

LiDAR Quality Assessment Report

The USGS National Geospatial Technical Operations Center, Data Operations Branch is responsible for conducting reviews of all Light Detection and Ranging (LiDAR) point-cloud data and derived products delivered by a data supplier before it is approved for inclusion in the National Elevation Dataset. The USGS recognizes the complexity of LiDAR collection and processing performed by the data suppliers and has developed this Quality Assessment (QA) procedure to accommodate USGS collection and processing specifications with flexibility. The goal of this process is to assure LiDAR data are of sufficient quality for database population and scientific analysis. Concerns regarding the assessment of these data should be directed to the Chief, Data Operations Branch, 1400 Independence Road, Rolla, Missouri 65401.

NRCS Lauderdale MS 0.7m NPS Lidar

NGTOC

4

III

Project Information

Project:

NRCS Lauderdale MS 0.7m NPS Lidar

Contractor:

Woolpert, Inc.

Project Type: <u>GPSC</u> Applicable Specification:

<u>Other</u>

Specification 1 and QL2

Project Points of Contact:

ame:	Туре:	Phone:	Email:				
obert Kelly	СРТ	5735786576	ckelly@usgs.gov				
REPORT QUALIFICAT	ION SUMMARY:	Project Subdivision:	<u>None</u>				
Task Order Overall:							
meets requirements							
Metadata:		Dates Collected Rang					
1 of 1 Reviews Accept	ed	Collection Start: 1/3	(72013				
⁰ Reviews Not Accepted		Collection End: 3/3	/2013				
Vertical Accuracy:		Proiect Aliases:					
1 of 1 Reviews Accept	ed						
⁰ Reviews Not Accepted		[_]					
Swath/Raw LAS:		Licensing:					
1 of 1 Reviews Accept	ed	Public Domain					
0 Reviews Not Accepted							
Tiled/Classified LAS:		Project Description:					
1 of 1 Reviews Accept	ed	This NRCS Lauderda	This NRCS Lauderdale MS 0.7m NPS Lidar Task Order is for Planning, Acquisition, processing, and derivative products of				
⁰ Reviews Not Accepted		Planning, Acquisition					
Breakline:		0.7 meters. Specifica	ected at a nominal pulse spacing (NPS) of				
1 of 1 Reviews Accept	ed	the <i>"National Geosy</i>	the "National Geospatial Program Lidar Base Specification				
0 Reviews Not Accepted		Version 1.0", which	is incorporated by reference to this task				
DEM(s):		order. This specifica	tion may be viewed at				
1 of 1 Reviews Accept	ed	http://pubs.usgs.go	w/tm/11b4/. These lidar specifications are				
0 Reviews Not Accepted		Specification Require	ements this task order shall meet NFFA				
Intensity Image(s):		QL2. For any item w	hich is not specifically addressed, the				
0 of 0 Reviews Accepted		referenced Specifica	referenced Specification Version 1 will be the required specification authority. This task is for lidar for a <i>high</i>				
⁰ Reviews Not Accepted		specification author					
NED Review:		resolution data set	of lidar of approximately 3,518 square				
1 of 1 DEM tile review	s recommended for NED		spi.				
1/3rd							
1 of 1 DEM tile review	s recommended for NED						
1/9th							

NRCS Lauderdale MS 0.7m NPS Lidar

GPSC

Review Information

Reviewer:	Select or type	Date Delivered:	11/4/2013
3rd Party QA Performed:		Date Assigned:	11/8/2013

Action To Contractor Date:	Issue Description:	Return Date:
12/19/2013	Swath data contains class 1 points; should all be class 0. No project extent metadata Dem Errors	12/19/2013
2/13/2014	Project metadata issues	2/13/2014

Review Complete:

2/13/2014

Dates Project Worked:

Start:	11/12/2013
End:	2/13/2014

Project Materials Received

All project deliverables must be supplied according to collection and processing specifications. The USGS will postpone the QA process when any of the required deliverables are missing. When deliverables are missing, the Contracting Officer Technical Representative (COTR) will be contacted by the Elevation Section supervisor and informed of the problem. Processing will resume after the COTR has coordinated the deposition of remaining deliverables.

METADATA

Deliverables	Delivered	XML Metadata	Required	Format	Quantity	Additional Details
Collection Report:	>		>	<u>PDF</u>	1	Combined*
Survey Report:	>		>	<u>PDF</u>	1	
Processing Report:	V		V	<u>PDF</u>	1	Combined*
QA/QC Report:	V		V	<u>PDF</u>	1	Combined*
Project Level XML Metadata:	V		V	XML	1	
Project Extent:	V	V		<u>.shp</u>	1	
Tile Scheme:	~	~	~	.shp	1	

Control (Calibration) Points:	>			<u>.shp</u>	45	
Check (Validation) Points:	>	\	>	<u>.shp</u>	139	Excess points collected
Additional Comments.						

LIDAR DATA

Deliverables	Delivered	XML Metadata	Required	Format	Quantity	Additional Details
Swath Data:		V		<u>.las</u>	970	
Classified/ Tiled Data:		V		.las	4,256	Count is incorrect
Additional Comments:		fied tile count is	less than DEM	count by one.		

NED

Deliverables	Delivered	XML Metadata	Required	Format	Quantity	Additional Details
DEM Tiles:	•	v	~	<u>IMG</u>	4,257	
Breaklines:	V	V	V	<u>.shp</u>	2	Polygon and polyline files

Additional Comments:]
	J

Deliverables	Delivered	XML Metadata	Required	Format	Quantity	Additional Details
DSM(s):				<u>Select</u>		
Intensity Image (s):	•	•		<u>IMG</u>	4,256	
Flightline (SBETs):				<u>Select</u>		

OTUED

Additional Co	mments:		
Geographi	c Information		
Area Extent:	3531	<u>Sq. Miles</u>	
Tile Size :	1500m x 1500m	Meters	
DEM/DTM Grid Spacing:	1	Meters	
Coordinate Refer	ence System:		
UTM Zone 16			
Projection:	UTM		
Horizontal Datum:	NAD83		 Meters U.S. Feet
Vertical Datum:	NAVD88		 Int'l Feet Meters U.S. Feet Int'l Feet
Image: Construction Image: Construct	ent eent XML Metadata e Scheme e Scheme XML Metadata ints is XML Metadata vel XML Metadata v LiDAR v LiDAR v LiDAR XML Metadata ified LiDAR ified XML Metadata	CE SYSTEM IS CONSISTENT ACROSS THE FO DEM(s) DEM XML Metadata Breakline(s) Breakline XML Metadata Intensity Image(s) Intensity Image(s) XML Metadata	ata
Additional Comments: Collection	Information		

Configured Project Nominal Pulse Spacing:

0.7

Meters

Sensor Information: Sensor Type: Aerial

Sensor Used:

Configured Scan Angle ± from nadir:

Degrees

Additional Comments:

Metadata Review Accepted

Provided metadata files have been parsed using 'mp' metadata parser. Any errors generated by the parser are documented below for reference and/or corrective action.

The Project Level XML Metadata parsed without errors.

Check if 'Best Use' metadata for NED: 🗌

The Project Extent XML Metadata parsed <u>select...</u>errors.

Check if 'Best Use' metadata for NED: 🗌

The Project Tile Scheme XML Metadata parsed <u>without</u>errors.

Check if 'Best Use' metadata for NED: 🗌 Project Level 🔿 Tile Level 🔿

The Check Point XML Metadata parsed <u>without</u> errors.

Check if 'Best Use' metadata for NED: □ Project Level ○ Tile Level ○

The Swath XML Metadata parsed <u>without</u>errors.

Check if 'Best Use' metadata for NED: \Box Project Level \bigcirc Swath Level \bigcirc

The Classified XML Metadata parsed <u>without</u>errors.

Check if 'Best Use' metadata for NED: 🗌 Project Level 🔿 Tile Level 🔿

The DEM XML Metadata parsed <u>without</u>errors.

Check if 'Best Use' metadata for NED: 🗌 Project Level 🔿 Tile Level 🔿

The Breakline XML Metadata parsed <u>without</u>errors.

Check if 'Best Use' metadata for NED: 🔲 Project Level 🔿 Tile Level 🔿

The Intensity Image XML Metadata parsed <u>select...</u> errors.

Check if 'Best Use' metadata for NED: 🗌 Project Level 🔿 Tile Level 🔿

Based on this review, the USGS <u>accepts</u> the xml metadata provided.

Additional Comments:

End of Metadata Review

Vertical Accuracy Review Accepted

ASPRS recommends that checkpoint surveys be used to verify the vertical accuracy of LiDAR data sets. Checkpoints are to be collected by an independent survey firm licensed in the particular state(s) where the project is located. While subjective, checkpoints should be well distributed throughout the dataset. National Standards for Spatial Data Accuracy (NSSDA) guidance states that checkpoints may be distributed more densely in the vicinity of important features and more sparsely in areas that are of little or no interest. Checkpoints should be distributed so that points are spaced at intervals of at least ten percent of the diagonal distance across the dataset and at least twenty percent of the points are located in each quadrant of the dataset.

NSSDA and ASPRS require that a minimum of twenty checkpoints (thirty is preferred) are collected for each major land cover category represented in the LiDAR data. Checkpoints should be selected on flat terrain, or on uniformly sloping terrain in all directions from each checkpoint. They should not be selected near severe breaks in slope, such as bridge abutments, edges of roads, or near river bluffs. Checkpoints are an important component of the USGS QA process. There is the presumption that the checkpoint surveys are error free and the discrepancies are attributable to the LiDAR dataset supplied.

For this dataset, USGS checked the spatial distribution of checkpoints with an emphasis on the bare-earth (open terrain) points; the number of points per class; the methodology used to collect these points; and the relationship between the data supplier and checkpoint collector. When independent control data are available, USGS has incorporated this into the analysis.

Required Vertical Accuracy

● Yes ○ No				
REQUIRED FUNDAMENTAL VERTICAL A	ACCURACY FOR S	WATH AND D	EM FI	LES
Confidence Interval Required:	95	th % Cl		
Required Unit:	Centimeters			
Required # of checkpoints:	26			
Required RMSEz:	9.25			
Required Vertical Accuracy (RMSEz * .% CI)	18.13			
REQUIRED SUPPLEMENTAL VERTICAL SVA Statistic Required: <u>Percentile</u> SVA Confidence Level/Percentile Required: 95	ACCURACY FOR D	DEM FILES		
Class		# of Checkpoints	95 th	SVA Required Percentile
Urban Areas with Dense Man Made Structures		25	26.9	Centimeters
Tall Weeds & Crops		25	26.9	Centimeters
Brushlands & Low Trees		27	26.9	Centimeters
Forested Areas Fully Covered by Trees		36	26.9	Centimeters
REQUIRED CONSOLIDATED VERTICAL A CVA Statistic Required: Percentile CVA Confidence Level/Percentile Required: 95 Total number of checkpoints: 139 Required CVA: 26.9 Centim Additional Required Vertical Accuracy	ACCURACY FOR D	at the 95 th Per	centile	

ן ר

Reported Vertical Accuracy

L ACCURACY FOR	R SWATH LIDAR F	LES	
95	th % Cl		
Meters			
26			
0.135			
95	th % CI		
Meters			
26			
0.139			
L ACCURACY FO	R DEM FILES		
95			
	# of Checkpoints	95 th	SVA Reported Percentile
ures	25	0.135	Meters
	25	0.289	Meters
	27	0.248	Meters
	36	0.186	Meters
L ACCURACY FO	R DEM FILES		
95			
ers	at the 95 th Pe	rcentile	
	L ACCURACY FOR 95 Meters 26 0.135 L ACCURACY FOR 95 Meters 26 0.139 L ACCURACY FOR 0.139 L ACCURACY FOR 95 1 4 4 4 4 4 4 4 4 4 4 4 4 4	L ACCURACY FOR SWATH LIDAR F 95 th % Cl Meters 26 0.135 L ACCURACY FOR DEM FILES 95 th % Cl Meters 26 95 th % Cl Meters 26 27 36 L ACCURACY FOR DEM FILES 95 4 of Checkpoints 1 27 36 L ACCURACY FOR DEM FILES 95 1 27 36 L ACCURACY FOR DEM FILES	L ACCURACY FOR SWATH LIDAR FILES 95 th % Cl Meters 26 0.135 L ACCURACY FOR DEM FILES 95 th % Cl Meters 26 0.135 L ACCURACY FOR DEM FILES 26 0.135 26 0.139 L ACCURACY FOR DEM FILES 25 <i>t</i> of <i>checkpoints</i> 95 <i>th</i> ures 25 0.135 0.135 0.139 L ACCURACY FOR DEM FILES 25 0.135 0.136 1 0.186 L ACCURACY FOR DEM FILES 95 0.186 L ACCURACY FOR DEM FILES 95 0.186 L ACCURACY FOR DEM FILES

Reviewed Vertical Accuracy

● Yes ○ No						
CHECKPOINT REVIEW						
Checkpoints are well distributed?]				
Enough checkpoints for task order?]				
Checkpoints meet USGS LiDAR base-spec in quality?	quantity and					
REVIEWED FUNDAMENTAL VERTICAL	ACCURACY FOR S	SWATH LIDAR F	ILES			
Confidence Interval Reviewed:	95	th % Cl				
Revie wed Unit:	Centimeters					
Reviewed # of checkpoints:	26					
Revie wed RMSEz:	5.9					
Reviewed Vertical Accuracy (RMSEz * .% Cl)	11.5					
REVIEWED FUNDAMENTAL VERTICAL	ACCURACY FOR I	DEM FILES				
Confidence Interval Reviewed:	95	th % Cl				
Reviewed Unit:	Centimeters					
Reviewed # of checkpoints:	26					
Reviewed RMSEz:	6.7					
Reviewed Vertical Accuracy (RMSEz *.% 13.1 CI)						
REVIEWED SUPPLEMENTAL VERTICAL	ACCURACY					
SVA Statistic Reviewed: <u>Percentile</u>						
SVA Confidence Level/Percentile Reviewed: 95						
Class		# of Checkpoints	95 th	SVA Reported Percentile		
Brushlands & Low Trees		27	23.9	Centimeters		
Forested Areas Fully Covered by Trees		36	13.9	Centimeters		
Tall Weeds & Crops		25	26.1	Centimeters		
Urban Areas with Dense Man Made Structures		25	13.0	Centimeters		
REVIEWED CONSOLIDATED VERTICAL CVA Statistic Reviewed: Percentile	ACCURACY					
CVA Confidence Level/Percentile Reviewed: 95						
Total number of checkpoints: 139						
Reviewed CVA: 22.2 Centimeters at the 95 th Percentile						
Checkpoint Distribution Image						

Based on this review, the USGS <u>accepts</u> the vertical accuracy.

End of Vertical Accuracy Review

Swath/Raw LiDAR Review Accepted

LAS swath files or raw unclassified LiDAR data are reviewed to assess the quality control used by the data supplier during collection. Furthermore, LAS swath data are checked for positional accuracy. The data supplier should have calculated the Fundamental Vertical Accuracy using ground control checkpoints measured in clear open terrain (*see Vertical Accuracy Review Section*).

Review Required: • Yes • No

SWATH LIDAR FILE CHARACTERISTICS

Separate folder for swath/raw LiDAR files

LAS Version: <u>1.2</u>

Point Record Format: Select...

 \checkmark Each swath file \leq 2 GB and properly segmented

Correct and properly formatted georeference information is included in all LAS file headers

Adjusted GPS time used with the global encoder id set to 1

Scan Angles conform to USGS base-spec recommendations

All points set to class '0'

Based on this review, the USGS <u>accepts</u> the swath/raw LiDAR data.

Additional comments:

End of Swath/Raw LiDAR Review

Tiled/Classified LiDAR Review Accepted

Classified LAS tile files are used to build digital terrain models using the points classified as ground. Therefore, it is important that the classified LAS are of sufficient quality to ensure that the derivative product accurately represents the landscape that was measured. Classified LAS Tiles are comprised as follows, "all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified and cut, by tiles, excluding calibration swaths, cross-ties, and other swaths not sued, or intended to be used, in product generation".

Review Required: 🖲 Yes 💭 No

CLASSIFIED LIDAR TILE CHARACTERISTICS

Separate folder for classified/tiled LiDAR files

LAS Version: 1.2

Point Record Format: Select...

Classified LAS tile files conform to project tiling scheme

Quantity of classified LAS tile files conforms to project tiling scheme

LAS tile count and DEM tile count to not agree.

Classified LAS tile files do not overlap

Classified LAS tile files are uniform in size

 \square Correct and properly formatted georeference information is included in all LAS file headers

Adjusted GPS time used with the global encoder id set to 1

Classified LAS tile files have no points classified as '12'

Point classifications are limited to the standard values listed below:

Code	Description	Used
1	Processed, but unclassified	~
2	Bare-earth/Ground	~
7	Noise(low or high, manually identified, if needed)	~
8	Model key points	~
9	Water	~
10	Ignored ground (breakline proximity)	~
11	Withheld (if the "Withheld Bit" is not implemented in the processing software	

Additional Classes:

Class	Description
17	Overlap Default
18	Overlap Ground

Based on this review, the USGS <u>accepts</u> classified/tiled LiDAR data.

Additional comments:

End of Tiled/Classified LiDAR Review

Breakline Review Accepted

Breaklines are vector feature classes that are used to hydro-flatten the bare earth Digital Elevation Models.

Review Required: 🖲 Yes 🔿 No

BREAKLINE FILE CHARACTERISTICS:

Separate folder for breakline files.

Breaklines contain elevation values.

Elevation values stored in Geometery (ZEnabled)

Units: <u>Meters</u>

Waterbody Breaklines.

Polyline 🔿 Polygon 🖲

Single elevation value per waterbody feature.

Required.

Waterbody Elevations were created via Select...

waterbody level techniques.

Double Line Stream Breaklines (Streams Approximately > 100 ft).

Single Line Breaklines.

✓ No missing or misplaced breaklines.

Based on this review, the USGS <u>accepts</u> the breakline files.

ADDITIONAL COMMENTS, ERRORS, ANOMALIES, OR OTHER ISSUES:

Deliverables include polygon and polyline shapefiles.

End of Breakline Review

DEM Review Accepted

The derived bare-earth file(s) receive a review of the vertical accuracies provided by the data supplier, vertical accuracies calculated by the USGS using supplied and independent checkpoints (*see the prior Vertical Accuracy Review Section*), and a thorough visual review for any anomalies or inconsistencies in assessing the quality of the DEM(s).

BARE-EARTH DEM TILE CHARACTERISTICS:

Separate folder for bare-earth DEM files

Raster File Type: IMG

Raster Cell Size: 1 Meters

Tile bit depth/pixel Type: 32_BIT_FLOAT

Interpolation or Resampling Technique: Unknown

- DEM tiles do not overlap
- ☑ DEM tiles conform to Project Tiling Scheme
- Quantity of DEM files conforms to Project Tiling Scheme
- DEM tiles are uniform in size

DEM tiles properly edge match and free of edge artifacts

Edge mismatch along tiles 16SCA300985 and 16SCA315955 (pictured)

✓ Tiles are free from Spikes and Pits

- ✓ Tiles are free from Data Holidays
- ✓ Tiles do not exhibit systematic sensor error or cornrowing

DEM tiles are properly Hydro Flattened C Yes

No

Waterbodies 2 Acers or greater are flattened

Several waterbodies greater than 2 acres need hydroflattening:

Waterbody at 33° 05' 43.8346" N, 89° 00' 23.3096" W, tile 16SCB120630 - representative image

Waterbody at 32° 24' 57.2757" N, 88° 38' 0.8460" W; tile 16SCA450865 Waterbody at 32° 21' 42.8464" N, 89° 19' 10.9189" W; tile 16SBA805820 Waterbody at 32° 18' 0.5270" N, 89° 12' 28.1040" W; tile 16SBA910745

Waterbody at 32° 14' 12.0394" N, 89° 16' 54.6302" W; tile 16SBA850685

Waterbody at 32° 13' 36.8504" N, 89° 04' 41.0633" W; tile 16SCA030670

Waterbody at 32° 19' 3.7388" N, 88° 32' 2.3961" W; tile 16SCA555760

Waterbody at 32° 08' 46.1251" N, 88° 29' 5.7919" W; tile 16SCA600565

Streams 100 ft or greater are flattened in a downstream manner

Tidal Boundaries/Shorelines are flattened

✓ No missing islands 1 acre or larger

□ Bridges/Overpasses are properly removed

Two partial bridge removals, one at 32° 52' 17.2253" N, 88° 52' 43.9374" W, tile 16SCB240375 (pictured) and tile 16SCA315700:

- Culverts are maintained (Not Hydro Enforced)
- ✓ Depressions, Sinks, are not filled in (Not Hydro Conditioned)
- ✓ Vegetation properly removed
- Manmade structures properly removed

Tiles recommended for NED 1/3rd: ● Yes. ○ No. Tiles recommended for NED 1/9th: ● Yes. ○ No.

Based on this review, the USGS <u>accepts</u> the DEM tiles.

ADDITIONAL COMMENTS, ERRORS, ANOMALIES, OR OTHER ISSUES:

** All issues were fixed by the contractor.

DEM TILES Either Missing or have Missing Data (16SCB600195, 16SCB405420, 16RCA600295, 16SCB690120, 16SCa240910,

16SCB315000. Ridge between hydro flattened tiles at 16SCB315000 and vicinity

Edge match error; tiles possibly of different resolutions along tiles 16SBB895330 and 16SBB895345:

End of DEM Review

Based on this review, the provided delivery <u>meets</u> the Task Order requirements. Additional Comments:

NED Information

Final to NED mosaic created: 🔿 Yes 💿 No

Additional Comments:

END OF REPORT