4619388.382 4597893.519	Yes Yes	499.851 510.829	499.787 510.851	-0.064 0.022	499.782 510.821	499.8 510.857	499.824 510.864	1038 - 805 1	2292 622	1,1,1 1,1,1	ЦРТ ЦРТ	

Table 3 –surveyed ground control points (GCPs).

This project must meet Non-vegetated Vertical Accuracy (NVA) \leq 0.64 ft (19.6 cm) at the 95% confidence level based on RMSE_z \leq 0.33 ft (10 cm) x 1.9600.

Project Data Unit: Meter Vertical Accuracy Class tested: 10.0-cm Elevation Calculation Method: Interpolated from TIN LiDAR Classifications Included: 0-118, 120-255

Check Points in Report: 7 Check Points with LiDAR Coverage: 7 Check Points (NVA): 7 Check Points (VVA): 0 Average Vertical Error Reported: 0.000 Meter Maximum (highest) Vertical Error Reported: 0.045 Meter Median Vertical Error Reported: -0.001 Meter Minimum (lowest) Vertical Error Reported: -0.035 Meter Standard deviation of Vertical Error: 0.033 Meter Skewness of Vertical Error: 0.372 Kurtosis of Vertical Error: -1.440 Non-vegetated Vertical Accuracy (NVA) RMSE(z): 3.066cm PASS Non-vegetated Vertical Accuracy (NVA) at the 95% Confidence Level +/-: 6.010cm PASS FGDC/NSSDA Vertical Accuracy at the 95% Confidence Level +/-: 6.010cm Non-vegetated Vertical Accuracy (NVA) RMSE(z) (DEM): 2.848cm PASS Non-vegetated Vertical Accuracy (NVA) at the 95% Confidence Level +/- (DEM): 5.582cm PASS

This data set was tested to meet ASPRS Positional Accuracy Standard for Digital Geospatial Data (2014) for a 10.0-cm RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be RMSEz = 3.066cm, equating to +/- 6.010cm at the 95% confidence level.

Project Data Unit: Meter Vertical Accuracy Class tested: 10.0-cm Elevation Calculation Method: Interpolated from TIN LiDAR Classifications Included: 0-118, 120-255

Check Points in Report: 31 Check Points with LiDAR Coverage: 31 Check Points (NVA): 31 Check Points (VVA): 0 Average Vertical Error Reported: 0.000 Meter Maximum (highest) Vertical Error Reported: 0.076 Meter Median Vertical Error Reported: 0.000 Meter Minimum (lowest) Vertical Error Reported: -0.083 Meter Standard deviation of Vertical Error: 0.041 Meter Skewness of Vertical Error: -0.124 Kurtosis of Vertical Error: -0.744 Non-vegetated Vertical Accuracy (NVA) RMSE(z): 4.007cm PASS Non-vegetated Vertical Accuracy (NVA) at the 95% Confidence Level +/-: 7.854cm PASS FGDC/NSSDA Vertical Accuracy at the 95% Confidence Level +/-: 7.854cm Non-vegetated Vertical Accuracy (NVA) RMSE(z) (DEM): 4.417cm PASS Non-vegetated Vertical Accuracy (NVA) at the 95% Confidence Level +/- (DEM): 8.658cm PASS

This data set was tested to meet ASPRS Positional Accuracy Standard for Digital Geospatial Data (2014) for a 10.0-cm RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be RMSEz = 4.007cm, equating to +/- 7.854cm at the 95% confidence level.

January 2021 Page 14 of 68

> Project Data Unit: Meter Vertical Accuracy Class tested: 10.0-cm Elevation Calculation Method: Interpolated from TIN LiDAR Classifications Included: 0-118, 120-255

Check Points in Report: 58 Check Points with LiDAR Coverage: 58 Check Points (NVA): 58 Check Points (VVA): 0 Average Vertical Error Reported: 0.000 Meter Maximum (highest) Vertical Error Reported: 0.086 Meter Median Vertical Error Reported: 0.002 Meter Minimum (lowest) Vertical Error Reported: -0.102 Meter Standard deviation of Vertical Error: 0.037 Meter Skewness of Vertical Error: -0.260 Kurtosis of Vertical Error: -0.052 Non-vegetated Vertical Accuracy (NVA) RMSE(z): 3.648cm PASS Non-vegetated Vertical Accuracy (NVA) at the 95% Confidence Level +/-: 7.150cm PASS FGDC/NSSDA Vertical Accuracy at the 95% Confidence Level +/-: 7.150cm Non-vegetated Vertical Accuracy (NVA) RMSE(z) (DEM): 3.929cm PASS Non-vegetated Vertical Accuracy (NVA) at the 95% Confidence Level +/- (DEM): 7.701cm PASS

This data set was tested to meet ASPRS Positional Accuracy Standard for Digital Geospatial Data (2014) for a 10.0-cm RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be RMSEz = 3.648cm, equating to +/- 7.150cm at the 95% confidence level.

Table 4 - Ground control points (GCPs) vertical accuracy results.

Appendix A: GNSS and IMU Processing Reports for Each Mission

 \Box \times

201106_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

Estimated Position Accuracy

Tools View Help

pothed Be pothed Pe North Po:

- 201116_A_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame

🧯 🗠 🎟 🖉 σ 🐰 🖻 💼 🥌 🤶 👂

0.05 0.048

0.046

DOP

· 201117_B_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

 \Box >

_

- 201117_B_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame

– 🗆 🗙

– 🗆 >

Tools View Help

Estimated Position Accuracy

– 🗆 🗙

– 🗆 >

- 200926_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

□ ×

_

· 200926_A_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame

- 🗆 🗡

– 🗆 🗙

Estimated Position Accuracy

· 200928_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

- 🗆 🗙

- 200928_A_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame

North Position Error RMS (m) — East Position Error RMS (m) — Down Position Error RMS (m)

Top View: Latitude (deg)

Estimated Position Accuracy

· 201130_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

 \times

201130_B_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

- 🗆 🗙

- 201201_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

– 🗆 ×

201201_A_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame

Estimated Position Accuracy

201202_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

· 201202_A_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame

- North Separation (m) - East Separation (m) - Down Separation (m)

201204_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

- 🗆 🗙

Tools View Help 🚦 🗠 🎞 🥒 σ 🐰 🖻 💼 🖨 🤶 😢 _ **_ x** othe 🔺 Top View: Latitude (deg) op /iew /iew .atiti 41.7 41.68 41.66 .ong Altitu 41.64 41.62 Pitch Pitch True North Cast Dow Tota Arou CBc 2 Bc 41.6 41.58 41.56 41.54 41.52 41.5 41.48 41.46 41.44 Tota ∢Bc ≄Bc ₹Bc ₹Bc 41.42 41.4 41.38 othe othe ard ard rate 41.36 41.34 41.32 41.3 ion ard ard ard Tim 41.28 41.26 41.24 Tin Tin ∽ -97 -96.8 Longitude (deg) -97.8 -97.6 -97.4 -97.2 -96.6 -96.4 -96.2 -96 · 201204_A_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame _ Х Tools View Help 🔓 🗠 🎟 🥒 🗸 🖏 🛍 💼 🎒 🤶 🕵 _ **_ x** othed B othed P 0.05 North Pc 0.048 East Po: Down P 0.046 North Ve East Vel 0.044 0.042 Down V Roll Errc 0.04 Pitch Eri 0.038 Heading othed E 0.036 /ard Pro /ard Pro 0.034 stated Ir 0.032 tion Sta /ard Pro 0.03 0.028 ≀ard Pro ≀ard Pro 0.026 l Time T 0.024 ITime P ITime T 0.022 Data ary GNS 0.02 ary GPS ary GPS ary QZS 0.018 0.016 0.014 **TX** Nel **TX GN** RTX GN 492,000 496,000 494,000 498,000 500,000 502,000 504,000 506,000 Time (sec) - North Position Error RMS (m) - East Position Error RMS (m) - Down Position Error RMS (m) >

North Separation (m) — East Separation (m) — Down Separation (m)

Estimated Position Accuracy

- 201205_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

– 🗆 ×

· 201205_A_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame

0.01

0.008

580,000

582,000

584,000

586,000 588,000 Time (sec)

- North (m) - East (m) - Down (m)

_

590,000

592,000

594,000

596,000

Forward/Reverse Separation

- 201207_A_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame

Estimated Position Accuracy

- 201208_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

- 🗆 🗙

· 201208_A_5060449_nad2011_FINAL - Smoothed Performance Metrics, Reference Frame

· 201209_A_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame

— North Separation (m) — East Separation (m) — Down Separation (m)

 \times

- 🗆

- 201209_B_5060449_nad2011_FINAL - Smoothed Best Estimate of Trajectory, Reference Frame
Tools View Help

Appendix B: Following is a more detailed calibration workflow

LIDAR CALIBRATION AND BLOCK LAS OUTPUT

Note: All figures represented on the following pages are for general illustration purposes, and are not examples derived from the project.

Initial Processing

Lidar data is output as LAS point data using Optech's Lidar Mapping Suite (LMS). LMS matches ground and roof planes plus roof lines to self-calibrate and correct system biases. These biases occur within the hardware of the laser scanning systems, within the Inertial Measurement Unit (IMU) and because of environmental conditions which affect the refraction of light. The systemic biases that are corrected for include scale, roll, pitch, and heading.

In addition to the self-calibration mode LMS runs a "production" mode which applies the self-calibration parameters and then analyzes each individual flight line and applies small adjustments to each line to tie overlapping lidar points even more tightly together.

Boresight Self-Calibration Processing Procedures

An LMS boresight calibration is performed on an as-needed basis to correct scale, roll, pitch and heading biases. A minimum of three overlapping flights are flown in opposing directions with one cross flight.

The Boresighting module frees scan angle scale, scan angle lag, XYZ boresight corrections and elevation position corrections while locking scan angle offset and XY position corrections.

The picked calibration site will have a good distribution of buildings for the self-calibration software to match ground planes, roof planes and roof lines.

At the conclusion of the self-calibration run the data is quality checked with LMS plots

Plot of plane vertical distances from datum plane.

Plot of height differenced between flight lines. (Green=less than 5cm).

Plot of point densities. (Red=5-9 points per cell, green 10+ points per cell).

A Flight Line Separation Raster image is generated in Merrick Advanced Remote Sensing Software (MARS®), in this example ground returns from multiple flight lines that are fitting within 3 centimeters are colored green.
MARS[®] tests for internal relative vertical accuracy using inbound and outbound scan values. Again, Green is showing inbound and outbound scan data fitting to 3 centimeters.

Building cross sections are checked for good alignment. Pitch and heading are checked on roof planes parallel to the flight direction.

Roll and scale are checked on roof planes perpendicular to the flight direction.

The LMS program outputs a "LCP" file with all the correction parameters. The calibration process may be run several times until the boresight adjustments are acceptable. When the boresight solution is acceptable the LCP file adjustments are saved and also applied to subsequent projects. Each new project is again analyzed and when the adjustment biases show too much drift a new boresight calibration is run. The LCP file may hold calibration tolerances for several projects.

Block LAS Production Processing Procedures

The LMS production mode is run on each flight line to further tie the final lidar LAS flight line files tightly together. Production settings allow scan angle scale, scan angle lag to float and allows elevation to move slightly during flight line to flight line comparison thus further tying flight lines together. A cross flight with locked elevation data is used for controlling flight line elevations.

A block of data is selected to process with LMS production settings. Data collected during turns at the ends of flight lines is deselected (light blue lines).

As in self-calibration the LMS production program analyses ground, roof planes and rooflines. One cross flight is locked in elevation and all other lines are adjusted to it. Unlike the calibration site the distribution of roof planes is usually much less dense. Here matched ground tie planes are blue.

The same quality control outputs used to check self-calibrations are available to analyze the production run. Output plots are again available in LMS and cross sections plus a Flight Line Separation Raster are generated in MARS[®] to check coverage and quality.

Correcting the Final Elevation

After all the lines are tied together a ground control network is imported into MARS[®]. The ground control network may be pre-existing or collected by a licensed surveyor.

The next step is to match the ground control elevations to the lidar data set. A control report is run and the data set is shifted slightly to zero out the average elevation error and points checked for quality.

The final step before boresighted, leveled LAS files are ready for filtering is to run the MARS[®] QC Module on the block data. The Boresighted lidar QC Report outputs individual reports on Point Density, Nominal Pulse Spacing, Data Voids, Spatial Distribution, Scan Angles, Control Report, Flight Line Separation, Flight Line Overlap, Buffered Boundary, LAS Formats, Datums and Coordinates.

These reports are checked with the required specifications in the Project Management Plan.