

Dewberry & Davis LLC 1000 N. Ashley Drive, Suite 801 Tampa, FL 33602-3718 813.225.1325 813.225.1385 fax www.dewberry.com

# **USGS Norfolk, VA LiDAR**

Report Produced for U.S. Geological Survey

USGS Contract: G10PC00013

Task Order: G13PD00279

Report Date: 1/29/2014

SUBMITTED BY:

Dewberry 1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

SUBMITTED TO: U.S. Geological Survey 1400 Independence Road Rolla, MO 65401 573.308.3810

# **Table of Contents**

| Executive Summary                                       |
|---------------------------------------------------------|
| The Project Team6                                       |
| Survey Area6                                            |
| Date of Survey                                          |
| Datum Reference                                         |
| LiDAR Vertical Accuracy7                                |
| Project Deliverables7                                   |
| Project Tiling Footprint8                               |
| LiDAR Acquisition Report9                               |
| Acquisition Equipment9                                  |
| LiDAR System parameters10                               |
| Datum Reference11                                       |
| Atlantic LiDAR Acquisition Details11                    |
| Acquisition Flight Logs, Dates, and Flightlines12       |
| LMSI LiDAR Acquisition Details15                        |
| Acquisition Dates and Flightlines16                     |
| Generation and Calibration of Laser Points (raw data)17 |
| Combined Swath Vertical Accuracy Assessment18           |
| LiDAR Processing & Qualitative Assessment               |
| Data Classification and Editing19                       |
| Qualitative Assessment21                                |
| Analysis23                                              |
| Derivative LiDAR Products                               |
| Building Footprint Shapefiles                           |
| Vegetation Shapefiles                                   |
| Survey Vertical Accuracy Checkpoints                    |
| LiDAR Vertical Accuracy Statistics & Analysis           |
| Background                                              |
| Vertical Accuracy Test Procedures                       |
| FVA                                                     |
| CVA                                                     |
| SVA                                                     |
| Vertical Accuracy Testing Steps                         |
| Vertical Accuracy Results43                             |
| Breakline Production & Qualitative Assessment Report    |



| Breakline Production Methodology        | 46 |
|-----------------------------------------|----|
| Breakline Qualitative Assessment        | 46 |
| Breakline Topology Rules                | 46 |
| Breakline QA/QC Checklist               |    |
| Data Dictionary                         |    |
| Horizontal and Vertical Datum           |    |
| Coordinate System and Projection        |    |
| Inland Streams and Rivers               |    |
| Description                             |    |
| Table Definition                        |    |
| Feature Definition                      |    |
| Inland Ponds and Lakes                  | 53 |
| Description                             | 53 |
| Table Definition                        | 53 |
| Feature Definition                      | 53 |
| Tidal Waters                            | 55 |
| Description                             | 55 |
| Table Definition                        | 55 |
| Feature Definition                      | 55 |
| 2D Buildings                            | 56 |
| Description                             | 56 |
| Table Definition                        | 56 |
| Feature Definition                      | 56 |
| 3D Buildings                            |    |
| Description                             |    |
| Table Definition                        |    |
| Feature Definition                      | 58 |
| Forest Polygons                         | 59 |
| Description                             | 59 |
| Table Definition                        | 59 |
| Feature Definition                      | 59 |
| Tree Points                             |    |
| Description                             |    |
| Table Definition                        |    |
| Feature Definition                      |    |
| DEM Production & Qualitative Assessment |    |



| DEM Production Methodology                              |
|---------------------------------------------------------|
| DEM Qualitative Assessment62                            |
| DEM Vertical Accuracy Results63                         |
| DEM QA/QC Checklist64                                   |
| Appendix A: Survey Report                               |
| INTRODUTION                                             |
| Project Summary                                         |
| Points of Contact                                       |
| 1.3 Project Area                                        |
| Project Details69                                       |
| Survey Equipment69                                      |
| Survey Point Detail                                     |
| Network Design69                                        |
| Field Survey Procedures and Analysis69                  |
| Data Processing Procedures70                            |
| Final Coordinates                                       |
| GPS Observations                                        |
| Point Comparison                                        |
| Appendix B: Complete List of Delivered Tiles            |
| UTM Tiles (1,457):                                      |
| SPCS Tiles (388):                                       |
| Appendix C: GPS Processing Reports for Each Mission     |
| Laser Mapping Specialists (LMSI)                        |
| The Atlantic Group152                                   |
| Output Results for JD13087_1                            |
| Figure 1: Trajectory Map152                             |
| Figure 2: Position and Standard Deviation153            |
| Figure 3: Velocity and Standard Deviation154            |
| Figure 4: Forward/Reverse or Combined Separation Plot   |
| Figure 5: Attitude and Standard Deviation156            |
| Figure 6: Position Accuracy and PDOP157                 |
| Figure 7: Accelerometer Bias Estimation158              |
| Figure 8: Kalman Filter Residuals and Position Accuracy |
| Figure 9: Gyro Bias Estimation160                       |
| Output Result for JD13088_1                             |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 5 of 232

Dewberry<sup>•</sup>

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 6 of 232

# **Executive Summary**

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR) technology for the USGS Norfolk, Virginia Project Area.

The LiDAR data were processed to a bare-earth digital terrain model (DTM). Detailed breaklines, 3D buildings, 2D buildings, forest polygons, tree points, bare-earth digital elevation models (DEMs), first return digital surface models, and last return digital surface models were produced for the project area. Deliverables were produced in both UTM and State Plane coordinates. Data was formatted according to tiles with each UTM tile covering an area of 1,500 meters by 1,500 meters and each State Plane tile covering an area of 10,000 feet by 10,000 feet. A total of 1,457 UTM tiles and 388 State Plane tiles were produced for the project encompassing an area of approximately 1,130 sq. miles.

#### THE PROJECT TEAM

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for, all LiDAR products including; LAS classification, breakline production, Digital Elevation Model (DEM) production, and quality assurance.

Dewberry's Matthew Rudolph completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the LiDAR-derived surface model. He also verified the GPS base station coordinates used during LiDAR data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project.

Laser Mapping Specialist, Inc (LMSI) and The Atlantic Group (Atlantic) completed LiDAR data acquisition and data calibration for the project area.

#### **SURVEY AREA**

The project area addressed by this report falls within the Virginia counties of Chesapeake, Hampton, James City, Newport News, Norfolk, Poquoson City, Portsmouth, Suffolk, Virginia Beach, Williamsburg, and York as well as portions of the North Carolina counties of Camden and Currituck.

#### **DATE OF SURVEY**

The LiDAR aerial acquisition for the Southern portion of the project was conducted from March 25, 2013 thru April 5, 2013. The LiDAR aerial acquisition for the Northern portion of the project was conducted from March 21, 2013 thru March 31, 2013.

#### **DATUM REFERENCE**

Data produced for the project were delivered in both of the following reference systems.

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 (NAD 83)
Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)
Coordinate System: UTM Zone 18
Units: Horizontal units are in meters, Vertical units are in meters.
Geiod Model: Geoid12A



Horizontal Datum: North American Datum of 1983 HARN (NAD83 HARN) Vertical Datum: North American Vertical Datum of 1988 (NAVD88) Coordinate System: Virginia State Plane South Units: Horizontal units are in U.S. Survey feet, Vertical units are in feet. Geoid Model: Geoid12A

#### LIDAR VERTICAL ACCURACY

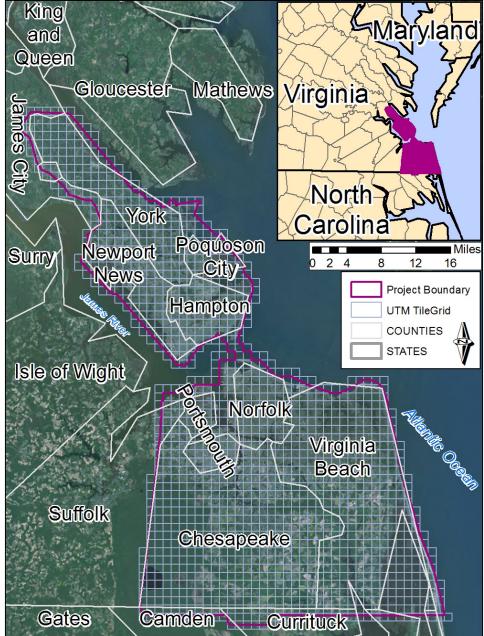
For the Norfolk, Virginia LiDAR Project, the tested  $RMSE_z$  of the classified LiDAR data for checkpoints in open terrain equaled **0.066 m** compared with the 0.092 m specification; and the FVA of the classified LiDAR data computed using  $RMSE_z \times 1.9600$  was equal to **0.129 m**, compared with the 0.181 m specification.

For the Norfolk, Virginia LiDAR Project, the tested CVA of the classified LiDAR data computed using the 95<sup>th</sup> percentile was equal to **0.194 m**, compared with the 0.269 m specification.

Additional accuracy information and statistics for the classified LiDAR data, raw swath data, and bare earth DEM data are found in the following sections of this report.

#### **PROJECT DELIVERABLES**

The deliverables for the project are listed below.


- 1. Raw Point Cloud Data (Swaths) in UTM coordinates
- 2. Control & Accuracy Checkpoint Report & Points in UTM coordinates
- 3. Project Report (Acquisition, Processing, QC)
- 4. Classified Point Cloud Data (Tiled)in both UTM and State Plane coordinates
- 5. First Return Surface (Raster DSM IMG Format) in both UTM and State Plane coordinates
- 6. Last Return Surface (Raster DSM IMG Format) in both UTM and State Plane coordinates
- 7. Bare Earth Surface (Raster DEM IMG Format) in both UTM and State Plane coordinates
- 8. Intensity Images (8-bit gray scale, tiled, GeoTIFF format) in both UTM and State Plane coordinates
- 9. Breakline Data (File GDB) in both UTM and State Plane coordinates
- 10. 3D and 2D buildings (File GDB) in both UTM and State Plane coordinates
- 11. Forest polygons (File GDB) in both UTM and State Plane coordinates
- 12. Tree points (File GDB) in both UTM and State Plane coordinates
- 13. Metadata
- 14. Project Extents in both UTM and State Plane coordinates, including a shapefile derived from the LiDAR Deliverable

👹 Dewberry

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 8 of 232

## **PROJECT TILING FOOTPRINT**

One thousand four hundred and fifty eight (1,457) UTM tiles were delivered for the project. Each UTM tile's extent is 1,500 meters by 1,500 meters. Three hundred and eighty eight (388) State Plane tiles were delivered for the project. Each State plane tiles extent is 10,000 ft by 10,000 ft (see Appendix B for a complete listing of delivered tiles).



Norfolk, VA LiDAR Project

Figure 1 - Project Map



Norfolk, VA LiDAR TO# G13PD00279 January 3, 2014 Page 9 of 232

# **LiDAR Acquisition Report**

Dewberry elected to subcontract the LiDAR Acquisition and Calibration activities to The Atlantic Group (Atlantic) and Laser Mapping Specialist Inc (LMSI). Atlantic and LMSI were responsible for providing LiDAR acquisition, calibration and delivery of LiDAR data files to Dewberry.

Dewberry received high accuracy, calibrated multiple return swath data from Atlantic on May 21, 2013 and from LMSI on June 5, 2013. Data was collected and delivered in compliance with the "U.S. Geological Survey National Geospatial Program Base LiDAR Specifications, Version 13 – ILMF 2010."

# **ACQUISITION EQUIPMENT**

Atlantic operated a Cessna T-210 (Tail # N732JE) outfitted with a LEICA ALS70-HP LiDAR system during the collection of the Southern portion of the study area. Table 1 represents a list of the features and characteristics for the LEICA ALS70-HP LiDAR system:

| Leica ALS70-HP                            |                          |                       |  |  |  |
|-------------------------------------------|--------------------------|-----------------------|--|--|--|
| Manufacturer                              | Leica                    |                       |  |  |  |
| Model                                     | ALS70 - HP               |                       |  |  |  |
| Platform                                  | Fixed-wing               |                       |  |  |  |
| Scan Pattern                              | sine, triangle, raster   |                       |  |  |  |
|                                           | sine                     | 200                   |  |  |  |
| Maximum Scan rate (Hz)                    | triangle                 | 158                   |  |  |  |
|                                           | raster                   | 120                   |  |  |  |
| Field of view (°)                         | 0 - 75 (full angle, use  | r adjustable)         |  |  |  |
| Maximum Pulse rate (kHz)                  | 500                      |                       |  |  |  |
| Maximum Flying height (m AGL)             | 3500                     |                       |  |  |  |
| Number of returns                         | unlimited                |                       |  |  |  |
| Number of intensity measurements          | 3 (first, second, third) |                       |  |  |  |
| Roll stabilization (automatic adative, °) | ,<br>75 - active FOV     |                       |  |  |  |
| Storage media                             | removable 500 GB SS      | SD                    |  |  |  |
| Storage capacity (hours @ max pulse rate) | 6                        |                       |  |  |  |
| size (cm)                                 | Scanner                  | 37 W x 68 L x 26<br>H |  |  |  |
|                                           | Control Electronics      | 45 W x 47 D x 36<br>H |  |  |  |
| Weight (kg)                               | Scanner                  | 43                    |  |  |  |
|                                           | Control Electronics 45   |                       |  |  |  |
| Operating Temperature                     | 0 - 40 °C                |                       |  |  |  |
| Flight Management                         | FCMS                     |                       |  |  |  |
| Power Consumption                         | 927 W @ 22.0 - 30.3 VDC  |                       |  |  |  |

Table 1: Atlantic's LEICA Sensor Characteristic

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 10 of 232

LMSI operated an Optech 3100 EA LiDAR system during the collection of the Northern portion of the study area. Table 2 represents a list of the features and characteristics for the Optech 3100 EA LiDAR system:

| Optech 3100 EA                               |                                                                                                             |                                |  |  |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| Manufacturer                                 | Optech                                                                                                      |                                |  |  |  |
| Model                                        | 3100EA                                                                                                      |                                |  |  |  |
| Platform                                     | Fixed-wing                                                                                                  |                                |  |  |  |
| Maximum Scan rate (Hz)                       | 0 to 70 Hz (>70 Hz o                                                                                        | ptional)                       |  |  |  |
| Field of view (°)                            | 0 - 75 (full angle, use                                                                                     | r adjustable)                  |  |  |  |
| Maximum Pulse rate (kHz)                     | 100                                                                                                         |                                |  |  |  |
| Maximum Flying height (m AGL)                | 3500                                                                                                        |                                |  |  |  |
| Number of returns                            | Up to 4 range measurements, including<br>1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> , last returns |                                |  |  |  |
| Number of intensity measurements             | 12-bit dynamic range. Measurements<br>for all recorded returns, including last<br>return.                   |                                |  |  |  |
| Roll stabilization (automatic adative,<br>°) | ±5°; more compensation available if                                                                         |                                |  |  |  |
| Storage media                                | Ruggedized removab                                                                                          | le SCSI hard disks             |  |  |  |
| size (cm)                                    | Scanner                                                                                                     | 26cm W x 19cm<br>L x 57 cm H   |  |  |  |
|                                              | Control Electronics                                                                                         | 65 cm W x 59 cm<br>D x 49 cm H |  |  |  |
| Weight (kg)                                  | Scanner                                                                                                     | 23.4 kg                        |  |  |  |
| weight (Kg)                                  | Control Electronics 53.2 kg                                                                                 |                                |  |  |  |
| Operating Temperature                        | Control rack: +10°C to 35 °C<br>Sensor head: -10 °C to +35 °C                                               |                                |  |  |  |
| Power Consumption                            | 28 V<br>35 A (peak)                                                                                         |                                |  |  |  |

Table 2: LMSI's Optech Sensor Characteristic

# LIDAR SYSTEM PARAMETERS

Table 3 illustrates Atlantic's system parameters for LiDAR acquisition on this project.

| Item                       | Parameter       |  |
|----------------------------|-----------------|--|
| System                     | Leica ALS-70 HP |  |
| Altitude (AGL meters)      | 1700            |  |
| Approx. Ground Speed (kts) | 120             |  |
| Laser Firing Rate (kHz)    | 316.2           |  |
| Scan Frequency (hz)        | 42.3            |  |
| Swath width (m)            | 1237            |  |
| Swath Overlap (%)          | 15%             |  |
| Line Spacing (m)           | 858             |  |
| Pass heading (degree)      | 164             |  |

Dewberry

| Item                                      | Parameter |
|-------------------------------------------|-----------|
| Field of View (degree)                    | 40        |
| Computed Down Track spacing (m) per beam  | 0.73      |
| Computed Cross Track Spacing (m) per beam | 0.73      |
| Average point spacing (m) per beam        | 0.7       |
| Point Spacing density at Nadir            | 3.8       |
| Points per meter^2 (m)                    | 2.4       |
| Gain up/Down                              | 3         |
| Scan Pattern                              | Triangle  |

Table 3: Atlantics LiDAR System Parameters

Table 4 illustrates LMSI's system parameters for LiDAR acquisition on this project.

| Item                             | Parameter      |
|----------------------------------|----------------|
| System                           | Optech 3100 EA |
| Altitude (AGL meters)            | 880            |
| Approx. Ground Speed (kts)       | 110            |
| Laser Firing Rate (kHz)          | 70             |
| Scan Frequency (hz)              | 40             |
| Swath width (m)                  | 612            |
| Swath Overlap (%)                | 25%            |
| Line Spacing (m)                 | 275            |
| Field of View (degree)           | 38             |
| Computed Down Track spacing (m)  | 0.5            |
| Computed Cross Track Spacing (m) | 0.5            |
| Points per meter^2 (m)           | 2              |

Table 4: LMSI's LiDAR System Parameters

#### **DATUM REFERENCE**

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 (NAD 83)

**Vertical Datum:** The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)

Coordinate System: UTM Zone 18

**Units:** Horizontal units are in meters, Vertical units are in meters. **Geiod Model:** Geoid12A

## ATLANTIC LIDAR ACQUISITION DETAILS

Atlantic planned 64 passes for the Southern portion of the project area as a series of parallel flight lines with cross flightlines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, Atlantic followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, includes the following criteria:

• A digital flight line layout using LEICA MISSION PRO flight design software for direct integration into the aircraft flight navigation system.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 12 of 232

- Planned flight lines; flight line numbers; and coverage area.
- LiDAR coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.
- Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally, Atlantic Group will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission.

Atlantic monitored weather and atmospheric conditions and conducted LiDAR missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. LiDAR systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. Atlantic accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition. Within 72-hours prior to the planned day(s) of acquisition, Atlantic closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis. Atlantic LiDAR sensors are calibrated at a designated site located at the Lawrence County Airport in Courtland, Alabama and are periodically checked and adjusted to minimize corrections at project sites.

## **ACQUISITION FLIGHT LOGS, DATES, AND FLIGHTLINES**

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. The Acquisition Manager contacted air traffic control and coordinated flight pattern requirements. LiDAR acquisition began immediately upon notification that control base stations were in place. During flight operations, the flight crew monitored weather and atmospheric conditions. LiDAR missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of PDOPs, and performed the first Q/C review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines impacted by unfavorable conditions were marked as invalid and re-flown immediately or at an optimal time.

The table below shows the flight missions to acquire the laser data including flight dates, daily missions, number of lines, tidal information, and comments for each flight.

| Date                  | Mission # | Lines<br>Flown |
|-----------------------|-----------|----------------|
| 3/25/13 to<br>3/29/13 | 5         | 1-43           |
| 3/31/13 to<br>4/5/13  | 5         | 44-66          |

Table 5: Flight Lines and Acquisition Dates

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 13 of 232

The figure below illustrates Atlantic's final trajectories.

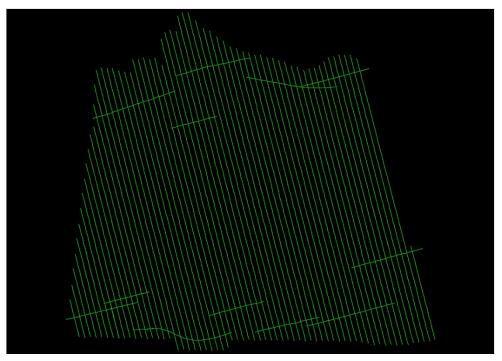



Figure 2: Trajectories as flown by Atlantic LiDAR Control

All surveys were performed to Federal Geodetic Control Subcommittee (FGCS) FGCS guidelines. Atlantic Group maximized existing NGS control and the ALDOT CORS stations to provide the control network, designed with proper redundancies, session occupation times, and time between sessions according to the applicable NOS technical standards. GPS observations were conducted using Federal Geodetic Control Committee (FGCC) approved dual frequency GPS receivers. A minimum of two fixed-height tripods were used as ground base stations running at a one (1.0) second epoch collection rate during every mission, typically at a minimum of four hours. The control locations are planned to ensure a 28km baseline distance from the furthest flight line distance. All mission collections were conducted with a PDOP of 3.2 or lower. Also, the KP index is considered prior to mission collection and no collection occurred when the KP index was at or above 4. During acquisition the following ground control points where used.

| Station | Latitude          | Longitude      | Northing    | Easting    | Elevation | PID    |
|---------|-------------------|----------------|-------------|------------|-----------|--------|
| CEM1    | 36 44<br>42.01674 | 76 06 26.52957 | 4067157.092 | 401140.823 | 5.000m    |        |
| CPK1    | 36 39<br>56.13139 | 76 19 19.36753 | 4058590.483 | 381853.335 | 4.185m    | DN7636 |

| Station | Julian<br>Day | Receiver<br>Model | Antenna<br>Model | Height<br>(m) | Start<br>Date/Time | Stop<br>Date/Time |
|---------|---------------|-------------------|------------------|---------------|--------------------|-------------------|
| CPK1    | 87            | TOPCON            | TPSHIPER V       | 1.374         | 3/28/13<br>22:20   | 3/28/13<br>15:00  |
|         | 0/            | TOTICON           |                  | 1.3/4         | 3/29/13            | 3/29/13           |
| CEM1    | 88            | TOPCON            | TPSHIPER_V       | 1.391         | 11:15              | 11:43             |
| CPK1    | 88            | TOPCON            | TPSHIPER_V       | 1.374         | 3/29/13            | 3/29/13           |

| Tabla 6 - | Raco | Stations | hoad | to | control | TIDAR | acquisition |
|-----------|------|----------|------|----|---------|-------|-------------|
| rable o – | Dase | Stations | useu | w  | control | LIDAK | acquisition |



|      |    |        |            |       | 2:30             | 17:33            |
|------|----|--------|------------|-------|------------------|------------------|
| CEM1 | 89 | TOPCON | TPSHIPER_V | 1.389 | 3/30/13<br>11:20 | 3/30/13<br>22:38 |
| CPK1 | 89 | TOPCON | TPSHIPER_V | 1.374 | 3/30/13<br>15:22 | 3/30/13<br>20:02 |
| CEM1 | 90 | TOPCON | TPSHIPER_V | 1.389 | 3/31/13<br>10:45 | 3/30/13<br>11:30 |
| CPK1 | 90 | TOPCON | TPSHIPER_V | 1.374 | 3/31/13 4:15     | 3/31/13 8:30     |
| CEM1 | 91 | TOPCON | TPSHIPER_V | 1.390 | 4/1/13 11:45     | 4/1/13 24:00     |
| CPK1 | 91 | TOPCON | TPSHIPER_V | 1.373 | 4/1/13 5:15      | 4/1/13 20:30     |

Table 7 – Site Observations


#### Airborn GPS Kinematic

LEICA IPAS TC was used to post process the airborne solutions for the mission. IGS08 (EPOCH:2013.1011) coordinates from the OPUS solutions was used in the post processing.

#### Generation and Calibration of Laser Points (raw data)

Data collected by the LiDAR unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

On a project level, a supplementary coverage check is carried out to ensure no data voids are present.



Dewberry<sup>®</sup>

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 15 of 232

Figure 3 - LiDAR Swath output showing complete coverage. Boresight and Relative accuracy

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the LiDAR unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement.

## LMSI LIDAR ACQUISITION DETAILS

LMSI planned 90 passes for the Northern portion of the project area as a series of parallel flight lines with cross flightlines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, LMSI followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, includes the following criteria:

- A digital flight line layout using ALTM-NAV flight management software for direct integration into the aircraft flight navigation system.
- Planned flight lines; flight line numbers; and coverage area.
- LiDAR coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.
- Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally LMSI will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission.

LMSI monitored weather and atmospheric conditions and conducted LiDAR missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. LiDAR systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. LMSI accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition.

Within 72-hours prior to the planned day(s) of acquisition, LMSI closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis.



# **ACQUISITION DATES AND FLIGHTLINES**

Table 8 shows the flight missions to acquire the laser data including flight dates, daily missions, number of lines, tidal information, and comments for each flight.

| Date    | Mission # | Lines Flown  | Mission Time               | Mission Time Tidal<br>Window  |                                                 |
|---------|-----------|--------------|----------------------------|-------------------------------|-------------------------------------------------|
| 3/21/13 | 1         | 1-18         | 10:23-1:30                 | 9:36-1:36                     |                                                 |
| 3/22/13 | 2         | 19-23, 23-25 | 11:21-12:33, 1:34-<br>2:22 | 10:22-2:22                    | Had mechanical<br>issue, fixed, went<br>back up |
| 3/23/13 | 0         |              |                            |                               | Laser<br>maint/ground<br>control                |
| 3/24/13 | 0         |              |                            |                               | Weather/ground<br>control                       |
| 3/25/13 | 0         |              |                            |                               | Weather/ground<br>control                       |
| 3/26/13 | 0         |              |                            |                               | Ground<br>Control/laser<br>maint                |
| 3/27/13 | 0         |              |                            |                               | Ground Control                                  |
| 3/28/13 | 1         | 26-31        | 4:55-6:25                  | 2:41-6:41                     |                                                 |
| 3/29/13 | 2         | 32-54        | 3:37-7:10a, 3:57-<br>7:16p | 3:18-7:18a,<br>3:26-7:16p     |                                                 |
| 3/30/13 | 2         | 55-90        | 4:20-8:05am,<br>4:16-6:23p | 4:07-<br>8:07a,<br>4:13-8:13p |                                                 |
| 3/31/13 | 1         | 26-31        | 5:05-6:41a                 | 4:58-8:58a                    | reflights                                       |

Table 8: Flight Lines and Acquisition Dates

The figure below illustrates LMSI's final trajectories.

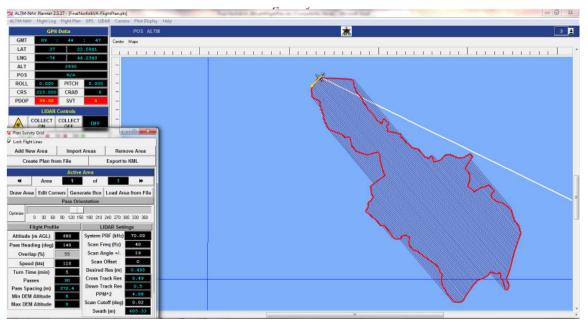



Figure 4: Trajectories as flown by LMSI LiDAR Control



Two base stations were utilized. The base station coordinates are set forth below.

| Latitude       | Longitude      | Elevation |  |  |
|----------------|----------------|-----------|--|--|
| 37 11 46.65724 | 76 29 28.13126 | -18.135m  |  |  |
| 37 07          |                |           |  |  |
| 27.35080       | 76 25 12.73298 | -33.312m  |  |  |

Table 9 – Base Stations used to control LiDAR acquisition Airborne GPS Kinematic

All airborne GPS trajectories were processed and checked on site. All trajectories were very high quality with forward/reverse separation between 2cm-5cm.

# **GENERATION AND CALIBRATION OF LASER POINTS (RAW DATA)**

The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete.

If a calibration error greater than specification is observed within the mission, the roll, pitch and scanner scale corrections that need to be applied are calculated. The missions with the new calibration values are regenerated and validated internally once again to ensure quality.

Data collected by the LiDAR unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

On a project level, a supplementary coverage check is carried out to ensure no data voids unreported by Field Operations are present.



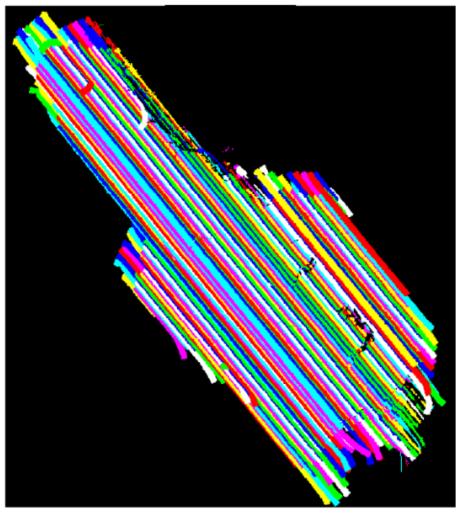



Figure 5 - LiDAR Swath output showing complete coverage. Boresight and Relative accuracy

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the LiDAR unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement.

## COMBINED SWATH VERTICAL ACCURACY ASSESSMENT

Dewberry tested the vertical accuracy of the open terrain swath data upon receipt of the calibrated data from Atlantic and LMSI. Dewberry tested the vertical accuracy of the swath data using the eighteen open terrain independent survey check points. The vertical accuracy is tested by comparing survey checkpoints in open terrain to a triangulated irregular network (TIN) that is created from the raw swath points. Only checkpoints in open terrain can be tested against raw swath data because the data has not undergone classification techniques to remove vegetation,



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 19 of 232

buildings, and other artifacts from the ground surface. Checkpoints are always compared to interpolated surfaces from the LiDAR point cloud because it is unlikely that a survey checkpoint will be located at the location of a discrete LiDAR point. Project specifications require a FVA of 0.181 m based on the RMSE<sub>z</sub> (0.0925 m) x 1.96. The dataset for the Norfolk, VA LiDAR Project satisfies these criteria. The raw LiDAR swath data tested 0.163 m vertical accuracy at 95% confidence level in open terrain, based on RMSE<sub>z</sub> (0.083m) x 1.9600. The table below shows all calculated statistics for the raw swath data.

| 100 %<br>of<br>Totals | RMSE <sub>z</sub> (m)<br>Open Terrain<br>Spec=0.0925m |       |       | Median<br>(m) | Skew  | Std<br>Dev<br>(m) | # of<br>Points | Min<br>(m) | Max<br>(m) |
|-----------------------|-------------------------------------------------------|-------|-------|---------------|-------|-------------------|----------------|------------|------------|
| Open<br>Terrain       | 0.083                                                 | 0.163 | 0.058 | 0.025         | 0.963 | 0.077             | 18             | -0.109     | 0.248      |

Table 10: FVA at 95% Confidence Level for Raw Swaths

Based on the initial vertical accuracy testing conducted by Dewberry, the calibrated data received from Atlantic and LMSI for the Norfolk, VA LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

# LiDAR Processing & Qualitative Assessment

# DATA CLASSIFICATION AND EDITING

LiDAR mass points were produced to LAS 1.2 specifications, including the following LAS classification codes:

- Class 1 = Unclassified, used for all other features that do not fit into the Classes 2, 7, 9, 10, or 11, including vegetation, buildings, etc.
- Class 2 = Bare-Earth Ground
- Class 7 = Noise, low and high points
- Class 9 = Water, points located within collected breaklines
- Class 10 = Ignored Ground due to breakline proximity.
- Class 11 = Withheld, Points with scan angles exceeding +/- 20 degrees.

The data was processed using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classifies any obvious outliers in the dataset to class 7 and points with scan angles exceeding +/- 20 degrees to class 11. After points that could negatively affect the ground are removed from class



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 20 of 232

1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model.

This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model.

The following fields within the LAS files are populated to the following precision: GPS Time (0.000001 second precision), Easting (0.003 meter precision), Northing (0.003 meter precision), Elevation (0.003 meter precision), Intensity (integer value - 12 bit dynamic range), Number of Returns (integer - range of 1-4), Return number (integer range of 1-4), Scan Direction Flag (integer - range 0-1), Classification (integer), Scan Angle Rank (integer), Edge of flight line (integer, range 0-1), User bit field (integer - flight line information encoded). The LAS file also contains a Variable length record in the file header that defines the projection, datums, and units.

Once the initial ground routine has been performed on the data, Dewberry creates Delta Z (DZ) orthos to check the relative accuracy of the LiDAR data. These orthos compare the elevations of LiDAR points from overlapping flight lines on a 1 meter pixel cell size basis. If the elevations of points within each pixel are within 10 cm of each other, the pixel is colored green. If the elevations of points within each pixel are between 10 cm and 20 cm of each other, the pixel is colored yellow, and if the elevations of points within each pixel are between 10 cm and 20 cm of each other, the pixel is colored yellow, and if the elevations of points within each pixel are greater than 20 cm in difference, the pixel is colored red. Pixels that do not contain points from overlapping flight lines are colored according to their intensity values. DZ orthos can be created using the full point cloud or ground only points and are used to review and verify the calibration of the data is acceptable. Some areas are expected to show sections or portions of red, including terrain variations, slope changes, and vegetated areas or buildings if the full point cloud is used. However, large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data. The DZ orthos for Norfolk, VA showed that the data was calibrated correctly with no issues that would affect its usability. The figure below shows an example of the DZ orthos.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 21 of 232

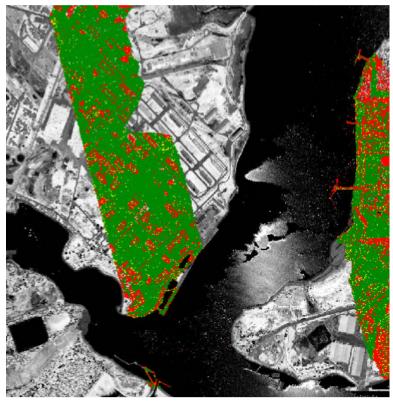



Figure 6 - DZ orthos created from the full point cloud. Some red pixels are visible along embankments, sloped terrain, on buildings, and in vegetated land cover, as expected. Open, flat areas are green indicating the calibration and relative accuracy of the data is acceptable.

Once the calibration and relative accuracy of the data was confirmed, Dewberry utilized a variety of software suites for data processing. The LAS dataset was imported into GeoCue task management software for processing in Terrascan. Each tile was imported into Terrascan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing conducted by Dewberry. Dewberry analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. After the ground classification routine that utilizes breaklines compiled by Dewberry to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. The final classification routine applied to the dataset selects ground points within a specified distance of the water breaklines and classifies them as class 10, ignored ground due to breakline proximity.

## **QUALITATIVE ASSESSMENT**

Dewberry's qualitative assessment utilizes a combination of statistical analysis and interpretative methodology to assess the quality of the data for a bare-earth digital terrain model (DTM). This process looks for anomalies in the data and also identifies areas where man-made structures or vegetation points may not have been classified properly to produce a bare-earth model.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 22 of 232

Within this review of the LiDAR data, two fundamental questions were addressed:

- Did the LiDAR system perform to specifications?
- Did the vegetation removal process yield desirable results for the intended bare-earth terrain product?

Mapping standards today address the quality of data by quantitative methods. If the data are tested and found to be within the desired accuracy standard, then the data set is typically accepted. Now with the proliferation of LiDAR, new issues arise due to the vast amount of data. Unlike photogrammetrically-derived DEMs where point spacing can be eight meters or more, LiDAR nominal point spacing for this project is 1 point per 0.7 square meters. The end result is that millions of elevation points are measured to a level of accuracy previously unseen for traditional elevation mapping technologies and vegetated areas are measured that would be nearly impossible to survey by other means. The downside is that with millions of points, the dataset is statistically bound to have some errors both in the measurement process and in the artifact removal process.

As previously stated, the quantitative analysis addresses the quality of the data based on absolute accuracy. This accuracy is directly tied to the comparison of the discreet measurement of the survey checkpoints and that of the interpolated value within the three closest LiDAR points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the LiDAR data is actually tested. However there is an increased level of confidence with LiDAR data due to the relative accuracy. This relative accuracy in turn is based on how well one LiDAR point "fits" in comparison to the next contiguous LiDAR measurement, and is verified with DZ orthos. Once the absolute and relative accuracy has been ascertained, the next stage is to address the cleanliness of the data for a bareearth DTM.

By using survey checkpoints to compare the data, the absolute accuracy is verified, but this also allows us to understand if the artifact removal process was performed correctly. To reiterate the quantitative approach, if the LiDAR sensor operated correctly over open terrain areas, then it most likely operated correctly over the vegetated areas. This does not mean that the entire bareearth was measured; only that the elevations surveyed are most likely accurate (including elevations of treetops, rooftops, etc.). In the event that the LiDAR pulse filtered through the vegetation and was able to measure the true surface (as well as measurements on the surrounding vegetation) then the level of accuracy of the vegetation removal process can be tested as a by-product.

To fully address the data for overall accuracy and quality, the level of cleanliness (or removal of above-ground artifacts) is paramount. Since there are currently no effective automated testing procedures to measure cleanliness, Dewberry employs a combination of statistical and visualization processes. This includes creating pseudo image products such as LiDAR orthos produced from the intensity returns, Triangular Irregular Network (TIN)'s, Digital Elevation Models (DEM) and 3-dimensional models. By creating multiple images and using overlay techniques, not only can potential errors be found, but Dewberry can also find where the data meets and exceeds expectations. This report will present representative examples where the LiDAR and post processing had issues as well as examples of where the LiDAR performed well.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 23 of 232

#### ANALYSIS

Dewberry utilizes GeoCue software as the primary geospatial process management system. GeoCue is a three tier, multi-user architecture that uses .NET technology from Microsoft. .NET technology provides the real-time notification system that updates users with real-time project status, regardless of who makes changes to project entities. GeoCue uses database technology for sorting project metadata. Dewberry uses Microsoft SQL Server as the database of choice. Specific analysis is conducted in Terrascan and QT Modeler environments.

Following the completion of LiDAR point classification, the Dewberry qualitative assessment process flow for the Norfolk, VA LiDAR project incorporated the following reviews:

- 1. *Format:* The LAS files are verified to meet project specifications. The LAS files for the Norfolk, VA LiDAR project conform to the specifications outlined below.
  - Format, Echos, Intensity
    - LAS format 1.2
    - Point data record format 1
    - Multiple returns (echos) per pulse
    - Intensity values populated for each point
  - ASPRS classification scheme
    - Class 1 unclassified
    - Class 2 Bare-earth ground
    - Class 7 Noise
    - Class 9 Water
    - Class 10 Ignored Ground due to breakline proximity
    - Class 11 Withheld due to scan angles exceeding +/- 20 degrees
  - Projections
    - Datum North American Datum 1983
    - Projected Coordinate System UTM Zone 18
    - Linear Units Meters
    - o Vertical Datum North American Vertical Datum 1988, Geoid 12A
    - Vertical Units Meters
    - o Datum North American Datum 1983 HARN (NAD83 HARN)
    - Projected Coordinate System Virginia State Place South
    - Linear Units U.S. Survey Feet
    - Vertical Datum North American Vertical Datum 1988, Geoid 12A
    - Vertical Units Feet
  - LAS header information:
    - Class (Integer)
    - Adjusted GPS Time (0.0001 seconds)
    - Easting (0.003 meters)
    - Northing (0.003 meters)
    - Elevation (0.003 meters)
    - Echo Number (Integer 1 to 4)
    - Echo (Integer 1 to 4)

- Intensity (8 bit integer)
- Flight Line (Integer)
- Scan Angle (Integer degree)
- 2. *Data density, data voids:* The LAS files are used to produce Digital Elevation Models using the commercial software package "QT Modeler" which creates a 3-dimensional data model derived from Class 2 (ground points) in the LAS files. Grid spacing is based on the project density deliverable requirement for un-obscured areas. For the Norfolk, VA LiDAR project it is stipulated that the minimum post spacing in un-obscured areas should be 1 point per 0.7 square meters.
  - *a*. Acceptable voids (areas with no LiDAR returns in the LAS files) that are present in the majority of LiDAR projects include voids caused by bodies of water. These are considered to be acceptable voids. No unacceptable voids are present in the Norfolk, VA LiDAR project.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 25 of 232

- 3. *Bare earth quality:* Dewberry reviewed the cleanliness of the bare earth to ensure the ground has correct definition, meets the project requirements, there is correct classification of points, and there are less than 5% residual artifacts.
  - a. Artifacts: Artifacts are caused by the misclassification of ground points and usually represent vegetation and/or man-made structures. The artifacts identified are usually low lying structures, such as porches or low vegetation used as landscaping in neighborhoods and other developed areas. These low lying features are extremely difficult for the automated algorithms to detect as non-ground and must be removed manually. The vast majority of these features have been removed but a small number of these features are still in the ground classification. The limited numbers of features remaining in the ground are usually 0.3 meters or less above the actual ground surface, and should not negatively impact the usability of the dataset.

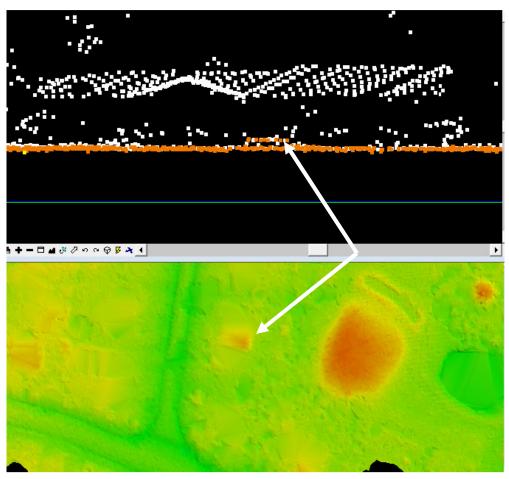



Figure 7 – Tile number 18SVF020755. Profile with points colored by class (class 1=white, class 2=orange) is shown in the top view and a model of the surface is shown in the bottom view. The arrow identifies low structure or vegetation points. A limited number of these small features are still classified as ground but do not impact the usability of the dataset.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 26 of 232

*b. Bridge Removal Artifacts:* The DEM surface models are created from TINs or Terrains. TIN and Terrain models create continuous surfaces from the inputs. Because a continuous surface is being created, the TIN or Terrain will use interpolation to triangulate across a bridge opening from legitimate ground points on either side of the actual bridge. This can cause visual artifacts or "saddles." These "artifacts" are only visual and do not exist in the LiDAR points or breaklines.

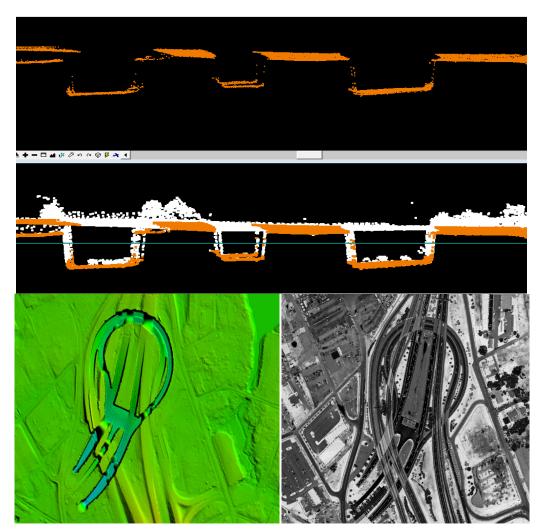



Figure 8 – Tile number 18SUF840770. The DEM in the bottom left view shows visual artifacts because the surface model is interpolated from the ground points on the slope leading from the tops of the overpasses and bridges to the lower ground points on either side of the overpasses and bridges. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This can cause visual artifacts when there are features with large elevation differences. The profiles in the top two views show the LiDAR points of this particular feature colored by class. All overpass and bridge points have been removed from ground (orange) and are unclassified (white). There are no ground points that can be modified to correct these visual artifacts.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 27 of 232

*c. Culverts and Bridges:* Bridges have been removed from the bare earth surface while culverts remain in the bare earth surface. In instances where it is difficult to determine if the feature is a culvert or bridge, such as with some small bridges, Dewberry erred on assuming they would be culverts especially if they are on secondary or tertiary roads. Below is an example of a culvert that has been left in the ground surface.

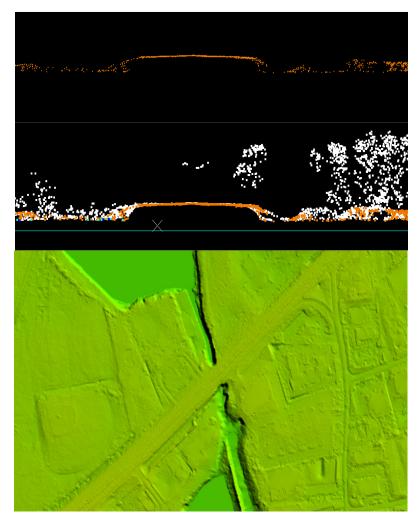



Figure 9– Tile number 18SUF885725. Profile with points colored by class (class 1=white, class 2=orange, class 9=blue) is shown in the top view and the DEM is shown in the bottom view. This culvert remains in the bare earth surface. Bridges have been removed from the bare earth surface and classified to class 1.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 28 of 232

*d. In Ground Structures:* In ground structures exist within the project area. These types of structures occur mainly on military bases and in facilities designed for munitions testing and storage. These features are correctly included in the ground classification.

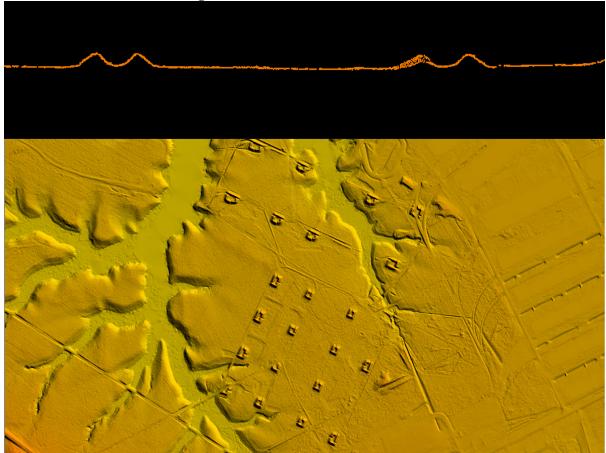



Figure 10 – Tile 18SUG555265. Profile with the points colored by class (class 1=white, class 2=orange) is shown in the top view and a DEM of the surface is shown in the bottom view. These features are correctly included in the ground classification.



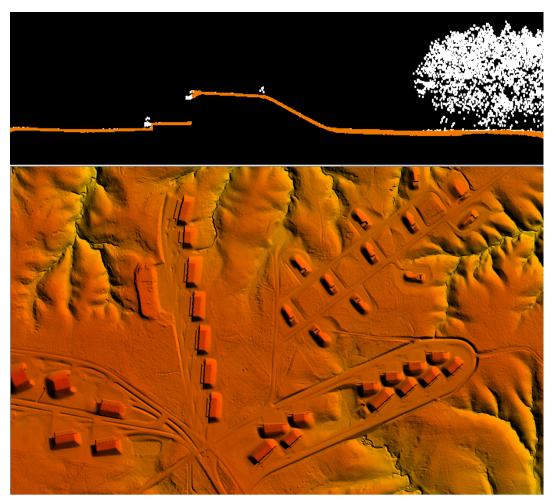



Figure 11 – Tiles 18SUG570220. Profile with the points colored by class (class 1=white, class 2=orange) is shown in the top view and a DEM of the surface is shown in the bottom view. These features are correctly included in the ground classification.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 30 of 232

*e. Dirt Mounds*: Irregularities in the natural ground exist and may be misinterpreted as artifacts that should be removed. Small hills and dirt mounds are present throughout the project area. These features are correctly included in the ground.

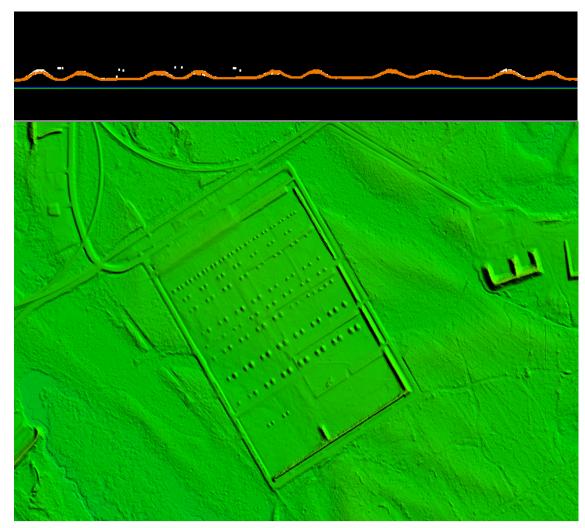



Figure 12 - Tile 18SUG585070. Profile with the points colored by class (class 1=white, class 2=orange) is shown in the top view and a DEM of the surface is shown in the bottom view. These features are correctly included in the ground classification.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 31 of 232

*f. Elevation Change Within Breaklines:* While water bodies are flattened in the final DEMs, other features such as linear hydrographic features can have significant changes in elevation within a small distance. In linear hydrographic features, this is often due to the presence of a structure that affects flow such as a dam or spillway. Significant changes in elevation are also present in tidally influenced areas which are located throughout the Norfolk, VA Project area. Dewberry has reviewed the DEMs to ensure that changes in elevation are shown from bank to bank. These changes are often shown as steps to reduce the presence of artifacts while ensuring consistent downhill flow. An example is shown below.

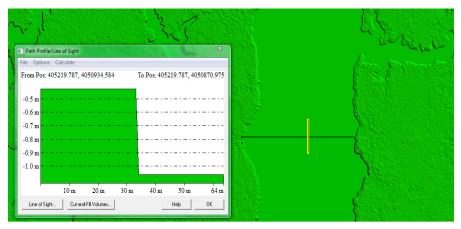



Figure 13 – Tile number 18SVF050500. Significant drops in elevation occur in the tidally influenced areas. Elevation change has been stair stepped. The steps are flat from bank to bank and flow consistently downhill.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 32 of 232

*g. Shipyards and Dry Docks*: Large dry docks are located throughout the Norfolk, VA project area. Newport News Shipbuilding is one of the largest in the world and has dry docks that can hold over 100 million gallons of water when flooded. Large vessels such as aircraft carriers were being actively constructed within most of the dry docks during the time of acquisition. Other dry docks were empty resulting in large crater like artifacts in the final bare earth DEMs. There are no ground points that can be modified to correct these visual artifacts. Examples are shown below.

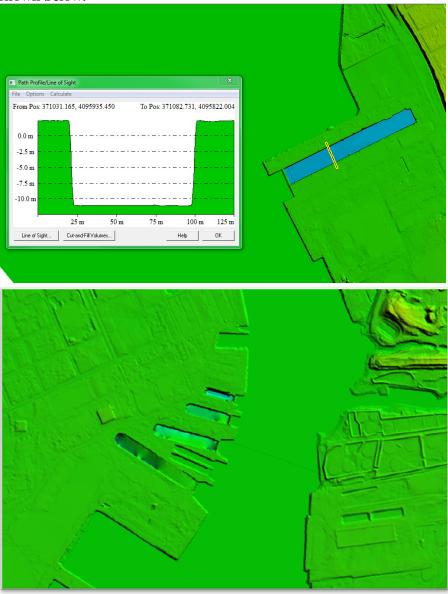



Figure 14– Tile 18SUF705950 in the top view and tile 18SUF840755 in the bottom view. The DEMs show visual artifacts because the surface model is interpolated from the ground points on the slope leading from the tops of the dry docks to the lower ground points within the dry docks. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This can cause visual artifacts when there are features with large elevation differences.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 33 of 232

*h. Canal Locks*: Great Bridge Lock, often closed by the Army Corp. due to flooding, was open at the time of acquisition. Dewberry collected it as a water body and it was hydro flattened along with the rest of the hydro mask in the final DEMs. Examples are shown below.

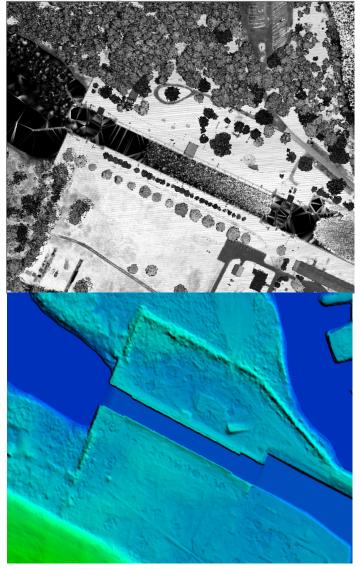



Figure 15 – Tile 18SUF885635. Great Bridge Lock was open and full of water at the time of acquisition. Dewberry included the lock in the hydro mask to avoid artifacts in the final DEM model shown above in the bottom view.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 34 of 232

*i. Flight line Ridges:* Ridges occur when there is a difference between the elevations of adjoining flight lines or swaths. Some flight line ridges are visible in the final DEMs but they do not exceed the project specifications and the overall relative accuracy requirements for the project area have been met. An example of a visible ridge that is within tolerance is shown below.

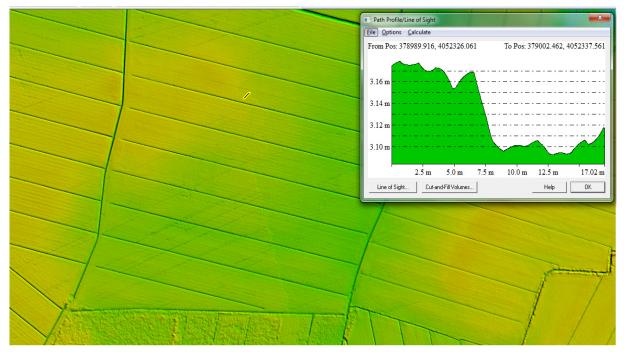



Figure 16– Tile number 18SUF780515. The flight line ridge is less than 8 cm. Overall, the FEMA Norfolk, VA LiDAR data meets the project specifications for 10 cm RMSE relative accuracy.

## **DERIVATIVE LIDAR PRODUCTS**

#### **Building Footprint Shapefiles**

Dewberry generated 2D and 3D building footprints through the use of a semi-automated approach. This approach is semi automated in that the initial development of the features is conducted through the automated processing of the LiDAR data using proprietary tools and completed through manual review and editing of the features to ensure that the product meets the specifications.

Dewberry developed an automated processing algorithm that identified the planar surfaces in the LiDAR data and generated polygons from the indentified areas. Once the surfaces were identified and the initial polygons had been extracted, a secondary process preformed a best-fit line surrounding the initial polygons to square and finish the buildings.

While the automated portion of the process successfully extracts the majority of features, there are instances where features will not be accurately captured. Dewberry identified and manually added features that were visible in the LiDAR but were missed by the automated collect, separated buildings that were collected as a single footprint due to proximity, and reshaped complex features in the final processing steps.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 35 of 232

a. *Missed or Inaccurately Generated Features:* The automated building footprints are based on LiDAR points that were classified based on size, elevation and angular relationships between the points. Occasionally, features were missed or inaccurately generated due to tree cover or certain properties not meeting the automated classification parameters. Dewberry added or modified these features as needed during the manual portion of the process. Examples are shown below.

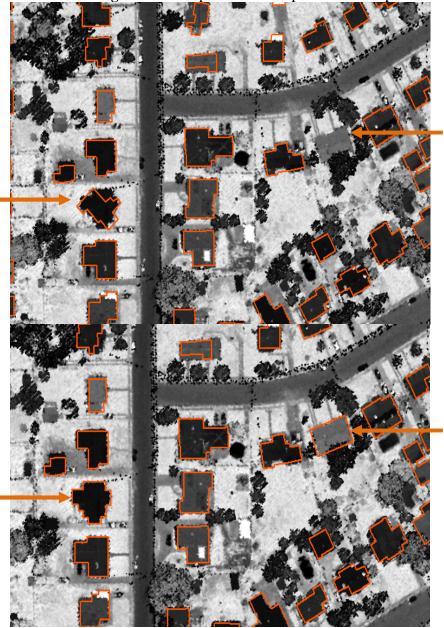



Figure 17 – Tiles 18SUF795950 and 18SUF795965. The top image shows the automated portion of the process missed a feature and did not accurately capture a second feature. Dewberry corrected these types of errors during the manual review as shown in the bottom image.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 36 of 232

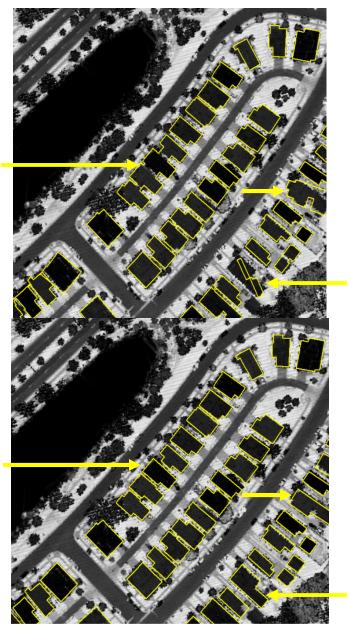



Figure 19 – Tile 18SUF795725. The top image shows the automated portion of the process did not accurately capture and separate individual features that were in close proximity. Dewberry corrected these types of errors during the manual review as shown in the bottom image.

Dewberry completed the buildings by programmatically adding the attributes for length, width, area, building top elevation, building base elevation, median height of building, and rooftype.

The positional accuracy of the features are equal to 1.5 meters relative to the LiDAR data. This accuracy allows for the fact that the roof line will not be completely accurate due to the density of points on the feature.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 37 of 232

#### **Vegetation Shapefiles**

Forest polygons were developed using automated processes in eCognition software. This software allowed the input of the surface models and intensity imagery to determine vegetation stands as well as individual points. Upon completion of the automated extraction buildings and hydrographic features were erased from the vegetation polygons as required in the specifications.

Dewberry determined the predominant height of the stand, the average stem spacing, and the type of tree using GIS tools. Stand height was calculated using the mean surface model elevation for each tree stand. Average stem spacing was calculated using the mean Euclidean distance of the tree points within each stand. Tree type was assigned by first correlating forest landcover types from NOAA's Coastal Change Analysis Program (C-CAP) 2006 landcover dataset to coincident forest polygons. Then, the remaining forest polygons that were not coincident to the C-CAP forest landcover were classified manually.

Along with the forest polygons, Dewberry generated point records for each tree within the project area that exceeds the 4 meter height requirement. Trees were collected both inside and outside of the vegetation polygons. Dewberry used eCognition to segment the intensity and surface models into likely candidates for individual trees. These segments were converted to a centroid and attributed as a tree point. Dewberry performed a review of the dataset to ensure that no significant errors are present. However, it should be noted that the individual tree points will be best estimates for the trees and not necessarily the absolute location of an individual tree.

## **Survey Vertical Accuracy Checkpoints**

All checkpoints surveyed for vertical accuracy testing purposes are listed in the following table. A total of one hundred (100) checkpoints were surveyed for the USGS Norfolk, VA LiDAR Project.

| Point ID | NAD83         | NAVD88         |               |
|----------|---------------|----------------|---------------|
|          | Easting X (m) | Northing Y (m) | Elevation (m) |
| BLT      | 351760.734    | 4127850.10     | 18.183        |
| BLT      | 381578.163    | 4078664.26     | 0.747         |
| BLT      | 393248.624    | 4072438.86     | 5.015         |
| BLT      | 402227.485    | 4071563.33     | 3.332         |
| BLT      | 392360.215    | 4067495.23     | 4.073         |
| BLT      | 381270.904    | 4060371.47     | 4.561         |
| BLT      | 400675.21     | 4061689.79     | 3.101         |
| BLT      | 418260.165    | 4058718.15     | 0.336         |
| BLT      | 381142.027    | 4051271.05     | 0.508         |
| BLT      | 391753.707    | 4051529.69     | 3.966         |
| BLT      | 410587.042    | 4049846.41     | 0.215         |
| BLT      | 354157.693    | 4124969.35     | 26.867        |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 38 of 232

| BLT        | 393929.901               | 4045956.46               | 1.760           |
|------------|--------------------------|--------------------------|-----------------|
| BLT        | 374985.334               | 4116934.63               | 1.681           |
| BLT        | 377113.574               | 4112722.61               | 1.301           |
| BLT        | 363984.403               | 4105501.27               | 5.313           |
| BLT        | 376746.304               | 4101703.52               | 3.508           |
| BLT        | 387491.887               | 4091258.47               | 0.708           |
| BLT        | 376730.499               | 4083420.21               | 5.063           |
| BLT        | 409359.513               | 4083180.74               | 1.461           |
| FO         | 370349.672               | 4073223.38               | 6.550           |
| FO         | 372583.785               | 4071595.18               | 5.275           |
| FO         | 415396.475               | 4067053.56               | 0.702           |
| FO         | 397607.018               | 4068185.83               | 2.955           |
| FO         | 376505.026               | 4067499.95               | 4.395           |
| FO         | 395910.233               | 4060914.70               | 2.597           |
| FO         | 410438.562               | 4055125.18               | 0.440           |
| FO         | 380102.698               | 4056043.02               | 4.959           |
| FO         | 396807.306               | 4049602.58               | 2.637           |
| FO         | 403948.268               | 4045614.94               | 2.244           |
| FO         | 350327.179               | 4136365.61               | 24.911          |
| FO         | 391454.574               | 4046723.48               | 4.048           |
| FO         | 360028.768               | 4126241.51               | 9.111           |
| FO         | 366402.057               | 4118875.45               | 16.648          |
| FO         | 372250.758               | 4112572.97               | 4.076           |
| FO         | 362705.508               | 4108269.85               | 9.253           |
| FO         | 381648.883               | 4101531.90               | 2.403           |
| FO         | 372274.821               | 4096033.45               | 5.794           |
| FO         | 399373.443               | 4084210.27               | 5.089           |
| FO         | 400375.322               | 4078421.85               | 3.415           |
| GWC        | 393746.948               | 4078316.06               | 1.982           |
| GWC        | 375676.882               | 4072545.39               | 4.983           |
| GWC        | 409067.175               | 4073011.62               | 5.377           |
| GWC        | 403954.911               | 4067042.59               | 4.174           |
| GWC        | 377981.16                | 4066255.19               | 3.710           |
| GWC        | 392212.252               | 4061512.70               | 6.443           |
| GWC<br>GWC | 402351.116               | 4055382.32               | 2.440           |
| GWC        | 386220.44                | 4056359.55               | 5.163           |
| GWC        | 386712.905               | 4049194.93               | 3.966           |
| GWC        | 409971.276<br>344779.087 | 4046257.13               | 2.111           |
| GWC        | 376541.932               | 4134125.52<br>4046741.63 | 35.999<br>4.160 |
| GWC        | 360405.124               | 4118838.76               | 13.727          |
| GWC        | 373059.394               | 4119343.90               | 1.280           |
| GWC        | 381475.24                | 4109732.52               | 0.319           |
| GWC        | 376178.523               | 4107208.36               | 2.294           |
| GWC        | 376137.546               | 4096625.80               | 4.989           |
| GWC        | 365940.986               | 4114829.51               | 17.938          |
| GWC        | 393786.442               | 4082613.86               | 6.043           |
|            |                          | 10101000                 |                 |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 39 of 232

| GWC | 404973.792 | 4084165.95 | 4.738  |
|-----|------------|------------|--------|
| ОТ  | 348684.803 | 4133416.99 | 25.196 |
| OT  | 387312     | 4078657.57 | 2.843  |
| OT  | 387581.462 | 4072616.49 | 5.679  |
| OT  | 409482.049 | 4066448.20 | 2.486  |
| OT  | 381818.542 | 4067562.41 | 2.601  |
| OT  | 378660.721 | 4061599.98 | 4.475  |
| OT  | 409784.125 | 4060963.64 | 1.461  |
| OT  | 397899.773 | 4055461.44 | 3.726  |
| OT  | 376373.978 | 4051531.89 | 5.106  |
| OT  | 385337.999 | 4049989.79 | 4.067  |
| OT  | 399629.715 | 4045755.10 | 2.509  |
| OT  | 365374.175 | 4120908.93 | 19.117 |
| OT  | 389710.031 | 4046832.73 | 3.427  |
| OT  | 360651.125 | 4113702.12 | 10.775 |
| OT  | 385773.135 | 4105404.72 | 1.142  |
| ОТ  | 365920.251 | 4107753.53 | 9.598  |
| ОТ  | 371637.805 | 4101773.55 | 6.314  |
| ОТ  | 382129.104 | 4097123.06 | 2.298  |
| ОТ  | 383472.444 | 4086525.63 | 3.377  |
| ОТ  | 404011.498 | 4078298.89 | 4.043  |
| UT  | 350036.421 | 4130867.11 | 21.875 |
| UT  | 376920.293 | 4079299.32 | 3.214  |
| UT  | 381584.308 | 4073036.02 | 3.282  |
| UT  | 398962.242 | 4072060.25 | 3.235  |
| UT  | 387116.242 | 4067549.67 | 5.267  |
| UT  | 386392.045 | 4061538.34 | 5.179  |
| UT  | 417183.163 | 4061728.53 | 0.768  |
| UT  | 407222.046 | 4055014.76 | 3.243  |
| UT  | 392295.391 | 4055820.66 | 5.854  |
| UT  | 403094.607 | 4049572.58 | 2.671  |
| UT  | 407107.901 | 4049321.39 | 3.256  |
| UT  | 386772.849 | 4046143.79 | 5.127  |
| UT  | 366296.531 | 4122275.22 | 1.749  |
| UT  | 365989.527 | 4112855.29 | 16.213 |
| UT  | 360182.785 | 4110977.45 | 9.528  |
| UT  | 371528.482 | 4107289.80 | 8.882  |
| UT  | 365947.433 | 4102065.18 | 9.063  |
| UT  | 375440.462 | 4094026.89 | 1.167  |
| UT  | 388018.935 | 4084249.17 | 3.177  |
| UT  | 410043.225 | 4077444.67 | 4.977  |

Table 11: Norfolk, VA LiDAR surveyed accuracy checkpoints

## **LiDAR Vertical Accuracy Statistics & Analysis**

## BACKGROUND

Dewberry tests and reviews project data both quantitatively (for accuracy) and qualitatively (for usability).

For quantitative assessment (i.e. vertical accuracy assessment), one hundred (100) check points were surveyed for the project and are located within bare earth/open terrain, urban, grass/weeds/crops, brush lands/tress, and forested/fully grown land cover categories. The checkpoints were surveyed for the project using RTK survey methods. Please see appendix A to view the survey report which details and validates how the survey was completed for this project.

Checkpoints were evenly distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

## VERTICAL ACCURACY TEST PROCEDURES

**FVA** (Fundamental Vertical Accuracy) is determined with check points located only in the open terrain (grass, dirt, sand, and/or rocks) land cover category, where there is a very high probability that the LiDAR sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The FVA determines how well the calibrated LiDAR sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSE<sub>z</sub>) of the checkpoints x 1.9600. For the Norfolk, VA LiDAR project, vertical accuracy must be 0.181 meters or less based on an RMSE<sub>z</sub> of 0.0925 meters x 1.9600.

**CVA** (Consolidated Vertical Accuracy) is determined with all checkpoints in all land cover categories combined where there is a possibility that the LiDAR sensor and post-processing may yield elevation errors that do not follow a normal error distribution. CVA at the 95% confidence level equals the 95<sup>th</sup> percentile error for all checkpoints in all land cover categories combined. The Norfolk, VA LiDAR Project CVA standard is 0.269 meters based on the 95<sup>th</sup> percentile. The CVA is accompanied by a listing of the 5% outliers that are larger than the 95<sup>th</sup> percentile used to compute the CVA; these are always the largest outliers that may depart from a normal error distribution. Here, Accuracy<sub>z</sub> differs from CVA because Accuracy<sub>z</sub> assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas CVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

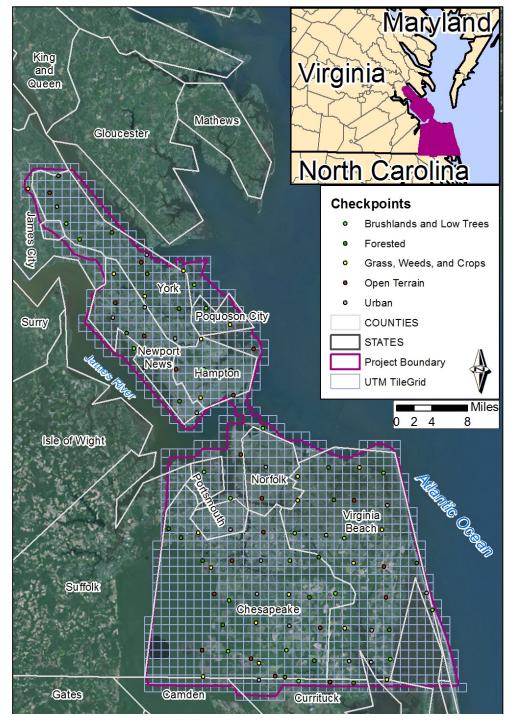
**SVA** (Supplemental Vertical Accuracy) is determined for each land cover category other than open terrain. SVA at the 95% confidence level equals the 95<sup>th</sup> percentile error for all checkpoints in each land cover category. The Norfolk, VA LiDAR Project SVA target is 0.269 meters based on the 95<sup>th</sup> percentile. Target specifications are given for SVA's as one individual land cover category may exceed this target value as long as the overall CVA is within specified tolerances. Again, Accuracy<sub>z</sub> differs from SVA because Accuracy<sub>z</sub> assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas SVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

The relevant testing criteria are summarized in the table below.



| Quantitative Criteria                                                                                   | Measure of Acceptability                                                               |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Fundamental Vertical Accuracy (FVA) in open terrain only using $RMSE_z$ *1.9600                         | 0.181 meters (based on $RMSE_z$<br>(0.0925 meters) * 1.9600)                           |
| Consolidated Vertical Accuracy (CVA) in all land cover categories combined at the 95% confidence level  | 0.269 meters (based on combined 95 <sup>th</sup> percentile)                           |
| Supplemental Vertical Accuracy (SVA) in each land cover category separately at the 95% confidence level | 0.269 meters (based on 95 <sup>th</sup><br>percentile for each land cover<br>category) |

Table 12 – Acceptance Criteria


## VERTICAL ACCURACY TESTING STEPS

The primary QA/QC vertical accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications.
- 2. Next, Dewberry interpolated the bare-earth LiDAR DTM to provide the z-value for every checkpoint.
- 3. Dewberry then computed the associated z-value differences between the interpolated z-value from the LiDAR data and the ground truth survey checkpoints and computed FVA, CVA, and SVA values.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 42 of 232

The figure below shows the location of the QA/QC checkpoints within the project area.



# Norfolk, VA Checkpoint Locations

Figure 20 – Location of QA/QC Checkpoints

Dewberry<sup>®</sup>

## VERTICAL ACCURACY RESULTS

The table below summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the fully classified LiDAR LAS files.

| Land Cover<br>Category     | # of Points | FVA –<br>Fundamental<br>Vertical Accuracy<br>(RMSEz x 1.9600)<br>Spec=0.181 m | CVA –<br>Consolidated<br>Vertical Accuracy<br>(95th Percentile)<br>Spec=0.269 m | SVA –<br>Supplemental<br>Vertical Accuracy<br>(95th Percentile)<br>Target=0.269 m |
|----------------------------|-------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Consolidated               | 100         |                                                                               | 0.194                                                                           |                                                                                   |
| Bare Earth-Open<br>Terrain | 20          | 0.129                                                                         |                                                                                 |                                                                                   |
| Grass, Weeds and<br>Crops  | 20          |                                                                               |                                                                                 | 0.198                                                                             |
| Forest                     | 20          |                                                                               |                                                                                 | 0.163                                                                             |
| Urban                      | 20          |                                                                               |                                                                                 | 0.196                                                                             |
| Brush Land and<br>Trees    | 20          |                                                                               |                                                                                 | 0.196                                                                             |

Table 13 - FVA, CVA, and SVA Vertical Accuracy at 95% Confidence Level

The RMSE<sub>z</sub> for checkpoints in open terrain only tested 0.066 meters, within the target criteria of 0.092 meters. Compared with the 0.181 meters specification, the FVA tested 0.129 meters at the 95% confidence level based on  $RMSE_z \times 1.9600$ .

Compared with the 0.269 meters specification, CVA for all checkpoints in all land cover categories combined tested 0.194 meters based on the 95<sup>th</sup> percentile.

Compared with the target 0.269 meters specification, SVA for checkpoints in the urban land cover category tested 0.196 meters based on the 95<sup>th</sup> percentile, checkpoints in the grass, weeds and crops land cover category tested 0.198 meters based on the 95<sup>th</sup> percentile, checkpoints in the forested land cover category tested 0.163 meters based on the 95<sup>th</sup> percentile, and checkpoints in the brush land and trees land cover category tested 0.196 meters based on the 95<sup>th</sup> percentile.

The figure below illustrates the magnitude of the differences between the QA/QC checkpoints and LiDAR data. This shows that the majority of LiDAR elevations were within +/- 0.15 meters of the checkpoints elevations, but there were some outliers where LiDAR and checkpoint elevations differed by up to +0.23 meters.

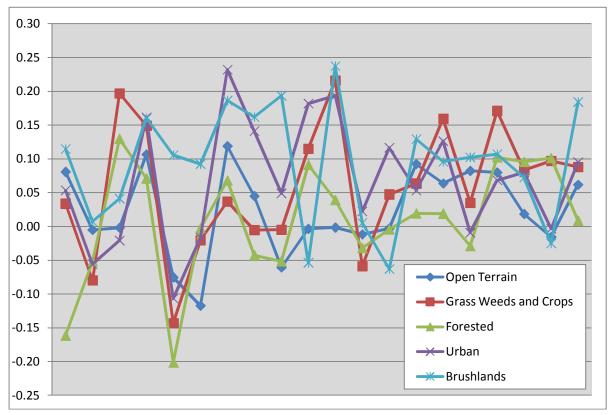



Figure 21 – Magnitude of elevation discrepancies per land cover category

| Point | NAD83 U       | NAVD88         | LiDAR Z (m)     | Delta   | AbsDeltaZ |           |  |
|-------|---------------|----------------|-----------------|---------|-----------|-----------|--|
| ID    | Easting X (m) | Northing Y (m) | Survey Z<br>(m) |         | Z         | ADSDEIIaZ |  |
| BLT   | 410587.042    | 4049846.41     | 0.215           | 0.4522  | 0.24      | 0.24      |  |
| FO    | 376505.026    | 4067499.95     | 4.395           | 4.1936  | -0.20     | 0.20      |  |
| GWC   | 409067.175    | 4073011.62     | 5.377           | 5.5738  | 0.20      | 0.20      |  |
| GWC   | 344779.087    | 4134125.52     | 35.999          | 36.2148 | 0.22      | 0.22      |  |
| UT    | 417183.163    | 4061728.53     | 0.768           | 1.0002  | 0.23      | 0.23      |  |

| Table 14 lists the 5% outliers that are larger than the 95 <sup>th</sup> percentile. | Table 14 lists the 5% | outliers that are | larger than the | 95 <sup>th</sup> percentile. |
|--------------------------------------------------------------------------------------|-----------------------|-------------------|-----------------|------------------------------|
|--------------------------------------------------------------------------------------|-----------------------|-------------------|-----------------|------------------------------|

Table 14 - 5% Outliers

Table 15 provides overall descriptive statistics.

| 100 % of<br>Totals        | RMSEz (m)<br>Open Terrain<br>Spec=0.0925m | Mean (m) | Median<br>(m) | Skew   | Std Dev<br>(m) | # of<br>Points | Min<br>(m) | Max<br>(m) |
|---------------------------|-------------------------------------------|----------|---------------|--------|----------------|----------------|------------|------------|
| Consolidated              |                                           | 0.050    | 0.053         | -0.197 | 0.088          | 100            | -0.201     | 0.237      |
| Open Terrain              | 0.066                                     | 0.023    | 0.008         | -0.428 | 0.064          | 20             | -0.117     | 0.119      |
| Grass, Weeds<br>and Crops |                                           | 0.059    | 0.056         | -0.256 | 0.095          | 20             | -0.201     | 0.216      |
| Forest                    |                                           | 0.008    | 0.014         | -0.884 | 0.086          | 20             | -0.201     | 0.130      |
| Urban                     |                                           | 0.068    | 0.061         | -0.005 | 0.089          | 20             | -0.106     | 0.232      |
| Brush land and<br>Trees   |                                           | 0.093    | 0.104         | -0.349 | 0.085          | 20             | -0.063     | 0.237      |

Table 15 - Overall Descriptive Statistics

The figure below illustrates a histogram of the associated elevation discrepancies between the QA/QC checkpoints and elevations interpolated from the LiDAR triangulated irregular network (TIN). The frequency shows the number of discrepancies within each band of elevation differences. Although the discrepancies vary between a low of -0.201 meters and a high of +0.237 meters, the histogram shows that the majority of the discrepancies are skewed on the positive side. The vast majority of points are within the ranges of -0.15 meters to +0.15 meters.

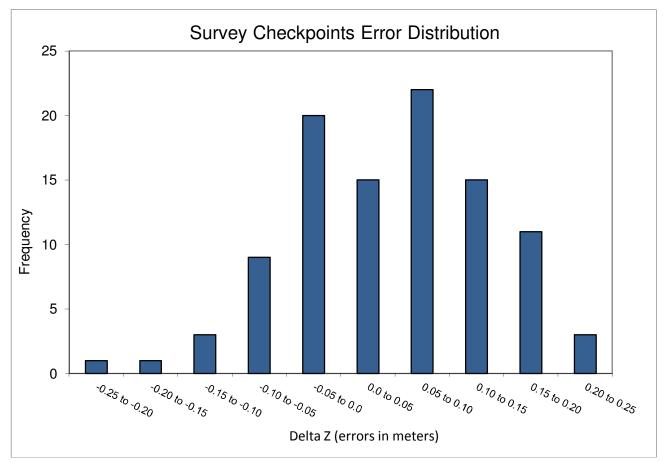


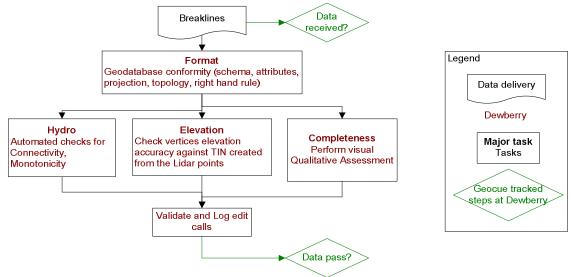

Figure 22 – Histogram of Elevation Discrepancies with errors in meters



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 46 of 232

Based on the vertical accuracy testing conducted by Dewberry, the LiDAR dataset for the Norfolk, VA LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

## **Breakline Production & Qualitative Assessment Report**


## **BREAKLINE PRODUCTION METHODOLOGY**

Dewberry used GeoCue software to develop LiDAR stereo models of the Norfolk, VA LiDAR Project area so the LiDAR derived data could be viewed in 3-D stereo using Socet Set softcopy photogrammetric software. Using LiDARgrammetry procedures with LiDAR intensity imagery, Dewberry used the stereo models developed by Dewberry to stereo-compile the three types of hard breaklines in accordance with the project's Data Dictionary.

All drainage breaklines are monotonically enforced to show downhill flow. Water bodies are reviewed in stereo and the lowest elevation is applied to the entire waterbody.

## **BREAKLINE QUALITATIVE ASSESSMENT**

Dewberry completed breakline qualitative assessments according to a defined workflow. The following workflow diagram represents the steps taken by Dewberry to provide a thorough qualitative assessment of the breakline data.



## **BREAKLINE TOPOLOGY RULES**

Automated checks are applied on hydro features to validate the 3D connectivity of the feature and the monotonicity of the hydrographic breaklines. Dewberry's major concern was that the hydrographic breaklines have a continuous flow downhill and that breaklines do not undulate. Error points are generated at each vertex not complying with the tested rules and these potential edit calls are then visually validated during the visual evaluation of the data. This step also helped validate that breakline vertices did not have excessive minimum or maximum elevations and that elevations are consistent with adjacent vertex elevations.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 47 of 232

The next step is to compare the elevation of the breakline vertices against the elevation extracted from the ESRI Terrain built from the LiDAR ground points, keeping in mind that a discrepancy is expected because of the hydro-enforcement applied to the breaklines and because of the interpolated imagery used to acquire the breaklines. A given tolerance is used to validate if the elevations differ too much from the LiDAR.

Dewberry's final check for the breaklines was to perform a full qualitative analysis. Dewberry compared the breaklines against LiDAR intensity images to ensure breaklines were captured in the required locations. The quality control steps taken by Dewberry are outlined in the QA Checklist below.

## **BREAKLINE QA/QC CHECKLIST**

#### Project Number/Description: TO G13PD00279 USGS Norfolk, VA LiDAR

#### Date:\_\_\_\_\_1/29/2014\_\_\_\_

#### Overview

All Feature Classes are present in GDB

- All features have been loaded into the geodatabase correctly. Ensure feature classes with subtypes are domained correctly.
- The breakline topology inside of the geodatabase has been validated. See Data Dictionary for specific rules
- Projection/coordinate system of GDB is accurate with project specifications

#### Perform Completeness check on breaklines using either intensity or ortho imagery

- Check entire dataset for missing features that were not captured, but should be to meet baseline specifications or for consistency (See Data Dictionary for specific collection rules). Features should be collected consistently across tile bounds within a dataset as well as be collected consistently between datasets.
- Check to make sure breaklines are compiled to correct tile grid boundary and there is full coverage without overlap
- Check to make sure breaklines are correctly edge-matched to adjoining datasets if applicable. Ensure breaklines from one dataset join breaklines from another dataset that are coded the same and all connecting vertices between the two datasets match in X,Y, and Z (elevation). There should be no breaklines abruptly ending at dataset boundaries and no discrepancies of Z-elevation in overlapping vertices between datasets.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 48 of 232

#### **Compare Breakline Z elevations to LiDAR elevations**

Using a terrain created from LiDAR ground points and water points, drape breaklines on terrain to compare Z values. Breakline elevations should be at or below the elevations of the immediately surrounding terrain. This should be performed before other breakline checks are completed.

#### Perform automated data checks using ESRI's Data Reviewer

The following data checks are performed utilizing ESRI's Data Reviewer extension. These checks allow automated validation of 100% of the data. Error records can either be written to a table for future correction, or browsed for immediate correction. Data Reviewer checks should always be performed on the full dataset.

- Perform "adjacent vertex elevation change check" on the Inland Ponds feature class (Elevation Difference Tolerance=.001 meters). This check will return Waterbodies whose vertices are not all identical. This tool is found under "Z Value Checks."
- Perform "unnecessary polygon boundaries check" on Inland Ponds and Lakes, Tidal Waters, and Islands (if delivered as a separate feature class) feature classes. This tool is found under "Topology Checks."
- Perform "different Z-Value at intersection check" (Inland Streams and Rivers to Inland Streams and Rivers), (Ponds and Lakes to Ponds and Lakes), (Tidal Waters to Tidal Waters), (Streams and Rivers to Ponds and Lakes), (Streams and Rivers to Tidal Waters), (Ponds and Lakes to Tidal Waters), (Island to Inland Ponds and Lakes), (Island to Tidal Waters), (Island to Island), and (Islands to Inland Streams and Rivers) (Elevation Difference Tolerance= .01 meters Minimum, 200 meters Maximum, Touches). This tool is found under "Z Value Checks." Please note that polygon feature classes will need to be converted to lines for this check.
- Perform "duplicate geometry check" on (Inland Streams and Rivers to Inland Streams and Rivers), (Inland Ponds and Lakes to Inland Ponds and Lakes), (Tidal Waters to Tidal Waters), (Islands to Islands-if delivered as a separate shapefile), (Inland Streams and Rivers to Inland Ponds and Lakes), (Inland Streams and Rivers to Tidal Waters), (Inland Ponds and Lakes to Tidal Waters), (Islands to Tidal Waters), and (Islands to Inland Ponds and Lakes). Attributes do not need to be checked during this tool. This tool is found under "Duplicate Geometry Checks."
- Perform "geometry on geometry check" (Inland Streams and Rivers to Inland Ponds and Lakes), (Inland Streams and Rivers to Tidal Waters), (Inland Ponds and Lakes to Tidal Waters), (Inland Streams and Rivers to Inland Streams and Rivers), (Inland Ponds and Lakes to Inland Ponds and Lakes), (Tidal waters to Tidal waters), (Islands to Tidal Waters), and (Islands to Inland Ponds and Lakes), (Islands to Islands). Spatial relationship is crosses, attributes do not need to be checked. This tool is found under "Feature on Feature Checks." Please note that "crosses" only works with line feature



classes and not polygons. If the inputs are polygons, they will need to be converted to a line prior to running this tool.

- Perform "geometry on geometry check (Tidal Waters to Islands), and (Inland Ponds and Lakes to Islands), (Inland Streams and Rivers to Islands). Spatial relationship is contains, attributes do not need to be checked. This tool is found under "Feature on Feature Checks."
- Perform "geometry on geometry check" (Inland Streams and Rivers to Inland Ponds and Lakes), (Inland Streams and Rivers to Tidal Waters), (Inland Ponds and Lakes to Tidal Waters), (Inland Streams and Rivers to Inland Streams and Rivers), (Inland Ponds and Lakes to Inland Ponds and Lakes), (Tidal waters to Tidal waters), (Islands to Tidal Waters), and (Islands to Inland Ponds and Lakes), (Islands to Islands). Spatial relationship is intersect, attributes do not need to be checked. This tool is found under "Feature on Feature Checks." Please note that false positives may be returned with this tool but that this tool may identify issues not found with "crosses."
- Perform "polygon overlap/gap is sliver check" on (Tidal Waters to Tidal Waters), (Island to Island), (Island to Inland Ponds and Lakes) and (Inland Ponds and Lakes to Inland Ponds and Lakes), (Inland Ponds and Lakes to Tidal Waters). Maximum Polygon Area is not required. This tool is found under "Feature on Feature Checks."

## Perform Dewberry Proprietary Tool Checks

- Perform monotonicity check on (Inland Streams and Rivers) and (Tidal Waters to Tidal Waters if they are not a constant elevation) using "A3\_checkMonotonicityStreamLines." This tool looks at line direction as well as elevation. Features in the output shapefile attributed with a "d" are correct monotonically, but were compiled from low elevation to high elevation. These features are ok and can be ignored. Features in the output shapefile attributed with an "m" are not correct monotonically and need elevations to be corrected. Input features for this tool need to be in a geodatabase and must be a line. If features are a polygon they will need to be converted to a line feature. Z tolerance is 0.01 meters.
- Perform connectivity check between (Inland Streams and Rivers to Inland Streams and Rivers), (Ponds and Lakes to Ponds and Lakes), (Tidal Waters to Tidal Waters), (Streams and Rivers to Ponds and Lakes), (Streams and Rivers to Tidal Waters), (Ponds and Lakes to Tidal Waters), (Island to Inland Ponds and Lakes), (Island to Tidal Waters), (Island to Island),and (Islands to Inland Streams and Rivers) using the tool "07\_CheckConnectivityForHydro." The input for this tool needs to be in a geodatabase. The output is a shapefile showing the location of overlapping vertices from the polygon features and polyline features that are at different Z-elevation.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 50 of 232

#### Metadata

- Each XML file (1 per feature class) is error free as determined by the USGS MP tool
- Metadata content contains sufficient detail and all pertinent information regarding source materials, projections, datums, processing steps, etc. Content should be consistent across all feature classes.

## **Completion Comments: Complete – Approved**

## **Data Dictionary**

## HORIZONTAL AND VERTICAL DATUM

The horizontal datum shall be North American Datum of 1983, Units in Meters. The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88), Units in Meters. Geoid12A shall be used to convert ellipsoidal heights to orthometric heights.

#### **COORDINATE SYSTEM AND PROJECTION**

All data shall be projected to UTM Zone 18, Horizontal Units in Meters and Vertical Units in Meters.

#### **INLAND STREAMS AND RIVERS**

Feature Dataset: BREAKLINES Feature Type: Polygon Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: STREAMS\_AND\_RIVERS Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

#### **Description**

This polygon feature class will depict linear hydrographic features with a width greater than 100 feet.

| Table Definition |           |                         |                  |        |           |       |        |                           |
|------------------|-----------|-------------------------|------------------|--------|-----------|-------|--------|---------------------------|
| Field Name       | Data Type | Allow<br>Null<br>Values | Default<br>Value | Domain | Precision | Scale | Length | Responsibility            |
| OBJECTID         | Object ID |                         |                  |        |           |       |        | Assigned by<br>Software   |
| SHAPE            | Geometry  |                         |                  |        |           |       |        | Assigned by<br>Software   |
| SHAPE_LENGTH     | Double    | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |
| SHAPE_AREA       | Double    | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |

#### **Table Definition**

#### **Feature Definition**

| Description           | Definition                                                                                                                                                                                                                                                                                                                                             | Capture Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Streams and<br>Rivers | Linear hydrographic features<br>such as streams, rivers, canals,<br>etc. with an average width<br>greater than 100 feet. In the<br>case of embankments, if the<br>feature forms a natural dual line<br>channel, then capture it<br>consistent with the capture<br>rules. Other natural or<br>manmade embankments will not<br>qualify for this project. | Capture features showing dual line (one on each side of the feature). Average width shall be greater than 100 feet to show as a double line. Each vertex placed should maintain vertical integrity. Generally both banks shall be collected to show consistent downhill flow. There are exceptions to this rule where a small branch or offshoot of the stream or river is present.<br>The banks of the stream must be captured at the same elevation to ensure flatness of the water feature. If the elevation of the banks appears to be different see the task manager or PM for further guidance. |



|  | Breaklines must be captured at or just below the elevations of<br>the immediately surrounding terrain. Under no<br>circumstances should a feature be elevated above the<br>surrounding LiDAR points. Acceptable variance in the<br>negative direction will be defined for each project individually.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water. |
|  | Every effort should be made to avoid breaking a stream or river into segments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|  | Dual line features shall break at road crossings (culverts). In areas where a bridge is present the dual line feature shall continue through the bridge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|  | Islands: The double line stream shall be captured around an island if the island is greater than 1/2 acre. In this case a segmented polygon shall be used around the island in order to allow for the island feature to remain as a "hole" in the feature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 53 of 232

#### **INLAND PONDS AND LAKES**

Feature Dataset: BREAKLINES Feature Type: Polygon Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: PONDS\_AND\_LAKES Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

#### **Description**

This polygon feature class will depict closed water body features that are at a constant elevation.

| Field Name   | Data<br>Type | Allow<br>Null<br>Values | Default<br>Value | Domain | Precision | Scale | Length | Responsibility            |
|--------------|--------------|-------------------------|------------------|--------|-----------|-------|--------|---------------------------|
| OBJECTID     | Object ID    |                         |                  |        |           |       |        | Assigned by<br>Software   |
| SHAPE        | Geometry     |                         |                  |        |           |       |        | Assigned by<br>Software   |
| SHAPE_LENGTH | Double       | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |
| SHAPE_AREA   | Double       | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |

#### **Table Definition**

#### **Feature Definition**

| Land/Water boundaries of constant<br>elevation water bodies such as lakes,<br>recervoirs ponds ate. Features shall                                                                                                                                                                                                                      | Description | Definition                                                                                                                                                                                                                                                                                                                                                                                                    | Capture Rules                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ponds and<br>Lakesbe defined as closed polygons and<br>contain an elevation value that<br>reflects the best estimate of the water<br>elevation at the time of data capture.<br>Water body features will be captured<br>for features 2 acres in size or greater.Inegative direction will be defined for feature stimate of the water<br> |             | elevation water bodies such as lakes,<br>reservoirs, ponds, etc. Features shall<br>be defined as closed polygons and<br>contain an elevation value that<br>reflects the best estimate of the water<br>elevation at the time of data capture.<br>Water body features will be captured<br>for features 2 acres in size or greater.<br>"Donuts" will exist where there are<br>islands within a closed water body | Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually.<br>An Island within a Closed Water Body Feature that is 1/2 acre in size or greater will also have a "donut polygon" |



|  | water line will follow the headwall or bulkhead at the<br>elevation of the water where it can be directly measured.<br>If there is no clear indication of the location of the water's<br>edge beneath the dock or pier, then the edge of water will<br>follow the outer edge of the dock or pier as it is adjacent<br>to the water, at the measured elevation of the water. |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | to the water, at the measured elevation of the water.                                                                                                                                                                                                                                                                                                                       |

Dewberry

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 55 of 232

#### **TIDAL WATERS**

Feature Dataset: BREAKLINES Feature Type: Polygon Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: TIDAL\_WATERS Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

#### **Description**

This polygon feature class will outline the land / water interface at the time of LiDAR acquisition.

#### **Table Definition**

| Field Name   | Data<br>Type | Allow<br>Null<br>Values | Default<br>Value | Domain | Precision | Scale | Length | Responsibility            |
|--------------|--------------|-------------------------|------------------|--------|-----------|-------|--------|---------------------------|
| OBJECTID     | Object ID    |                         |                  |        |           |       |        | Assigned by<br>Software   |
| SHAPE        | Geometry     |                         |                  |        |           |       |        | Assigned by<br>Software   |
| SHAPE_LENGTH | Double       | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |
| SHAPE_AREA   | Double       | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |

#### **Feature Definition**

| Description  | Definition                                                                                                                                                                                                                                                                                                                               | Capture Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIDAL_WATERS | The coastal breakline will<br>delineate the land water<br>interface using LiDAR data as<br>reference. In flight line<br>boundary areas with tidal<br>variation the coastal shoreline<br>may show stair stepping as no<br>feathering is allowed. Stair<br>stepping is allowed to show as<br>much ground as the collected<br>data permits. | The feature shall be extracted at the apparent land/water<br>interface, as determined by the LiDAR intensity data, to the<br>extent of the tile boundaries. Differences caused by tidal<br>variation are acceptable and breaklines delineated should<br>reflect that change with no feathering.<br>Breaklines must be captured at or just below the elevations<br>of the immediately surrounding terrain. Under no<br>circumstances should a feature be elevated above the<br>surrounding LiDAR points. Acceptable variance in the<br>negative direction will be defined for each project<br>individually.<br>If it can be reasonably determined where the edge of water<br>most probably falls, beneath the dock or pier, then the edge<br>of water will be collected at the elevation of the water where<br>it can be directly measured. If there is a clearly-indicated<br>headwall or bulkhead adjacent to the dock or pier and it is<br>evident that the waterline is most probably adjacent to the<br>headwall or bulkhead, then the water line will follow the<br>headwall or bulkhead at the elevation of the water where it<br>can be directly measured. If there is no clear indication of<br>the location of the water's edge beneath the dock or pier,<br>then the edge of water will follow the outer edge of the dock<br>or pier as it is adjacent to the water, at the measured<br>elevation of the water.<br>Breaklines shall snap and merge seamlessly with linear<br>hydrographic features. |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 56 of 232

#### **2D BUILDINGS**

Feature Dataset: Buildings Feature Type: Polygon Contains Z Values: No XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: Buildings\_2D Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

#### **Description**

This 2D polygon feature class will depict at least 98% of all buildings larger than 200 square meters and at least 95% of all buildings larger than 100 square meters. The positional accuracy of the collected features will be equal to 1.5 meters relative to the LiDAR data.

## **Table Definition**

| Field Name   | Data<br>Type | Allow<br>Null<br>Values | Default<br>Value | Domain | Precision | Scale | Length | Responsibility                                                                                                                                                                 |
|--------------|--------------|-------------------------|------------------|--------|-----------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBJECTID     | Object ID    |                         |                  |        |           |       |        | Assigned by Software                                                                                                                                                           |
| Id           | Double       | Yes                     |                  |        |           |       |        | Polygon ID number<br>for the building<br>substructure<br>assigned by user                                                                                                      |
| ARA2d        | Double       | Yes                     |                  |        |           |       |        | Area of the 2D sub<br>structure calculated<br>by software                                                                                                                      |
| LEN2d        | Double       | Yes                     |                  |        |           |       |        | Length of the 2D<br>polygon calculated<br>by software                                                                                                                          |
| WID2d        | Double       | Yes                     |                  |        |           |       |        | Width of the 2D<br>polygon calculated by<br>software                                                                                                                           |
| HGT2d        | Double       | Yes                     |                  |        |           |       |        | Median height of the<br>building substructure<br>above ground level<br>based on the<br>difference between<br>the DSM and the<br>Bare Earth model<br>calculated by<br>software. |
| SHAPE_LENGTH | Double       | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software                                                                                                                                                      |
| SHAPE_AREA   | Double       | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software                                                                                                                                                      |

#### **Feature Definition**

| Description  | Definition                                                                                                                                                      | Capture Rules                                                                                                                                                                                                                    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2D Buildings | 2D buildings will include the<br>majority of structures larger<br>than 100 square meters. The<br>positional accuracy of the<br>collected features will be equal | The roofs of some buildings or structures may be offset<br>from the true footprint in the imagery. Care should be<br>taken to collect the actual or true footprint of each structure<br>by collecting the base of the structure. |
|              | to 1.5 meters relative to the LiDAR data.                                                                                                                       | All building footprints should be captured in 2D, but should still show correct topology.                                                                                                                                        |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 57 of 232

#### **3D BUILDINGS**

Feature Dataset: Buildings Feature Type: Polygon Contains Z Values: No XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: Buildings\_3D Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

#### **Description**

This 3D polygon feature class will depict at least 98% of all buildings larger than 200 square meters and at least 95% of all buildings larger than 100 square meters. The positional accuracy of the collected features will be equal to 1.5 meters relative to the LiDAR data.

| a | ble Definition |              |                         |                     |       |            |        |       |                                                                                                                                                                             |
|---|----------------|--------------|-------------------------|---------------------|-------|------------|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Field Name     | Data<br>Type | Allow<br>Null<br>Values | Default<br>Value Do | omain | PrecisionS | ScaleL | ength | Responsibility                                                                                                                                                              |
|   | OBJECTID       | Object ID    |                         |                     |       |            |        |       | Assigned by Software                                                                                                                                                        |
|   | Id             | Double       | Yes                     |                     |       |            |        |       | Polygon ID number<br>for the building<br>substructure<br>assigned by user                                                                                                   |
|   | BldgId         | Double       | Yes                     |                     |       |            |        |       | ID number of the<br>entire building<br>footprint assigned by<br>user                                                                                                        |
|   | TopElev3D      | Double       | Yes                     |                     |       |            |        |       | Elevation of the top<br>of the bulding<br>subsection. This is<br>the arithmetic<br>median of all LiDAR<br>points within the<br>polygon calculated by<br>software            |
|   | BaseElev3D     | Double       | Yes                     |                     |       |            |        |       | Base elevation of the<br>building subsection.<br>This is the arithmetic<br>minimum of all bare<br>earth elevation points<br>within the polygon<br>calculated by<br>software |
|   | ARA3D          | Double       | Yes                     |                     |       |            |        |       | Area of the 3D<br>substructure<br>calculated by<br>software                                                                                                                 |
|   | LEN3D          | Double       | Yes                     |                     |       |            |        |       | Length of the 3D<br>polygon calculated by<br>software                                                                                                                       |
|   | WID3D          | Double       | Yes                     |                     |       |            |        |       | Width of the 3D<br>polygon calculated by<br>software                                                                                                                        |
|   | HGT3D          | Double       | Yes                     |                     |       |            |        |       | Median height of<br>building substructure<br>above ground level<br>based on the<br>difference between                                                                       |

#### **Table Definition**



|              |        |     |  |   |   | the DSM and the<br>bare earth model<br>calculated by<br>software                                                                             |
|--------------|--------|-----|--|---|---|----------------------------------------------------------------------------------------------------------------------------------------------|
| SSR          | Double | Yes |  |   |   | Classified roof type<br>identified in the NGA<br>FACC coding schema.<br>Flat=41, pitched=42<br>and<br>complex(other)=999<br>assigned by user |
| SHAPE_LENGTH | Double | Yes |  | 0 | 0 | Calculated by<br>Software                                                                                                                    |
| SHAPE_AREA   | Double | Yes |  | 0 | 0 | Calculated by<br>Software                                                                                                                    |

## **Feature Definition**

| Description  | Definition                                                                                                                                                                                                      | Capture Rules                                                                                                                                                                                                                                                                        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3D Buildings | 3D buildings will include the<br>majority of structures larger<br>than 100 square meters. The<br>positional accuracy of the<br>collected features will be equal<br>to 1.5 meters relative to the<br>LiDAR data. | The roofs of some buildings or structures may be offset<br>from the true footprint in the imagery. Care should be<br>taken to collect the actual or true footprint of each structure<br>by collecting the base of the structure.<br>All building footprints should correct topology. |

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 59 of 232

#### **FOREST POLYGONS**

Feature Dataset: Vegetation Feature Type: Polygon Contains Z Values: No XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: Forest\_Polygons Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

#### Description

This 2D polygon feature class will be delineated in areas where vegetation greater than 2m in height is predominant over a contiguous area 5,000 square meters or larger. Forests shall be de-conflicted from identifiable open water greater than 15 meters wide.

#### **Table Definition**

| Field Name   | Data<br>Type | Allow<br>Null<br>Values | Default<br>Value | Domain | Precision | Scale | Length | Responsibility                                                                         |
|--------------|--------------|-------------------------|------------------|--------|-----------|-------|--------|----------------------------------------------------------------------------------------|
| OBJECTID     | Object ID    |                         |                  |        |           |       |        | Assigned by Software                                                                   |
| Id           | Double       | Yes                     |                  |        |           |       |        | Polygon ID number<br>assigned by user                                                  |
| ARA          | Double       | Yes                     |                  |        |           |       |        | Area calculated by<br>software                                                         |
| РНТ          | Double       | Yes                     |                  |        |           |       |        | Predominant height<br>of stand calculated by<br>software                               |
| TSC          | Double       | Yes                     |                  |        |           |       |        | Average stem spacing<br>distance for stand, in<br>decimeters calculated<br>by software |
| Туре         | Double       | Yes                     |                  |        |           |       |        | Tree type (deciduous<br>or coniferous)<br>assigned by user                             |
| SHAPE_LENGTH | Double       | Yes                     |                  |        |           |       |        | Calculated by<br>Software                                                              |
| SHAPE_AREA   | Double       | Yes                     |                  |        |           |       |        | Calculated by<br>Software                                                              |

#### **Feature Definition**

| Description     | Definition                                                                                                                                                                                                                                                                | Capture Rules                                  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Forest polygons | Areas of vegetation greater<br>than 2m in height that are<br>predominant over a<br>contiguous area 5,000 square<br>meters or larger will be<br>included in the collect. Forests<br>shall be de-conflicted from<br>identifiable open water<br>greater than 15 meters wide. | All polygons should have the correct topology. |

Dewberry

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 60 of 232

#### **TREE POINTS**

Feature Dataset: Vegetation Feature Type: Point Contains Z Values: No XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: Tree\_points Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

#### **Description**

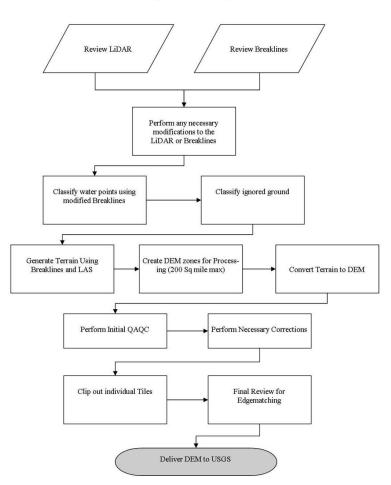
This point feature class will be extracted from identified vegetated areas that exceed 4 meters in height relative to the bare earth model.

| u |              |              |                         |                  |        |           |       |        |                                                            |
|---|--------------|--------------|-------------------------|------------------|--------|-----------|-------|--------|------------------------------------------------------------|
|   | Field Name   | Data<br>Type | Allow<br>Null<br>Values | Default<br>Value | Domain | Precision | Scale | Length | Responsibility                                             |
|   | OBJECTID     | Object ID    |                         |                  |        |           |       |        | Assigned by Software                                       |
|   | Id           | Double       | Yes                     |                  |        |           |       |        | Point ID number<br>assigned by user                        |
|   | HGT          | Double       | Yes                     |                  |        |           |       |        | The height of the tree<br>calculated by<br>software        |
|   | BaseElev     | Double       | Yes                     |                  |        |           |       |        | Base height of the<br>tree calculated by<br>software       |
|   | Туре         | Double       | Yes                     |                  |        |           |       |        | Tree type (deciduous<br>or coniferous)<br>assigned by user |
|   | SHAPE_LENGTH | Double       | Yes                     |                  |        |           |       |        | Calculated by<br>Software                                  |
|   | SHAPE_AREA   | Double       | Yes                     |                  |        |           |       |        | Calculated by<br>Software                                  |

#### **Table Definition**

#### **Feature Definition**

| Description | Definition                                                                                                                                           | Capture Rules                                |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Tree Points | This point feature class will<br>extracted from identified<br>vegetated areas that exceed 4<br>meters in height relative to<br>the bare earth model. | All points should have the correct topology. |


## **DEM Production & Qualitative Assessment**

#### **DEM PRODUCTION METHODOLOGY**

Dewberry utilized ESRI software and Global Mapper for the DEM production and QC process. ArcGIS software is used to generate the products and the QC is performed in both ArcGIS and Global Mapper.



#### Dewberry Hydro-Flattening Workflow



- 1. <u>Classify Water Points</u>: LAS point falling within hydrographic breaklines shall be classified to ASPRS class 9 using TerraScan. Breaklines must be prepared correctly prior to performing this task.
- 2. <u>Classify Ignored Ground Points</u>: Classify points in close proximity to the breaklines from Ground to class 10 (Ignored Ground). Close proximity will be defined as no more than 1x the nominal point spacing on the landward side of the breakline.
- 3. <u>Terrain Processing</u>: A Terrain will be generated using the Breaklines and LAS data that has been imported into Arc as a Multipoint File.
- 4. <u>Create DEM Zones for Processing</u>: Create DEM Zones that are buffered around the edges. Zones should be created in a logical manner to minimize the number of zones without creating zones too large for processing. Dewberry will make zones no larger than 200 square miles (taking into account that a DEM will fill in the entire extent not just where LiDAR is present). Once the first zone is created it must be verified against the tile grid to ensure that the cells line up perfectly with the tile grid edge.
- 5. <u>Convert Terrain to Raster</u>: Convert Terrain to raster using the DEM Zones created in step 4. In the environmental properties set the extents of the raster to the buffered Zone. For each subsequent zone, the first DEM will be utilized as the snap raster to ensure that zones consistently snap to one another.
- 6. <u>Perform Initial QAQC on Zones</u>: During the initial QA process anomalies will be identified and corrective polygons will be created.



- 7. <u>Correct Issues on Zones</u>: Dewberry will perform corrections on zones following Dewberry's correction process.
- 8. <u>Extract Individual Tiles</u>: Dewberry will extract individual tiles from the zones utilizing a Dewberry proprietary tool.
- 9. <u>Final QA</u>: Final QA will be performed on the dataset to ensure that tile boundaries are seamless.

The creation of first and last return DSMs follow a similar workflow as outlined above, except that breaklines are not used to enforce the first and last return terrains. Additionally, rather than ground only data, the first or last return of all point classes, except for noise-class 7, are used to create the multipoint files and subsequent terrains.

## **DEM QUALITATIVE ASSESSMENT**

Dewberry performed a comprehensive qualitative assessment of the bare earth DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. This process was performed in ArcGIS software with the use of a tool set Dewberry has developed to verify that the raster extents match those of the tile grid and contain the correct projection information. The DEM data was reviewed at a scale of 1:5000 to review for artifacts caused by the DEM generation process and to review the hydro-flattened features. To perform this review Dewberry creates HillShade models and overlays a partially transparent colorized elevation model to review for these issues. All corrections are completed using Dewberry's proprietary correction workflow. Upon completion of the corrections, the DEM data is loaded into Global Mapper for its second review and to verify corrections. Once the DEMs are tiled out, the final tiles are again loaded into Global Mapper to ensure coverage, extents, and that the final tiles are seamless.

The images below show an example of a bare earth DEM and first return DSM of the same tile.

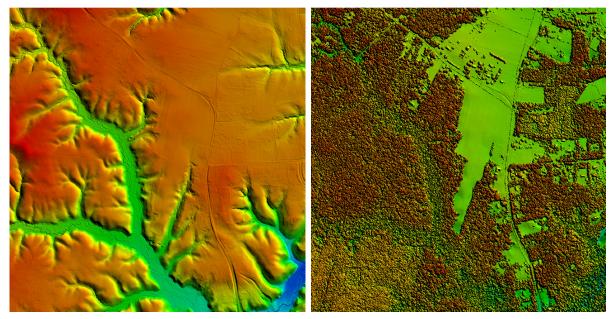



Figure 21-Tile 18SUG480340. The bare earth DEM is shown on the left while the first return DSM is shown on the right



## DEM VERTICAL ACCURACY RESULTS

The same 100 checkpoints that were used to test the vertical accuracy of the LiDAR were used to validate the vertical accuracy of the final DEM products as well. Accuracy results may vary between the source LiDAR and final DEM deliverable. DEMs are created by averaging several LiDAR points within each pixel which may result in slightly different elevation values at each survey checkpoint when compared to the source LAS, which does not average several LiDAR points together but may interpolate (linearly) between two or three points to derive an elevation value.

Table 16 summarizes the tested vertical accuracy results from a comparison of the surveyed checkpoints to the elevation values present within the final DEM dataset.

| Land Cover<br>Category     | # of Points | FVA –<br>Fundamental<br>Vertical Accuracy<br>(RMSEz x 1.9600)<br>Spec=0.181 m | CVA –<br>Consolidated<br>Vertical Accuracy<br>(95th Percentile)<br>Spec=0.269 m | SVA –<br>Supplemental<br>Vertical Accuracy<br>(95th Percentile)<br>Target=0.269 m |
|----------------------------|-------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Consolidated               | 100         |                                                                               | 0.197                                                                           |                                                                                   |
| Bare Earth-Open<br>Terrain | 20          | 0.135                                                                         |                                                                                 |                                                                                   |
| Grass Weeds and            |             |                                                                               |                                                                                 |                                                                                   |
| Crops                      | 20          |                                                                               |                                                                                 | 0.194                                                                             |
| Forest                     | 20          |                                                                               |                                                                                 | 0.168                                                                             |
| Urban                      | 20          |                                                                               |                                                                                 | 0.216                                                                             |
| Brush Land and<br>Trees    | 20          |                                                                               |                                                                                 | 0.211                                                                             |

Table 16 – FVA, CVA, and SVA Vertical Accuracy at 95% Confidence Level

The RMSE<sub>z</sub> for checkpoints in open terrain only tested 0.069 meters, within the target criteria of 0.092 meters. Compared with the 0.181 meters specification, the FVA tested 0.135 meters at the 95% confidence level based on RMSE<sub>z</sub> x 1.9600.

Compared with the 0.269 meters specification, CVA for all checkpoints in all land cover categories combined tested 0.197 meters based on the 95<sup>th</sup> percentile.

Compared with the target 0.269 meters specification, SVA for checkpoints in the grass weeds and crops land cover category tested 0.194 meters based on the  $95^{th}$  percentile, checkpoints in the forested and fully grown land cover category tested 0.168 meters based on the  $95^{th}$  percentile, checkpoints in the brush and small trees land cover category tested 0.211 meters based on the  $95^{th}$  percentile, and checkpoints in the urban land cover category tested 0.216 meters based on the  $95^{th}$  percentile.

Table 17 lists the 5% outliers that are larger than the 95<sup>th</sup> percentile.

| Point ID | NAD83 U       | NAVD88         | DEM Z (m)       | Delta | AbsDeltaZ |      |
|----------|---------------|----------------|-----------------|-------|-----------|------|
|          | Easting X (m) | Northing Y (m) | Survey Z<br>(m) |       | Z         |      |
| BLT_17   | 381142.027    | 4051271.05     | 0.508           | 0.718 | 0.21      | 0.21 |
| BLT_19   | 410587.042    | 4049846.41     | 0.215           | 0.432 | 0.22      | 0.22 |



| FO_14B   | 376505.026 | 4067499.95 | 4.395  | 4.199  | -0.20 | 0.20 |
|----------|------------|------------|--------|--------|-------|------|
| GWC_1CHK | 344779.087 | 4134125.52 | 35.999 | 36.215 | 0.22  | 0.22 |
| UT_15CHK | 417183.163 | 4061728.53 | 0.768  | 1.016  | 0.25  | 0.25 |

Table 17 – 5% Outliers

Table 18 provides overall descriptive statistics.

| 100 % of Totals           | RMSEz (m)<br>Open Terrain<br>Spec=0.092m | Mean<br>(m) | Median<br>(m) | Skew   | Std Dev<br>(m) | # of<br>Points |        | Max<br>(m) |
|---------------------------|------------------------------------------|-------------|---------------|--------|----------------|----------------|--------|------------|
| Consolidated              |                                          | 0.051       | 0.059         | -0.224 | 0.089          | 100            | -0.196 | 0.248      |
| <b>Open Terrain</b>       | 0.069                                    | 0.021       | 0.032         | -0.880 | 0.067          | 20             | -0.155 | 0.119      |
| Grass, Weeds and<br>Crops |                                          | 0.062       | 0.065         | -0.186 | 0.090          | 20             | -0.196 | 0.216      |
| Forest                    |                                          | 0.011       | 0.013         | -0.862 | 0.089          | 20             | -0.196 | 0.125      |
| Urban                     |                                          | 0.068       | 0.071         | 0.141  | 0.091          | 20             | -0.099 | 0.248      |
| Brush Land and Trees      |                                          | 0.092       | 0.095         | -0.386 | 0.085          | 20             | -0.069 | 0.217      |

Table 18 - Overall Descriptive Statistics

#### **DEM QA/QC CHECKLIST**

# Project Number/Description: TO G13PD00279 USGS Norfolk, VA LiDAR Date:\_\_\_\_\_1/29/2014\_\_\_\_\_

#### Overview

 $\boxtimes$ 

- Correct number of files are delivered and all files are in ERDAS IMG format
- Verify Raster Extents
- Verify Projection/Coordinate System

#### Review

Manually review bare-earth DEMs in Arc with a hillshade to check for issues with the hydro-

flattening process or any general anomalies that may be present. Specifically, water should be flowing downhill, water features should NOT be floating above surrounding terrain and bridges should NOT be present in bare-earth DEM. Hydrologic breaklines should be overlaid during review of DEMs.

Manually review first return DSMs with a hillshade to check for processing issues or coverage issues.

- Manually review last return DSMs with a hillshade to check for processing issues or coverage issues.
  - DEM cell size is 1 meter

Perform all necessary corrections in Arc using Dewberry's proprietary correction workflow.

Review all corrections in Global Mapper

Perform final overview on tiled data in Global Mapper to ensure seamless product.

#### Metadata

 $\boxtimes$ 

 $\square$ 

Project level DEM metadata XML file is error free as determined by the USGS MP tool

Metadata content contains sufficient detail and all pertinent information regarding source materials, projections, datums, processing steps, etc.



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 65 of 232

**Completion Comments: Complete – Approved** 



## **Appendix A: Survey Report**

Check Point Survey Report "Norfolk, VA LiDAR Task Order" USGS Contract: G10PC00013 Task Order Number: G13PD000279

Prepared by:

Dewberry Engineers Inc. Charlotte, North Carolina, 282269 Phone: 704.509.9918 Fax: 704.509.9937

## **INTRODUTION**

#### **Project Summary**

Dewberry Engineers Inc. is under contract to United States Geodetic Survey to provide 100 QA

Check Points for 933 square miles in Chesapeake, Hampton, Newport News, Norfolk, Poquoson,

Portsmouth, Virginia Beach, and York Counties in Virginia. Under the above USGS Task Order, Dewberry

is tasked to complete the quality assurance of high resolution LiDAR-derived elevation products. As a

part of this work Dewberry staff will complete checkpoint surveys that will be used to evaluate vertical

accuracy on the bare-earth terrain derived from the LiDAR.

Existing NGC Control Points were located and surveyed to check the accuracy of the RTK/GPS survey

equipment with the results shown in section 2.4 of this report.

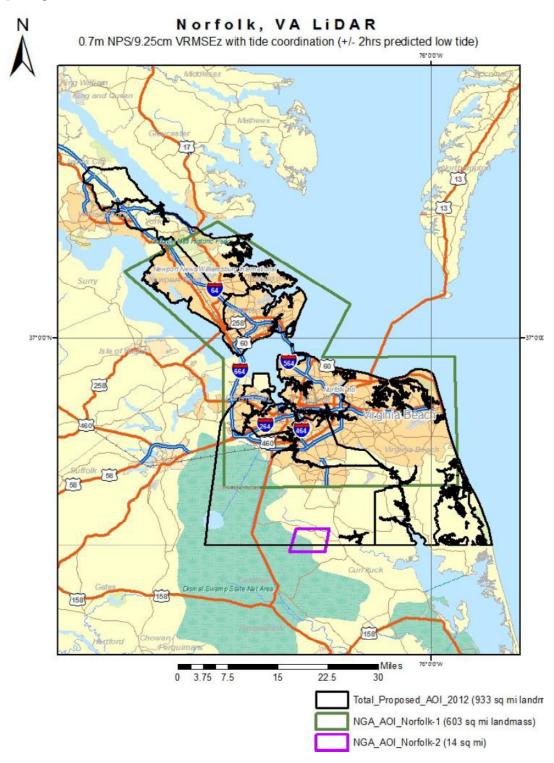
As an internal QA/QC procedure and to verify that the Check Points meet the 95% confidence level

approximately 50% of the points were re-observed and are shown in section 5 in this report.

Final horizontal coordinates are referenced to UTM Zone 18 North, NAD83, in meters. Final Vertical

elevations are referenced to NAVD88, in meters.

#### **Points of Contact**


Questions regarding the technical aspects of this report should be addressed to:



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 67 of 232

Dewberry Engineers Inc. Matthew Rudolph 6135 Lakeview Road Suite 150 Charlotte, NC 20269 (704)264-1257direct (704)509-9937 Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 68 of 232

#### 1.3 Project Area



**Dewberry** 

## **PROJECT DETAILS**

#### **Survey Equipment**

In performing the GPS observations, Trimble R-8 GNSS receiver/antenna attached to a 2 meter fixed height pole with a Trimble TSC2 Data Collector to collect GPS raw data were used to perform the field surveys.

#### **Survey Point Detail**

The 100 Check Points were well distributed throughout the project area so as to cover as many flight lines as possible using "dispersed method" of placement.

A "Ground Control Point Documentation Report" sheet was used to show the placement of the nail and a sketch for each of the points surveyed.

#### **Network Design**

The GPS survey performed by Dewberry Engineers Inc. located in Charlotte,NC was tied to a Real Time Network (RTN) managed by KeyNetGPS inc. KeyNetGPS is a series of continuously operating, high precision GNSS reference stations. These reference stations have all been linked together using Trimble VRS3Net App software, creating a Virtual Reference Station System (VRS).

#### **Field Survey Procedures and Analysis**

Dewberry Engineers Inc. used Trimble R-8 GNSS receivers, which is a geodetic quality dual frequency GPS receiver, to collect data at each surveyed location.

All locations were occupied once with approximately 50% of the locations being re-observed. All re-observations matched the initially derived station positions within the allowable tolerances of 5cm or within the 95% confidence level. Each occupation which utilized the VRS network was occupied for approximately three (3) minutes in duration and measured to at least 180 epochs.

Field GPS observations are detailed on the" Ground Control Point Documentation Reports" submitted as part of this report.

Ten existing NGS monuments listed in the NSRS database were located as an additional QA/QC method to check the accuracy of the VRS network. Some of these monuments were used as Horizontal and Vertical control checks. Some monuments were used as Horizontal or Vertical checks only as shown in the table below.

|                |             | AS SURVEYED(m) |       |              | AS PUBLISHED(m) |      |            |            |               |             |
|----------------|-------------|----------------|-------|--------------|-----------------|------|------------|------------|---------------|-------------|
| NGS PT.<br>ID  | NORTHING    | EASTING        | ELEV  | NORTHING     | EASTING         | ELEV | $\Delta N$ | $\Delta E$ | $\Delta$ ELEV | CHK<br>TYPE |
| DOUGLAS<br>CHK | 4075440.488 | 380599.04      | 3.73  | 4,075,440.59 | 380,599.12      | 3.75 | -0.103     | -0.084     | -0.020        | VERT.       |
| STATION<br>509 | 4100627.566 | 384554.955     | 2.124 | 4,100,627.56 | 384,554.95      | 2.3  | 0.010      | 0.007      | X             | HORIZ.      |
| STATION<br>537 | 4098672.971 | 376462.99      | 3.503 | 4,098,672.96 | 376,463.00      | 4    | 0.008      | -0.006     | X             | HORIZ.      |
| STATION<br>538 | 4097985.036 | 375769.747     | 2.108 | 4,097,985.03 | 375,769.74      | 2    | 0.004      | 0.007      | Х             | HORIZ.      |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 70 of 232

| F-455  | 4096857.383   | 376079.277  | 3.927  | Х            | Х          | 3.957 | Х      | Х      | -0.030 | VERT.  |
|--------|---------------|-------------|--------|--------------|------------|-------|--------|--------|--------|--------|
| MON of | 4135651.82    | 349236.942  | 23.259 | 4,135,651.79 | 349,236.96 | 23.5  | 0.031  | -0.022 | Х      | HORIZ. |
| 124    | 4107886.234   | 372228.771  | 8.579  | 4,107,886.28 | 372,228.77 | 8.7   | -0.048 | 0.003  | Х      | HORIZ. |
| PASCAL | E 4071366.848 | 371222.946  | 5.515  | 4,071,366.85 | 371,222.94 | 5.6   | -0.003 | 0.009  | Х      | HORIZ. |
| PEAKE  | 4094521.001   | 376414.781  | 2.479  | 4,094,520.99 | 376,414.77 | 2.5   | 0.008  | 0.013  | -0.021 | VERT.  |
| D 470  | 4076051.123   | 3999352.192 | 3.401  | Х            | Х          | 3.447 | Х      | Х      | -0.046 | VERT.  |

The above results indicate that the VRS network is providing positional values within the 5cm parameters for this survey.

#### **Data Processing Procedures**

After field data is collected the information is downloaded from the data collectors into the office software. The software programs used Trimble Business Center and Arc Map 10.

Downloaded data is run through the Trimble Business Center program to obtain the following reports; points report, point comparison, and a point detail report. The reports are reviewed for point accuracy and precision.

After review of the point data an "ASCII" or "txt" file is created. Point files are loaded into Arc Map 10(GIS software) to make a visual check of the point data to make sure it also checks with the "Ground Control Point Documentation Report" sketch and description as well as the Pt#, Coordinates, and Elevation.

## FINAL COORDINATES

The final coordinate system for checkpoints is as follows:

Coord System = UTM UTM Zone = Zone 18 Horiz Datum = NAD83 Vert Datum = NAVD88 Units = both in Meters Geoid Model = GEOID12A

|        | BRUSHLAND and LOW TREES |            |        |  |  |  |  |
|--------|-------------------------|------------|--------|--|--|--|--|
| BLT-1  | 4127850.095             | 351760.734 | 18.183 |  |  |  |  |
| BLT-2  | 4124969.354             | 354157.693 | 26.867 |  |  |  |  |
| BLT-3  | 4116934.625             | 374985.334 | 1.681  |  |  |  |  |
| BLT-4  | 4112722.605             | 377113.574 | 1.301  |  |  |  |  |
| BLT-5  | 4105501.265             | 363984.403 | 5.313  |  |  |  |  |
| BLT-6  | 4101703.518             | 376746.304 | 3.508  |  |  |  |  |
| BLT-7  | 4091258.47              | 387491.887 | 0.708  |  |  |  |  |
| BLT-8  | 4083420.214             | 376730.499 | 5.063  |  |  |  |  |
| BLT-9  | 4083180.738             | 409359.513 | 1.461  |  |  |  |  |
| BLT-10 | 4078664.264             | 381578.163 | 0.747  |  |  |  |  |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 71 of 232

| BLT-11 | 4072438.855     | 393248.624 | 5.015  |
|--------|-----------------|------------|--------|
| BLT-12 | 4071563.329     | 402227.485 | 3.332  |
| BLT-13 | 4067495.229     | 392360.215 | 4.073  |
| BLT-14 | 4060371.467     | 381270.904 | 4.561  |
| BLT-15 | 4061689.787     | 400675.21  | 3.101  |
| BLT-16 | 4058718.15      | 418260.165 | 0.336  |
| BLT-17 | 4051271.046     | 381142.027 | 0.508  |
| BLT-18 | 4051529.692     | 391753.707 | 3.966  |
| BLT-19 | 4049846.406     | 410587.042 | 0.215  |
| BLT-20 | 4045956.462     | 393929.901 | 1.76   |
|        | FORESTED        |            |        |
| FO-1   | 4136323.776     | 350228.113 | 23.871 |
| FO-2   | 4126211.091     | 360014.272 | 8.932  |
| FO-3   | 4118875.446     | 366402.057 | 16.648 |
| FO-4   | 4112572.968     | 372250.758 | 4.076  |
| FO-5   | 4108269.849     | 362705.508 | 9.253  |
| FO-6   | 4101531.898     | 381648.883 | 2.403  |
| FO-7   | 4096033.448     | 372274.821 | 5.794  |
| FO-8   | 4084210.274     | 399373.443 | 5.089  |
| FO-9   | 4078442.28      | 400259.407 | 3.628  |
| FO-10  | 4073199.529     | 370329.394 | 6.472  |
| FO-11  | 4071580.897     | 372624.23  | 4.829  |
| FO-12  | 4067053.555     | 415396.475 | 0.702  |
| FO-13  | 4068198.754     | 397579.131 | 2.607  |
| FO-14  | 4067550.12      | 376314.026 | 4.690  |
| FO-15  | 4060962.236     | 395885.204 | 2.266  |
| FO-16  | 4055125.178     | 410438.562 | 0.44   |
| FO-17  | 4056004.221     | 380058.909 | 4.986  |
| FO-18  | 4049656.47      | 396892.944 | 2.857  |
| FO-19  | 4045705.789     | 403974.708 | 1.817  |
| FO-20  | 4046751.378     | 391556.197 | 3.545  |
|        | GRASS,WEEDS,and | CROPS      |        |
| GWC-1  | 4134125.481     | 344779.064 | 35.965 |
| GWC-2  | 4118838.763     | 360405.124 | 13.727 |
| GWC-3  | 4119343.897     | 373059.394 | 1.28   |
| GWC-4  | 4109732.524     | 381475.24  | 0.319  |
| GWC-5  | 4107208.362     | 376178.523 | 2.294  |
| GWC-6  | 4096625.795     | 376137.546 | 4.989  |
| GWC-7  | 4114829.507     | 365940.986 | 17.938 |
| GWC-8  | 4082613.859     | 393786.442 | 6.043  |

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 72 of 232

| GWC-9  | 4084165.948 | 404973.792 | 4.738  |
|--------|-------------|------------|--------|
| GWC-10 | 4078316.06  | 393746.948 | 1.982  |
| GWC-11 | 4072545.385 | 375676.882 | 4.983  |
| GWC-12 | 4073011.615 | 409067.175 | 5.377  |
| GWC-13 | 4067042.59  | 403954.911 | 4.174  |
| GWC-14 | 4066255.187 | 377981.16  | 3.71   |
| GWC-15 | 4061512.702 | 392212.252 | 6.443  |
| GWC-16 | 4055382.316 | 402351.116 | 2.44   |
| GWC-17 | 4056359.548 | 386220.44  | 5.163  |
| GWC-18 | 4049194.933 | 386712.905 | 3.966  |
| GWC-19 | 4046257.13  | 409971.276 | 2.111  |
| GWC-20 | 4046741.634 | 376541.932 | 4.16   |
|        | OPEN        |            |        |
| OT-1   | 4133416.989 | 348684.803 | 25.196 |
| OT-2   | 4120908.932 | 365374.175 | 19.117 |
| OT-3   | 4113702.121 | 360651.125 | 10.775 |
| OT-4   | 4105404.702 | 385773.144 | 1.138  |
| OT-5   | 4107753.528 | 365920.254 | 9.605  |
| OT-6   | 4101773.558 | 371637.824 | 6.304  |
| OT-7   | 4097123.061 | 382129.104 | 2.298  |
| OT-8   | 4086525.625 | 383472.444 | 3.377  |
| OT-9   | 4078298.891 | 404011.498 | 4.043  |
| OT-10  | 4078657.569 | 387312     | 2.843  |
| OT-11  | 4072616.492 | 387581.48  | 5.668  |
| OT-12  | 4066448.202 | 409482.049 | 2.486  |
| OT-13  | 4067562.414 | 381818.542 | 2.601  |
| OT-14  | 4061599.984 | 378660.721 | 4.475  |
| OT-15  | 4060963.643 | 409784.125 | 1.461  |
| OT-16  | 4055461.44  | 397899.773 | 3.726  |
| OT-17  | 4051531.896 | 376373.966 | 5.115  |
| OT-18  | 4049989.779 | 385337.991 | 4.057  |
| OT-19  | 4045755.088 | 399629.718 | 2.501  |
| OT-20  | 4046832.726 | 389710.031 | 3.427  |
|        | URBAN       |            |        |
| UT-1   | 4130867.113 | 350036.421 | 21.875 |
| UT-2   | 4122275.214 | 366296.536 | 1.73   |
| UT-3   | 4112855.286 | 365989.516 | 16.203 |
| UT-4   | 4110977.445 | 360182.785 | 9.528  |
| UT-5   | 4107289.791 | 371528.47  | 8.849  |
| UT-6   | 4102065.181 | 365947.433 | 9.063  |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 73 of 232

| UT-7  | 4094026.888 | 375440.462 | 1.167 |
|-------|-------------|------------|-------|
| UT-8  | 4046143.784 | 386772.856 | 5.124 |
| UT-9  | 4046143.784 | 386772.856 | 5.124 |
| UT-10 | 4046143.784 | 386772.856 | 5.124 |
| UT-11 | 4046143.784 | 386772.856 | 5.124 |
| UT-12 | 4046143.784 | 386772.856 | 5.124 |
| UT-13 | 4046143.784 | 386772.856 | 5.124 |
| UT-14 | 4046143.784 | 386772.856 | 5.124 |
| UT-15 | 4046143.784 | 386772.856 | 5.124 |
| UT-16 | 4046143.784 | 386772.856 | 5.124 |
| UT-17 | 4046143.784 | 386772.856 | 5.124 |
| UT-18 | 4046143.784 | 386772.856 | 5.124 |
| UT-19 | 4046143.784 | 386772.856 | 5.124 |
| UT-20 | 4046143.784 | 386772.856 | 5.124 |

#### **GPS OBSERVATIONS**

|        | NORFOLK, VA LiDAR 2013 |         |            |                |               |  |
|--------|------------------------|---------|------------|----------------|---------------|--|
| POINT  | OBSERV.                | JULIAN  | TIME<br>OF | RE-<br>OBSERV. | RE-<br>OBSERV |  |
|        |                        |         |            |                |               |  |
| ID     | DATE                   | DATE    | DAY        | DATE           | TIME          |  |
|        | BRUSHLANDS AN          | D LOW T | REES       |                |               |  |
| BLT-1  | 5/6/2013               | 239     | 8:13       | N/A            | N/A           |  |
| BLT-2  | 5/5/2013               | 240     | 12:15      | N/A            | N/A           |  |
| BLT-3  | 5/5/2013               | 240     | 10:14      | N/A            | N/A           |  |
| BLT-4  | 5/5/2013               | 240     | 8:58       | N/A            | N/A           |  |
| BLT-5  | 5/4/2013               | 241     | 13:42      | N/A            | N/A           |  |
| BLT-6  | 5/4/2013               | 241     | 11:22      | N/A            | N/A           |  |
| BLT-7  | 5/4/2013               | 241     | 7:22       | N/A            | N/A           |  |
| BLT-8  | 5/2/2013               | 243     | 14:53      | N/A            | N/A           |  |
| BLT-9  | 5/3/2013               | 242     | 12:29      | N/A            | N/A           |  |
| BLT-10 | 5/2/2013               | 243     | 15:28      | N/A            | N/A           |  |
| BLT-11 | 5/2/2013               | 243     | 10:52      | N/A            | N/A           |  |
| BLT-12 | 5/2/2013               | 243     | 19:30      | N/A            | N/A           |  |
| BLT-13 | 5/1/2013               | 244     | 12:52      | N/A            | N/A           |  |
| BLT-14 | 5/1/2013               | 244     | 16:45      | 5/22/2013      | 12:03         |  |
| BLT-15 | 5/1/2013               | 244     | 11:15      | N/A            | N/A           |  |
| BLT-16 | 4/30/2013              | 245     | 17:18      | N/A            | N/A           |  |
| BLT-17 | 4/29/2013              | 246     | 12:18      | N/A            | N/A           |  |
| BLT-18 | 4/29/2013              | 246     | 15:32      | N/A            | N/A           |  |

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 74 of 232

| BLT-19     | 4/30/2013 | 245         | 12:07 | N/A       | N/A   |
|------------|-----------|-------------|-------|-----------|-------|
| BLT-<br>20 | 4/29/2013 | 246         | 15:07 | N/A       | N/A   |
|            |           | RESTED      | 0,    | , ,       | 1     |
| FO-1       | 5/6/2013  | 239         | 9:35  | N/A       | N/A   |
| FO-2       | 5/5/2013  | 240         | 13:43 | N/A       | N/A   |
| FO-3       | 5/5/2013  | 240         | 11:00 | N/A       | N/A   |
| FO-4       | 5/5/2013  | 240         | 9:26  | N/A       | N/A   |
| FO-5       | 5/4/2013  | 241         | 14:05 | N/A       | N/A   |
| FO-6       | 5/4/2013  | 241         | 9:54  | N/A       | N/A   |
| FO-7       | 5/4/2013  | 241         | 11:55 | N/A       | N/A   |
| FO-8       | 5/3/2013  | 242         | 15:08 | N/A       | N/A   |
| FO-9       | 5/3/2013  | 242         | 14:19 | N/A       | N/A   |
| FO-10      | 5/2/2013  | 243         | 13:16 | N/A       | N/A   |
| FO-11      | 5/2/2013  | 243         | 12:32 | N/A       | N/A   |
| FO-12      | 4/30/2013 | 245         | 16:14 | N/A       | N/A   |
| FO-13      | 5/1/2013  | 244         | 12:01 | N/A       | N/A   |
| FO-14      | 5/1/2013  | 244         | 15:28 | N/A       | N/A   |
| FO-15      | 5/1/2013  | 244         | 9:57  | N/A       | N/A   |
| FO-16      | 4/30/2013 | 245         | 12:36 | N/A       | N/A   |
| FO-17      | 4/29/2013 | 246         | 17:47 | N/A       | N/A   |
| FO-18      | 4/30/2013 | 245         | 7:23  | N/A       | N/A   |
| FO-19      | 4/30/2013 | 245         | 9:41  | N/A       | N/A   |
| FO-20      | 4/29/2013 | 246         | 14:25 | N/A       | N/A   |
|            | GRASS,WE  | EDS,and CRO | PS    |           |       |
| GWC-1      | 5/6/2013  | 239         | 9:08  | 5/6/2013  | 10:42 |
| GWC-2      | 5/5/2013  | 240         | 14:38 | 5/22/2013 | 17:15 |
| GWC-3      | 5/5/2013  | 240         | 10:34 | 5/5/2013  | 17:53 |
| GWC-4      | 5/5/2013  | 240         | 8:27  | N/A       | N/A   |
| GWC-5      | 5/4/2013  | 241         | 15:31 | N/A       | N/A   |
| GWC-6      | 5/4/2013  | 241         | 8:49  | N/A       | N/A   |
| GWC-7      | 5/5/2013  | 240         | 16:04 | 5/22/2013 | 16:50 |
| GWC-8      | 5/2/2013  | 243         | 18:02 | 5/3/2013  | 10:24 |
| GWC-9      | 5/3/2013  | 242         | 13:09 | 5/22/2013 | 7:30  |
| GWC-       |           |             | 0 (   | 27/1      |       |
| 10<br>GWC- | 5/2/2013  | 243         | 18:26 | N/A       | N/A   |
| 11<br>11   | 5/2/2013  | 243         | 12:01 | 5/3/2013  | 7:52  |
| GWC-       | 0, ,0     |             |       | 0,0,0     | / 0-  |
| 12         | 5/3/2013  | 242         | 11:24 | 5/3/2013  | 17:04 |
| GWC-<br>13 | 5/1/2013  | 244         | 11:39 | 5/22/2013 | 8:36  |

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 75 of 232

| GWC-       |           |      |       |           |        |
|------------|-----------|------|-------|-----------|--------|
| 14         | 5/1/2013  | 244  | 15:08 | 5/22/2013 | 12:40  |
| GWC-       | , ,       |      |       | 27/1      |        |
| 15<br>GWC- | 5/1/2301  | 244  | 19:21 | N/A       | N/A    |
| 16 GWC-    | 4/30/2013 | 245  | 10:51 | N/A       | N/A    |
| GWC-       |           |      | Ŭ     | /         | /      |
| 17         | 4/29/2013 | 246  | 16:10 | 5/22/2013 | 11:31  |
| GWC-       | 4/20/2012 | 246  | 10.50 |           | NT / A |
| 18<br>GWC- | 4/29/2013 | 246  | 12:52 | N/A       | N/A    |
| 19         | 4/30/2013 | 245  | 11:25 | N/A       | N/A    |
| GWC-       |           |      |       | ,         | ,      |
| 20         | 4/29/2013 | 246  | 11:52 | 4/29/2013 | 17:20  |
|            |           | OPEN |       |           |        |
| OT-1       | 5/6/2013  | 239  | 10:31 | 5/22/2013 | 17:40  |
| OT-2       | 5/5/2013  | 240  | 13:15 | 5/5/2013  | 17:24  |
| OT-3       | 5/5/2013  | 240  | 14:58 | 5/22/2013 | 16:22  |
| OT-4       | 5/4/2013  | 241  | 10:50 | 5/4/2013  | 17:48  |
| OT-5       | 5/4/2013  | 241  | 14:44 | 5/22/2013 | 15:10  |
| OT-6       | 5/4/2013  | 241  | 12:39 | 5/4/2013  | 16:46  |
| OT-7       | 5/4/2013  | 241  | 9:37  | 5/4/2013  | 18:07  |
| OT-8       | 5/2/2013  | 243  | 16:57 | 5/3/2013  | 9:59   |
| OT-9       | 5/3/2013  | 242  | 14:01 | 5/22/2013 | 7:58   |
| OT-10      | 5/2/2013  | 243  | 16:16 | 5/3/2013  | 9:27   |
| OT-11      | 5/2/2013  | 243  | 11:16 | 5/3/2013  | 9:07   |
| OT-12      | 4/30/2013 | 245  | 15:52 | 5/22/2013 | 9:02   |
| OT-13      | 5/1/2013  | 244  | 14:44 | 5/2/2013  | 8:51   |
| OT-14      | 5/1/2013  | 244  | 16:18 | 5/22/2013 | 12:23  |
| OT-15      | 4/30/2013 | 245  | 15:36 | 5/1/2031  | 8:05   |
| OT-16      | 4/30/2013 | 245  | 18:49 | 5/1/2013  | 9:28   |
| OT-17      | 4/29/2013 | 246  | 11:25 | 4/29/2013 | 17:30  |
| OT-18      | 4/29/2013 | 246  | 12:35 | 4/29/2013 | 17:03  |
| OT-19      | 4/30/2013 | 245  | 8:53  | N/A       | N/A    |
| OT-20      | 4/29/2013 | 246  | 14:04 | 5/22/2013 | 10:49  |
|            |           | RBAN |       |           |        |
| UT-1       | 5/6/2013  | 239  | 8:38  | N/A       | N/A    |
| UT-2       | 5/5/2013  | 240  | 11:45 | 5/5/2013  | 17:34  |
| UT-3       | 5/5/2013  | 240  | 15:43 | 5/6/2013  | 11:41  |
| UT-4       | 5/5/2013  | 240  | 15:23 | 5/22/2013 | 15:48  |
| UT-5       | 5/4/2013  | 241  | 15:08 | 5/6/2013  | 12:53  |
| UT-6       | 5/4/2013  | 241  | 13:15 | 5/22/2013 | 14:35  |
| UT-7       | 5/4/2013  | 241  | 8:04  | 5/4/2013  | 17:15  |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 76 of 232

| UT-8  | 5/2/2013  | 243 | 17:24 | 5/3/2013  | 9:43  |
|-------|-----------|-----|-------|-----------|-------|
| UT-9  | 5/3/2013  | 242 | 11:51 | 5/3/2013  | 16:45 |
| UT-10 | 5/2/2013  | 243 | 14:14 | 5/3/2013  | 8:18  |
| UT-11 | 5/2/2013  | 243 | 11:38 | 5/3/2013  | 8:43  |
| UT-12 | 5/2/2013  | 243 | 19:02 | 5/3/2013  | 10:54 |
| UT-13 | 5/1/2013  | 244 | 14:18 | 5/2/2013  | 8:26  |
| UT-14 | 5/1/2013  | 244 | 13:46 | 5/2/2013  | 9:11  |
| UT-15 | 4/30/2013 | 245 | 17:01 | 5/22/2013 | 9:27  |
| UT-16 | 4/30/2013 | 245 | 13:26 | 5/1/2013  | 8:27  |
| UT-17 | 4/29/2013 | 246 | 15:47 | 5/6/2013  | 16:30 |
| UT-18 | 4/30/2013 | 245 | 9:25  | 5/1/2013  | 7:10  |
| UT-19 | 4/30/2013 | 245 | 11:43 | 5/1/2013  | 8:46  |
| UT-20 | 4/29/2013 | 246 | 13:40 | 4/29/2013 | 13:45 |

#### **POINT COMPARISON**

| LiDAR QA   |            |            |            |             |  |
|------------|------------|------------|------------|-------------|--|
| PT ID      | СНК РТ     | DELTA<br>N | DELTA<br>E | DELTA<br>EL |  |
| BLT-14     | BLT-14CHK3 | 0.007      | -0.002     | 0.022       |  |
| GWC-1      | GWC-1CHK   | -0.036     | -0.023     | -0.034      |  |
| GWC-2      | GWC-2CHK2  | -0.018     | 0.021      | -0.029      |  |
| GWC-3      | GWC-3CHK   | -0.013     | -0.007     | 0.051       |  |
| GWC-7      | GWC-7CHK2  | -0.008     | -0.031     | 0.002       |  |
| GWC-8      | GWC-8CHK   | 0.02       | 0.018      | -0.001      |  |
| GWC-9      | GWC-9CHK2  | -0.024     | 0.005      | 0.016       |  |
| GWC-11     | GWC-11CHK  | -0.023     | 0.022      | 0.004       |  |
| GWC-12     | GWC-12CHK  | 0.001      | -0.016     | 0.002       |  |
| GWC-13     | GWC-13CHK  | 0.012      | -0.028     | -0.026      |  |
| GWC-14     | GWC-14CHK2 | -0.009     | 0.006      | 0.012       |  |
| GWC-17     | GWC-17CHK2 | 0.021      | -0.024     | 0.016       |  |
| GWC-<br>20 | GWC-20CHK  | 0          | 0.002      | -0.008      |  |
| OT-1       | OT-1CHK2   | -0.008     | -0.015     | 0.017       |  |
| OT-2       | OT-2CHK    | 0.003      | 0.002      | -0.012      |  |
| OT-3       | OT-3CHK2   | -0.022     | 0.003      | -0.045      |  |
| OT-4       | OT-4CHK    | -0.019     | 0.009      | -0.004      |  |
| OT-5       | OT-5CHK2   | -0.014     | -0.011     | -0.043      |  |
| OT-6       | ОТ-6СНК    | 0.007      | 0.004      | 0.002       |  |
| OT-7       | ОТ-7СНК    | -0.042     | 0.016      | 0.07        |  |
| OT-8       | OT-8CHK    | -0.001     | 0.011      | -0.008      |  |

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 77 of 232

| OT-9  | OT-9CHK2  | -0.008 | 0.006  | -0.007 |
|-------|-----------|--------|--------|--------|
| OT-10 | OT-10CHK  | -0.002 | 0.001  | -0.015 |
| OT-11 | OT-11CHK  | -0.002 | 0.018  | -0.011 |
| OT-12 | OT-12CHK2 | -0.018 | 0.007  | 0.006  |
| OT-13 | OT-13CHK  | -0.012 | 0.014  | -0.007 |
| OT-14 | OT-14CHK2 | 0.002  | 0.026  | 0.025  |
| OT-15 | OT-15CHK  | 0.005  | 0.007  | 0.007  |
| OT-16 | OT-16CHK  | -0.009 | -0.007 | 0.072  |
| OT-17 | OT-17CHK  | 0.003  | -0.012 | 0.009  |
| OT-18 | OT-18CHK  | -0.01  | -0.008 | -0.01  |
| OT-19 | OT-19CHK  | -0.012 | 0.003  | -0.008 |
| OT-20 | OT-20CHK  | 0      | -0.002 | 0.041  |
| UT-2  | UT-2CHK   | -0.003 | 0.005  | -0.019 |
| UT-3  | UT-3CHK2  | -0.007 | -0.011 | -0.01  |
| UT-4  | UT-4CHK2  | -0.018 | -0.034 | -0.047 |
| UT-5  | UT-5CHK2  | -0.007 | -0.012 | -0.033 |
| UT-6  | UT-6CHK2  | 0.011  | 0.012  | -0.046 |
| UT-7  | UT-7CHK   | -0.015 | -0.008 | 0.019  |
| UT-8  | UT-8CHK   | 0.003  | -0.004 | 0.005  |
| UT-9  | UT-9CHK   | -0.012 | -0.004 | 0.011  |
| UT-10 | UT-10CHK  | 0.007  | 0      | -0.021 |
| UT-11 | UT-11CHK  | 0.001  | 0.023  | 0.012  |
| UT-12 | UT-12CHK  | 0.013  | -0.023 | 0.031  |
| UT-13 | UT-13CHK  | -0.012 | 0.007  | 0.001  |
| UT-14 | UT-14CHK  | -0.015 | -0.002 | 0.027  |
| UT-15 | UT-15CHK2 | 0.01   | 0.007  | -0.011 |
| UT-16 | UT-16CHK  | -0.003 | 0.01   | 0.019  |
| UT-17 | UT-17CHK2 | -0.038 | 0.006  | -0.004 |
| UT-18 | UT-18CHK  | 0.007  | 0.009  | -0.016 |
| UT-19 | UT-19CHK  | 0.009  | 0.02   | 0.03   |
| UT-20 | UT-20CHK  | -0.004 | 0.007  | -0.003 |

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 78 of 232

### **Appendix B: Complete List of Delivered Tiles**

#### UTM TILES (1,457):

|             | _           |             |             |
|-------------|-------------|-------------|-------------|
| 18SUF825425 | 18SVF110575 | 18SUF780755 | 18SUG720025 |
| 18SUF840425 | 18SVF125575 | 18SUF795755 | 18SUG735025 |
| 18SUF855425 | 18SVF140575 | 18SUF810755 | 18SUG750025 |
| 18SUF870425 | 18SVF155575 | 18SUF825755 | 18SUG765025 |
| 18SUF885425 | 18SVF170575 | 18SUF840755 | 18SUG780025 |
| 18SUF900425 | 18SVF185575 | 18SUF855755 | 18SUG795025 |
| 18SUF660440 | 18SUF675590 | 18SUF870755 | 18SUG810025 |
| 18SUF675440 | 18SUF690590 | 18SUF885755 | 18SUG825025 |
| 18SUF690440 | 18SUF705590 | 18SUF900755 | 18SUG840025 |
| 18SUF705440 | 18SUF720590 | 18SUF915755 | 18SUG855025 |
| 18SUF720440 | 18SUF735590 | 18SUF930755 | 18SUG870025 |
| 18SUF735440 | 18SUF750590 | 18SUF945755 | 18SUG585040 |
| 18SUF750440 | 18SUF765590 | 18SUF960755 | 18SUG600040 |
| 18SUF765440 | 18SUF780590 | 18SUF975755 | 18SUG615040 |
| 18SUF780440 | 18SUF795590 | 18SUF990755 | 18SUG630040 |
| 18SUF795440 | 18SUF810590 | 18SVF005755 | 18SUG645040 |
| 18SUF810440 | 18SUF825590 | 18SVF020755 | 18SUG660040 |
| 18SUF825440 | 18SUF840590 | 18SVF035755 | 18SUG675040 |
| 18SUF840440 | 18SUF855590 | 18SVF050755 | 18SUG690040 |
| 18SUF855440 | 18SUF870590 | 18SVF065755 | 18SUG705040 |
| 18SUF870440 | 18SUF885590 | 18SVF080755 | 18SUG720040 |
| 18SUF885440 | 18SUF900590 | 18SVF095755 | 18SUG735040 |
| 18SUF900440 | 18SUF915590 | 18SVF110755 | 18SUG750040 |
| 18SUF915440 | 18SUF930590 | 18SVF125755 | 18SUG765040 |
| 18SUF930440 | 18SUF945590 | 18SVF140755 | 18SUG780040 |
| 18SUF945440 | 18SUF960590 | 18SUF690770 | 18SUG795040 |
| 18SUF960440 | 18SUF975590 | 18SUF705770 | 18SUG810040 |
| 18SUF975440 | 18SUF990590 | 18SUF720770 | 18SUG825040 |
| 18SUF990440 | 18SVF005590 | 18SUF735770 | 18SUG840040 |
| 18SVF005440 | 18SVF020590 | 18SUF750770 | 18SUG855040 |
| 18SVF020440 | 18SVF035590 | 18SUF765770 | 18SUG870040 |
| 18SVF035440 | 18SVF050590 | 18SUF780770 | 18SUG570055 |
| 18SVF050440 | 18SVF065590 | 18SUF795770 | 18SUG585055 |
| 18SVF065440 | 18SVF080590 | 18SUF810770 | 18SUG600055 |
| 18SVF080440 | 18SVF095590 | 18SUF825770 | 18SUG615055 |
| 18SVF095440 | 18SVF110590 | 18SUF840770 | 18SUG630055 |
| 18SVF110440 | 18SVF125590 | 18SUF855770 | 18SUG645055 |
| 18SVF125440 | 18SVF140590 | 18SUF870770 | 18SUG660055 |
| 18SVF140440 | 18SVF155590 | 18SUF885770 | 18SUG675055 |
|             |             |             |             |



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 79 of 232

|             | I           | I           | I           |
|-------------|-------------|-------------|-------------|
| 18SVF155440 | 18SVF170590 | 18SUF900770 | 18SUG690055 |
| 18SVF170440 | 18SVF185590 | 18SUF915770 | 18SUG705055 |
| 18SVF185440 | 18SUF675605 | 18SUF930770 | 18SUG720055 |
| 18SVF200440 | 18SUF690605 | 18SUF945770 | 18SUG735055 |
| 18SVF215440 | 18SUF705605 | 18SUF960770 | 18SUG750055 |
| 18SUF660455 | 18SUF720605 | 18SUF975770 | 18SUG765055 |
| 18SUF675455 | 18SUF735605 | 18SUF990770 | 18SUG780055 |
| 18SUF690455 | 18SUF750605 | 18SVF005770 | 18SUG795055 |
| 18SUF705455 | 18SUF765605 | 18SVF020770 | 18SUG810055 |
| 18SUF720455 | 18SUF780605 | 18SVF035770 | 18SUG825055 |
| 18SUF735455 | 18SUF795605 | 18SVF050770 | 18SUG840055 |
| 18SUF750455 | 18SUF810605 | 18SVF065770 | 18SUG855055 |
| 18SUF765455 | 18SUF825605 | 18SVF080770 | 18SUG870055 |
| 18SUF780455 | 18SUF840605 | 18SVF095770 | 18SUG555070 |
| 18SUF795455 | 18SUF855605 | 18SVF110770 | 18SUG570070 |
| 18SUF810455 | 18SUF870605 | 18SVF125770 | 18SUG585070 |
| 18SUF825455 | 18SUF885605 | 18SUF690785 | 18SUG600070 |
| 18SUF840455 | 18SUF900605 | 18SUF705785 | 18SUG615070 |
| 18SUF855455 | 18SUF915605 | 18SUF720785 | 18SUG630070 |
| 18SUF870455 | 18SUF930605 | 18SUF735785 | 18SUG645070 |
| 18SUF885455 | 18SUF945605 | 18SUF750785 | 18SUG660070 |
| 18SUF900455 | 18SUF960605 | 18SUF765785 | 18SUG675070 |
| 18SUF915455 | 18SUF975605 | 18SUF780785 | 18SUG690070 |
| 18SUF930455 | 18SUF990605 | 18SUF795785 | 18SUG705070 |
| 18SUF945455 | 18SVF005605 | 18SUF810785 | 18SUG720070 |
| 18SUF960455 | 18SVF020605 | 18SUF825785 | 18SUG735070 |
| 18SUF975455 | 18SVF035605 | 18SUF840785 | 18SUG750070 |
| 18SUF990455 | 18SVF050605 | 18SUF855785 | 18SUG765070 |
| 18SVF005455 | 18SVF065605 | 18SUF870785 | 18SUG780070 |
| 18SVF020455 | 18SVF080605 | 18SUF885785 | 18SUG795070 |
| 18SVF035455 | 18SVF095605 | 18SUF900785 | 18SUG810070 |
| 18SVF050455 | 18SVF110605 | 18SUF915785 | 18SUG825070 |
| 18SVF065455 | 18SVF125605 | 18SUF930785 | 18SUG840070 |
| 18SVF080455 | 18SVF140605 | 18SUF945785 | 18SUG855070 |
| 18SVF095455 | 18SVF155605 | 18SUF960785 | 18SUG540085 |
| 18SVF110455 | 18SVF170605 | 18SUF975785 | 18SUG555085 |
| 18SVF125455 | 18SUF675620 | 18SUF990785 | 18SUG570085 |
| 18SVF140455 | 18SUF690620 | 18SVF005785 | 18SUG585085 |
| 18SVF155455 | 18SUF705620 | 18SVF020785 | 18SUG600085 |
| 18SVF170455 | 18SUF720620 | 18SVF035785 | 18SUG615085 |
| 18SVF185455 | 18SUF735620 | 18SVF050785 | 18SUG630085 |
| 18SVF200455 | 18SUF750620 | 18SVF065785 | 18SUG645085 |
|             |             |             |             |



|             | 100115705000 | 100/5000705 | 1001000005     |
|-------------|--------------|-------------|----------------|
| 18SVF215455 | 18SUF765620  | 18SVF080785 | 18SUG660085    |
| 18SUF660470 | 18SUF780620  | 18SVF095785 | 18SUG675085    |
| 18SUF675470 | 18SUF795620  | 18SVF110785 | 18SUG690085    |
| 18SUF690470 | 18SUF810620  | 18SVF125785 | 18SUG705085    |
| 18SUF705470 | 18SUF825620  | 18SUF690800 | 18SUG720085    |
| 18SUF720470 | 18SUF840620  | 18SUF705800 | 18SUG735085    |
| 18SUF735470 | 18SUF855620  | 18SUF720800 | 18SUG750085    |
| 18SUF750470 | 18SUF870620  | 18SUF735800 | 18SUG765085    |
| 18SUF765470 | 18SUF885620  | 18SUF750800 | 18SUG780085    |
| 18SUF780470 | 18SUF900620  | 18SUF765800 | 18SUG795085    |
| 18SUF795470 | 18SUF915620  | 18SUF780800 | 18SUG810085    |
| 18SUF810470 | 18SUF930620  | 18SUF795800 | 18SUG825085    |
| 18SUF825470 | 18SUF945620  | 18SUF810800 | 18SUG840085    |
| 18SUF840470 | 18SUF960620  | 18SUF825800 | 18SUG855085    |
| 18SUF855470 | 18SUF975620  | 18SUF840800 | 18SUG540100    |
| 18SUF870470 | 18SUF990620  | 18SUF855800 | 18SUG555100    |
| 18SUF885470 | 18SVF005620  | 18SUF870800 | 18SUG570100    |
| 18SUF900470 | 18SVF020620  | 18SUF885800 | 18SUG585100    |
| 18SUF915470 | 18SVF035620  | 18SUF900800 | 18SUG600100    |
| 18SUF930470 | 18SVF050620  | 18SUF915800 | 18SUG615100    |
| 18SUF945470 | 18SVF065620  | 18SUF930800 | 18SUG630100    |
| 18SUF960470 | 18SVF080620  | 18SUF945800 | 18SUG645100    |
| 18SUF975470 | 18SVF095620  | 18SUF960800 | 18SUG660100    |
| 18SUF990470 | 18SVF110620  | 18SUF975800 | 18SUG675100    |
| 18SVF005470 | 18SVF125620  | 18SUF990800 | 18SUG690100    |
| 18SVF020470 | 18SVF140620  | 18SVF005800 | 18SUG705100    |
| 18SVF035470 | 18SVF155620  | 18SVF020800 | 18SUG720100    |
| 18SVF050470 | 18SVF170620  | 18SVF035800 | 18SUG735100    |
| 18SVF065470 | 18SUF675635  | 18SVF050800 | 18SUG750100    |
| 18SVF080470 | 18SUF690635  | 18SVF065800 | 18SUG765100    |
| 18SVF095470 | 18SUF705635  | 18SVF080800 | 18SUG780100    |
| 18SVF110470 | 18SUF720635  | 18SVF095800 | 18SUG795100    |
| 18SVF125470 | 18SUF735635  | 18SVF110800 | 18SUG810100    |
| 18SVF140470 | 18SUF750635  | 18SVF125800 | 18SUG825100    |
| 18SVF155470 | 18SUF765635  | 18SUF690815 | 18SUG840100    |
| 18SVF170470 | 18SUF780635  | 18SUF705815 | 18SUG555115    |
| 18SVF185470 | 18SUF795635  | 18SUF720815 | 18SUG570115    |
| 18SVF200470 | 18SUF810635  | 18SUF735815 | 18SUG585115    |
| 18SVF215470 | 18SUF825635  | 18SUF750815 | 18SUG600115    |
| 18SUF660485 | 18SUF840635  | 185UF765815 | 18SUG615115    |
| 18SUF675485 | 1850F855635  | 1850F780815 | 1850G619115    |
| 18SUF690485 | 1850F850635  | 1850F785815 | 1850G645115    |
| 10001000-00 | 100010/0000  | 1000175015  | 1 1000 0040110 |



|                            | 100115005005               | 100115010015               | 105110000115               |
|----------------------------|----------------------------|----------------------------|----------------------------|
| 18SUF705485                | 18SUF885635                | 18SUF810815                | 18SUG660115                |
| 18SUF720485                | 18SUF900635                | 18SUF825815                | 18SUG675115                |
| 18SUF735485                | 18SUF915635                | 18SUF840815                | 18SUG690115                |
| 18SUF750485                | 18SUF930635                | 18SUF855815                | 18SUG705115                |
| 18SUF765485                | 18SUF945635                | 18SUF870815                | 18SUG720115                |
| 18SUF780485                | 18SUF960635                | 18SUF885815                | 18SUG735115                |
| 18SUF795485                | 18SUF975635                | 18SUF900815                | 18SUG750115                |
| 18SUF810485                | 18SUF990635                | 18SUF915815                | 18SUG765115                |
| 18SUF825485                | 18SVF005635                | 18SUF930815                | 18SUG780115                |
| 18SUF840485                | 18SVF020635                | 18SUF945815                | 18SUG795115                |
| 18SUF855485                | 18SVF035635                | 18SUF960815                | 18SUG810115                |
| 18SUF870485                | 18SVF050635                | 18SUF975815                | 18SUG825115                |
| 18SUF885485                | 18SVF065635                | 18SUF990815                | 18SUG555130                |
| 18SUF900485                | 18SVF080635                | 18SVF005815                | 18SUG570130                |
| 18SUF915485                | 18SVF095635                | 18SVF020815                | 18SUG585130                |
| 18SUF930485                | 18SVF110635                | 18SVF035815                | 18SUG600130                |
| 18SUF945485                | 18SVF125635                | 18SVF050815                | 18SUG615130                |
| 18SUF960485                | 18SVF140635                | 18SVF065815                | 18SUG630130                |
| 18SUF975485                | 18SVF155635                | 18SVF080815                | 18SUG645130                |
| 18SUF990485                | 18SVF170635                | 18SVF095815                | 18SUG660130                |
| 18SVF005485                | 18SUF675650                | 18SVF110815                | 18SUG675130                |
| 18SVF020485                | 18SUF690650                | 18SVF125815                | 18SUG690130                |
| 18SVF035485                | 18SUF705650                | 18SUF690830                | 18SUG705130                |
| 18SVF050485                | 18SUF720650                | 18SUF705830                | 18SUG720130                |
| 18SVF065485                | 18SUF735650                | 18SUF720830                | 18SUG735130                |
| 18SVF080485                | 18SUF750650                | 18SUF735830                | 18SUG750130                |
| 18SVF095485                | 18SUF765650                | 18SUF750830                | 18SUG765130                |
| 18SVF110485                | 18SUF780650                | 18SUF765830                | 18SUG780130                |
| 18SVF125485                | 18SUF795650                | 18SUF780830                | 18SUG795130                |
| 18SVF140485                | 18SUF810650                | 18SUF795830                | 18SUG810130                |
| 18SVF155485                | 18SUF825650                | 18SUF810830                | 18SUG555145                |
| 18SVF170485                | 18SUF840650                | 18SUF825830                | 18SUG570145                |
| 18SVF185485                | 18SUF855650                | 18SUF840830                | 18SUG585145                |
| 18SVF200485                | 18SUF870650                | 18SUF855830                | 18SUG600145                |
| 18SVF215485                | 18SUF885650                | 18SUF870830                | 18SUG615145                |
| 18SUF660500                | 18SUF900650                | 18SUF885830                | 18SUG630145                |
| 18SUF675500                | 18SUF915650                | 18SUF900830                | 18SUG645145                |
| 18SUF690500                | 18SUF930650                | 18SUF915830                | 18SUG660145                |
| 1850F090500                | 1850F930050<br>185UF945650 | 1850F919830<br>185UF930830 | 1850G000145<br>185UG675145 |
| 1850F705500                | 1850F945050<br>18SUF960650 | 1850F930830                | 1850G675145<br>185UG690145 |
| 18501720500<br>18SUF735500 | 1850F900050<br>18SUF975650 | 1850F945830                | 1850G090145<br>185UG705145 |
| 1850F755500<br>18SUF750500 | 1830F973030<br>18SUF990650 | 1850F900850<br>18SUF975830 | 1850G705145<br>18SUG720145 |
| 10201720200                | 10201 220020               | 102012/2020                | 10300720143                |



|             | l           | I           | I           |
|-------------|-------------|-------------|-------------|
| 18SUF765500 | 18SVF005650 | 18SUF990830 | 18SUG735145 |
| 18SUF780500 | 18SVF020650 | 18SVF005830 | 18SUG750145 |
| 18SUF795500 | 18SVF035650 | 18SVF020830 | 18SUG765145 |
| 18SUF810500 | 18SVF050650 | 18SVF035830 | 18SUG780145 |
| 18SUF825500 | 18SVF065650 | 18SVF050830 | 18SUG795145 |
| 18SUF840500 | 18SVF080650 | 18SVF065830 | 18SUG810145 |
| 18SUF855500 | 18SVF095650 | 18SVF080830 | 18SUG570160 |
| 18SUF870500 | 18SVF110650 | 18SVF095830 | 18SUG585160 |
| 18SUF885500 | 18SVF125650 | 18SVF110830 | 18SUG600160 |
| 18SUF900500 | 18SVF140650 | 18SUF690845 | 18SUG615160 |
| 18SUF915500 | 18SVF155650 | 18SUF705845 | 18SUG630160 |
| 18SUF930500 | 18SUF675665 | 18SUF720845 | 18SUG645160 |
| 18SUF945500 | 18SUF690665 | 18SUF735845 | 18SUG660160 |
| 18SUF960500 | 18SUF705665 | 18SUF750845 | 18SUG675160 |
| 18SUF975500 | 18SUF720665 | 18SUF765845 | 18SUG690160 |
| 18SUF990500 | 18SUF735665 | 18SUF780845 | 18SUG705160 |
| 18SVF005500 | 18SUF750665 | 18SUF795845 | 18SUG720160 |
| 18SVF020500 | 18SUF765665 | 18SUF810845 | 18SUG735160 |
| 18SVF035500 | 18SUF780665 | 18SUF825845 | 18SUG750160 |
| 18SVF050500 | 18SUF795665 | 18SUF840845 | 18SUG765160 |
| 18SVF065500 | 18SUF810665 | 18SUF855845 | 18SUG780160 |
| 18SVF080500 | 18SUF825665 | 18SUF870845 | 18SUG570175 |
| 18SVF095500 | 18SUF840665 | 18SUF885845 | 18SUG585175 |
| 18SVF110500 | 18SUF855665 | 18SUF900845 | 18SUG600175 |
| 18SVF125500 | 18SUF870665 | 18SUF915845 | 18SUG615175 |
| 18SVF140500 | 18SUF885665 | 18SUF930845 | 18SUG630175 |
| 18SVF155500 | 18SUF900665 | 18SUF945845 | 18SUG645175 |
| 18SVF170500 | 18SUF915665 | 18SUF960845 | 18SUG660175 |
| 18SVF185500 | 18SUF930665 | 18SUF975845 | 18SUG675175 |
| 18SVF200500 | 18SUF945665 | 18SUF990845 | 18SUG690175 |
| 18SVF215500 | 18SUF960665 | 18SVF005845 | 18SUG705175 |
| 18SUF660515 | 18SUF975665 | 18SVF020845 | 18SUG720175 |
| 18SUF675515 | 18SUF990665 | 18SVF035845 | 18SUG735175 |
| 18SUF690515 | 18SVF005665 | 18SVF050845 | 18SUG750175 |
| 18SUF705515 | 18SVF020665 | 18SVF065845 | 18SUG765175 |
| 18SUF720515 | 18SVF035665 | 18SVF080845 | 18SUG570190 |
| 18SUF735515 | 18SVF050665 | 18SVF095845 | 18SUG585190 |
| 18SUF750515 | 18SVF065665 | 18SVF110845 | 18SUG600190 |
| 18SUF765515 | 18SVF080665 | 18SUF690860 | 18SUG615190 |
| 18SUF780515 | 18SVF095665 | 18SUF705860 | 18SUG630190 |
| 18SUF795515 | 18SVF110665 | 18SUF720860 | 18SUG645190 |
| 18SUF810515 | 18SVF125665 | 18SUF735860 | 18SUG660190 |
|             |             |             |             |



| 100115025515 | 100/5140005 | 100115750000 | 10010075100 |
|--------------|-------------|--------------|-------------|
| 18SUF825515  | 18SVF140665 | 18SUF750860  | 18SUG675190 |
| 18SUF840515  | 18SVF155665 | 18SUF765860  | 18SUG690190 |
| 18SUF855515  | 18SUF675680 | 18SUF780860  | 18SUG705190 |
| 18SUF870515  | 18SUF690680 | 18SUF795860  | 18SUG720190 |
| 18SUF885515  | 18SUF705680 | 18SUF810860  | 18SUG735190 |
| 18SUF900515  | 18SUF720680 | 18SUF825860  | 18SUG750190 |
| 18SUF915515  | 18SUF735680 | 18SUF840860  | 18SUG765190 |
| 18SUF930515  | 18SUF750680 | 18SUF855860  | 18SUG540205 |
| 18SUF945515  | 18SUF765680 | 18SUF870860  | 18SUG555205 |
| 18SUF960515  | 18SUF780680 | 18SUF885860  | 18SUG570205 |
| 18SUF975515  | 18SUF795680 | 18SUF900860  | 18SUG585205 |
| 18SUF990515  | 18SUF810680 | 18SUF915860  | 18SUG600205 |
| 18SVF005515  | 18SUF825680 | 18SUF930860  | 18SUG615205 |
| 18SVF020515  | 18SUF840680 | 18SUF945860  | 18SUG630205 |
| 18SVF035515  | 18SUF855680 | 18SUF960860  | 18SUG645205 |
| 18SVF050515  | 18SUF870680 | 18SUF975860  | 18SUG660205 |
| 18SVF065515  | 18SUF885680 | 18SUF990860  | 18SUG675205 |
| 18SVF080515  | 18SUF900680 | 18SVF005860  | 18SUG690205 |
| 18SVF095515  | 18SUF915680 | 18SVF020860  | 18SUG705205 |
| 18SVF110515  | 18SUF930680 | 18SVF035860  | 18SUG720205 |
| 18SVF125515  | 18SUF945680 | 18SVF050860  | 18SUG735205 |
| 18SVF140515  | 18SUF960680 | 18SVF065860  | 18SUG750205 |
| 18SVF155515  | 18SUF975680 | 18SVF080860  | 18SUG765205 |
| 18SVF170515  | 18SUF990680 | 18SVF095860  | 18SUG510220 |
| 18SVF185515  | 18SVF005680 | 18SVF110860  | 18SUG525220 |
| 18SVF200515  | 18SVF020680 | 18SUF750875  | 18SUG540220 |
| 18SUF660530  | 18SVF035680 | 18SUF765875  | 18SUG555220 |
| 18SUF675530  | 18SVF050680 | 18SUF780875  | 18SUG570220 |
| 18SUF690530  | 18SVF065680 | 18SUF795875  | 18SUG585220 |
| 18SUF705530  | 18SVF080680 | 18SUF810875  | 18SUG600220 |
| 18SUF720530  | 18SVF095680 | 18SUF825875  | 18SUG615220 |
| 18SUF735530  | 18SVF110680 | 18SUF840875  | 18SUG630220 |
| 18SUF750530  | 18SVF125680 | 18SUF855875  | 18SUG645220 |
| 18SUF765530  | 18SVF140680 | 18SUF870875  | 18SUG660220 |
| 18SUF780530  | 18SVF155680 | 18SUF885875  | 18SUG495235 |
| 18SUF795530  | 18SUF675695 | 18SUF900875  | 18SUG510235 |
| 18SUF810530  | 18SUF690695 | 18SUF915875  | 18SUG525235 |
| 18SUF825530  | 18SUF705695 | 18SUF930875  | 18SUG540235 |
| 18SUF840530  | 18SUF720695 | 18SUF945875  | 18SUG555235 |
| 18SUF855530  | 18SUF735695 | 18SUF960875  | 18SUG570235 |
| 18SUF870530  | 18SUF750695 | 18SUF975875  | 18SUG585235 |
| 18SUF885530  | 18SUF765695 | 18SVF050875  | 18SUG600235 |
|              |             |              |             |



| 18SUF900530 | 18SUF780695 | 18SVF065875 | 18SUG615235 |
|-------------|-------------|-------------|-------------|
| 18SUF915530 | 18SUF795695 | 18SVF080875 | 18SUG630235 |
| 18SUF930530 | 18SUF810695 | 18SVF095875 | 18SUG645235 |
| 18SUF945530 | 18SUF825695 | 18SVF110875 | 18SUG480250 |
| 18SUF960530 | 18SUF840695 | 18SUF795890 | 18SUG495250 |
| 18SUF975530 | 18SUF855695 | 18SUF810890 | 18SUG510250 |
| 18SUF990530 | 18SUF870695 | 18SUF825890 | 18SUG525250 |
| 18SVF005530 | 18SUF885695 | 18SUF840890 | 18SUG540250 |
| 18SVF020530 | 18SUF900695 | 18SUF855890 | 18SUG555250 |
| 18SVF035530 | 18SUF915695 | 18SUF870890 | 18SUG570250 |
| 18SVF050530 | 18SUF930695 | 18SUF885890 | 18SUG585250 |
| 18SVF065530 | 18SUF945695 | 18SUF900890 | 18SUG600250 |
| 18SVF080530 | 18SUF960695 | 18SUF915890 | 18SUG615250 |
| 18SVF095530 | 18SUF975695 | 18SUF930890 | 18SUG630250 |
| 18SVF110530 | 18SUF990695 | 18SUF945890 | 18SUG465265 |
| 18SVF125530 | 18SVF005695 | 18SUF720905 | 18SUG480265 |
| 18SVF140530 | 18SVF020695 | 18SUF735905 | 18SUG495265 |
| 18SVF155530 | 18SVF035695 | 18SUF750905 | 18SUG510265 |
| 18SVF170530 | 18SVF050695 | 18SUF795905 | 18SUG525265 |
| 18SVF185530 | 18SVF065695 | 18SUF810905 | 18SUG540265 |
| 18SVF200530 | 18SVF080695 | 18SUF825905 | 18SUG555265 |
| 18SUF660545 | 18SVF095695 | 18SUF840905 | 18SUG570265 |
| 18SUF675545 | 18SVF110695 | 18SUF855905 | 18SUG585265 |
| 18SUF690545 | 18SVF125695 | 18SUF870905 | 18SUG600265 |
| 18SUF705545 | 18SVF140695 | 18SUF885905 | 18SUG615265 |
| 18SUF720545 | 18SVF155695 | 18SUF900905 | 18SUG465280 |
| 18SUF735545 | 18SUF690710 | 18SUF705920 | 18SUG480280 |
| 18SUF750545 | 18SUF705710 | 18SUF720920 | 18SUG495280 |
| 18SUF765545 | 18SUF720710 | 18SUF735920 | 18SUG510280 |
| 18SUF780545 | 18SUF735710 | 18SUF750920 | 18SUG525280 |
| 18SUF795545 | 18SUF750710 | 18SUF795920 | 18SUG540280 |
| 18SUF810545 | 18SUF765710 | 18SUF810920 | 18SUG555280 |
| 18SUF825545 | 18SUF780710 | 18SUF825920 | 18SUG570280 |
| 18SUF840545 | 18SUF795710 | 18SUF840920 | 18SUG585280 |
| 18SUF855545 | 18SUF810710 | 18SUF855920 | 18SUG600280 |
| 18SUF870545 | 18SUF825710 | 18SUF870920 | 18SUG450295 |
| 18SUF885545 | 18SUF840710 | 18SUF885920 | 18SUG465295 |
| 18SUF900545 | 18SUF855710 | 18SUF690935 | 18SUG480295 |
| 18SUF915545 | 18SUF870710 | 18SUF705935 | 18SUG495295 |
| 18SUF930545 | 18SUF885710 | 18SUF720935 | 18SUG510295 |
| 18SUF945545 | 18SUF900710 | 18SUF735935 | 18SUG525295 |
| 18SUF960545 | 18SUF915710 | 18SUF750935 | 18SUG540295 |
|             |             |             |             |



| 18SUF975545                | 18SUF930710                | 18SUF765935                | 18SUG555295                |
|----------------------------|----------------------------|----------------------------|----------------------------|
| 1850F975545<br>18SUF990545 | 1850F950710<br>18SUF945710 | 1850F705955<br>18SUF810935 | 1850G555295<br>18SUG570295 |
| 1850F990545<br>18SVF005545 | 1850F945710<br>18SUF960710 | 1850F810955<br>18SUF825935 | 1850G570295<br>18SUG585295 |
| 185VF005545<br>185VF020545 | 1850F960710<br>18SUF975710 | 1850F825955<br>18SUF840935 | 1850G585295<br>18SUG450310 |
|                            | 1850F975710<br>1850F990710 | 1850F840935<br>18SUF855935 |                            |
| 18SVF035545                |                            |                            | 18SUG465310                |
| 18SVF050545                | 18SVF005710                | 18SUF675950                | 18SUG480310                |
| 18SVF065545                | 18SVF020710                | 18SUF690950                | 18SUG495310                |
| 18SVF080545                | 18SVF035710                | 18SUF705950                | 18SUG510310                |
| 18SVF095545                | 18SVF050710                | 18SUF720950                | 18SUG525310                |
| 18SVF110545                | 18SVF065710                | 18SUF735950                | 18SUG540310                |
| 18SVF125545                | 18SVF080710                | 18SUF750950                | 18SUG555310                |
| 18SVF140545                | 18SVF095710                | 18SUF765950                | 18SUG570310                |
| 18SVF155545                | 18SVF110710                | 18SUF780950                | 18SUG435325                |
| 18SVF170545                | 18SVF125710                | 18SUF795950                | 18SUG450325                |
| 18SVF185545                | 18SVF140710                | 18SUF810950                | 18SUG465325                |
| 18SVF200545                | 18SUF690725                | 18SUF825950                | 18SUG480325                |
| 18SUF660560                | 18SUF705725                | 18SUF840950                | 18SUG495325                |
| 18SUF675560                | 18SUF720725                | 18SUF660965                | 18SUG510325                |
| 18SUF690560                | 18SUF735725                | 18SUF675965                | 18SUG525325                |
| 18SUF705560                | 18SUF750725                | 18SUF690965                | 18SUG540325                |
| 18SUF720560                | 18SUF765725                | 18SUF705965                | 18SUG555325                |
| 18SUF735560                | 18SUF780725                | 18SUF720965                | 18SUG570325                |
| 18SUF750560                | 18SUF795725                | 18SUF735965                | 18SUG435340                |
| 18SUF765560                | 18SUF810725                | 18SUF750965                | 18SUG450340                |
| 18SUF780560                | 18SUF825725                | 18SUF765965                | 18SUG465340                |
| 18SUF795560                | 18SUF840725                | 18SUF780965                | 18SUG480340                |
| 18SUF810560                | 18SUF855725                | 18SUF795965                | 18SUG495340                |
| 18SUF825560                | 18SUF870725                | 18SUF810965                | 18SUG510340                |
| 18SUF840560                | 18SUF885725                | 18SUF825965                | 18SUG525340                |
| 18SUF855560                | 18SUF900725                | 18SUF840965                | 18SUG540340                |
| 18SUF870560                | 18SUF915725                | 18SUF645980                | 18SUG555340                |
| 18SUF885560                | 18SUF930725                | 18SUF660980                | 18SUG435355                |
| 18SUF900560                | 18SUF945725                | 18SUF675980                | 18SUG450355                |
| 18SUF915560                | 18SUF960725                | 18SUF690980                | 18SUG465355                |
| 18SUF930560                | 18SUF975725                | 18SUF705980                | 18SUG480355                |
| 18SUF945560                | 18SUF990725                | 18SUF720980                | 18SUG495355                |
| 18SUF960560                | 18SVF005725                | 18SUF735980                | 18SUG510355                |
| 18SUF975560                | 18SVF020725                | 18SUF750980                | 18SUG525355                |
| 18SUF990560                | 18SVF035725                | 18SUF765980                | 18SUG540355                |
| 18SVF005560                | 18SVF050725                | 18SUF780980                | 18SUG450370                |
| 18SVF020560                | 18SVF065725                | 18SUF795980                | 18SUG465370                |
| 18SVF035560                | 18SVF080725                | 18SUF810980                | 18SUG480370                |

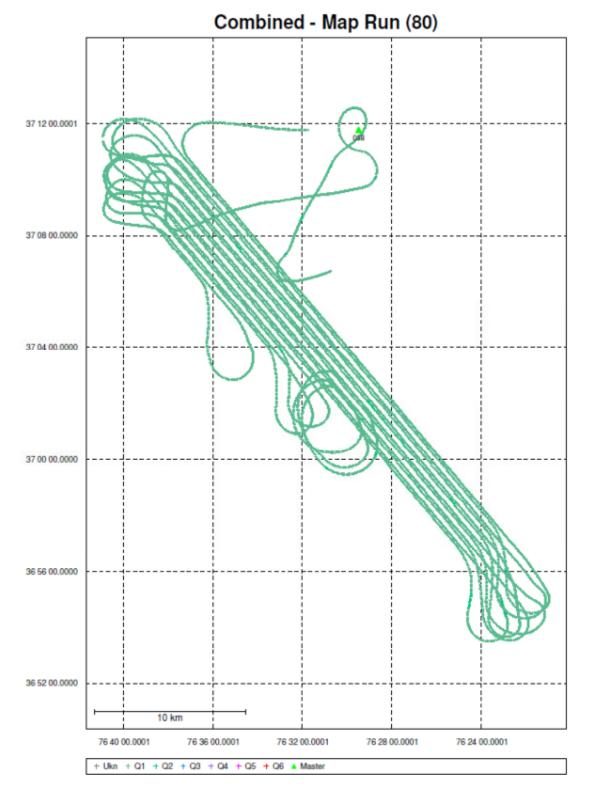


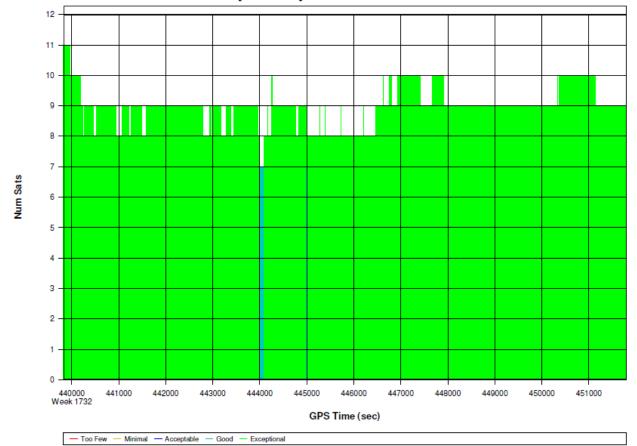
| 18SVF050560 | 18SVF095725 | 18SUF825980 | 18SUG495370 |
|-------------|-------------|-------------|-------------|
| 18SVF065560 | 18SVF110725 | 18SUF840980 | 18SUG510370 |
| 18SVF080560 | 18SVF125725 | 18SUF855980 | 18SUG525370 |
| 18SVF095560 | 18SVF140725 | 18SUF645995 |             |
| 18SVF110560 | 18SUF690740 | 18SUF660995 |             |
| 18SVF125560 | 18SUF705740 | 18SUF675995 |             |
| 18SVF140560 | 18SUF720740 | 18SUF690995 |             |
| 18SVF155560 | 18SUF735740 | 18SUF705995 |             |
| 18SVF170560 | 18SUF750740 | 18SUF720995 |             |
| 18SVF185560 | 18SUF765740 | 18SUF735995 |             |
| 18SVF200560 | 18SUF780740 | 18SUF750995 |             |
| 18SUF675575 | 18SUF795740 | 18SUF765995 |             |
| 18SUF690575 | 18SUF810740 | 18SUF780995 |             |
| 18SUF705575 | 18SUF825740 | 18SUF795995 |             |
| 18SUF720575 | 18SUF840740 | 18SUF810995 |             |
| 18SUF735575 | 18SUF855740 | 18SUF825995 |             |
| 18SUF750575 | 18SUF870740 | 18SUF840995 |             |
| 18SUF765575 | 18SUF885740 | 18SUF855995 |             |
| 18SUF780575 | 18SUF900740 | 18SUG630010 |             |
| 18SUF795575 | 18SUF915740 | 18SUG645010 |             |
| 18SUF810575 | 18SUF930740 | 18SUG660010 |             |
| 18SUF825575 | 18SUF945740 | 18SUG675010 |             |
| 18SUF840575 | 18SUF960740 | 18SUG690010 |             |
| 18SUF855575 | 18SUF975740 | 18SUG705010 |             |
| 18SUF870575 | 18SUF990740 | 18SUG720010 |             |
| 18SUF885575 | 18SVF005740 | 18SUG735010 |             |
| 18SUF900575 | 18SVF020740 | 18SUG750010 |             |
| 18SUF915575 | 18SVF035740 | 18SUG765010 |             |
| 18SUF930575 | 18SVF050740 | 18SUG780010 |             |
| 18SUF945575 | 18SVF065740 | 18SUG795010 |             |
| 18SUF960575 | 18SVF080740 | 18SUG810010 |             |
| 18SUF975575 | 18SVF095740 | 18SUG825010 |             |
| 18SUF990575 | 18SVF110740 | 18SUG840010 |             |
| 18SVF005575 | 18SVF125740 | 18SUG855010 |             |
| 18SVF020575 | 18SVF140740 | 18SUG615025 |             |
| 18SVF035575 | 18SUF690755 | 18SUG630025 |             |
| 18SVF050575 | 18SUF705755 | 18SUG645025 |             |
| 18SVF065575 | 18SUF720755 | 18SUG660025 |             |
| 18SVF080575 | 18SUF735755 | 18SUG675025 |             |
| 18SVF095575 | 18SUF750755 | 18SUG690025 |             |
|             | 18SUF765755 | 18SUG705025 |             |
|             |             |             |             |

#### **SPCS TILES (388):**

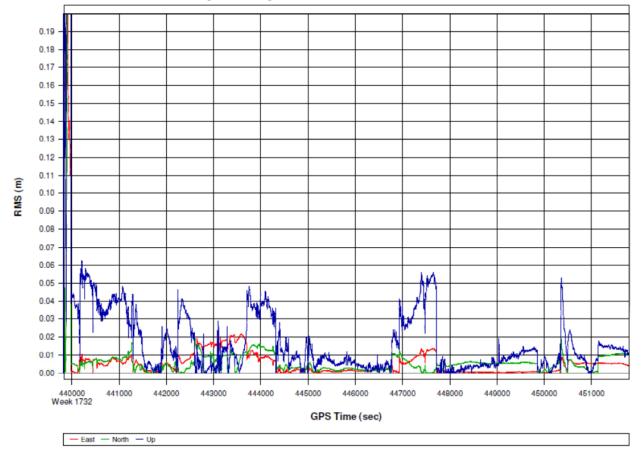
| 51 05 11115 (300). |                |                 |                |  |
|--------------------|----------------|-----------------|----------------|--|
| DO_S23_1387_00     | DO_S23_0680_00 | DO_\$23_0377_00 | DO_S23_1487_00 |  |
| DO_S23_1493_00     | DO_S23_0589_00 | DO_S23_0483_00  | DO_S23_1486_00 |  |
| DO_S23_1492_00     | DO_S23_0588_00 | DO_S23_0482_00  | DO_S23_1485_00 |  |
| DO_S23_1491_00     | DO_S23_0691_00 | DO_S23_0481_00  | DO_S23_1484_00 |  |
| DO_S23_1490_00     | DO_S23_0690_00 | DO_S23_0480_00  | DO_S23_1590_00 |  |
| DO_S23_1399_00     | DO_S23_0599_00 | DO_S23_0389_00  | DO_S23_1499_00 |  |
| DO_S23_1398_00     | DO_S23_0598_00 | DO_S23_0388_00  | DO_S23_1498_00 |  |
| DO_S23_1397_00     | DO_S23_1600_00 | DO_S23_0387_00  | DO_S23_1497_00 |  |
| DO_S23_2403_00     | DO_S23_1509_00 | DO_S23_0493_00  | DO_S23_1496_00 |  |
| DO_S23_2402_00     | DO_S23_1508_00 | DO_S23_0492_00  | DO_S23_1495_00 |  |
| DO_S23_2401_00     | DO_S23_1519_00 | DO_S23_0491_00  | DO_S23_1494_00 |  |
| DO_S23_2400_00     | DO_S23_1518_00 | DO_S23_0490_00  | DO_S23_2500_00 |  |
| DO_S23_2309_00     | DO_S23_0527_00 | DO_S23_0399_00  | DO_S23_2409_00 |  |
| DO_S23_2308_00     | DO_S23_0537_00 | DO_S23_0398_00  | DO_S23_2408_00 |  |
| DO_S23_2307_00     | DO_S23_0536_00 | DO_S23_0397_00  | DO_S23_2407_00 |  |
| DO_S23_2413_00     | DO_S23_0547_00 | DO_S23_1403_00  | DO_S23_2406_00 |  |
| DO_S23_2412_00     | DO_S23_0546_00 | DO_S23_1402_00  | DO_S23_2405_00 |  |
| DO_S23_2411_00     | DO_S23_0545_00 | DO_S23_1401_00  | DO_S23_2404_00 |  |
| DO_S23_2410_00     | DO_S23_0557_00 | DO_S23_1400_00  | DO_S23_2510_00 |  |
| DO_\$23_2319_00    | DO_S23_0556_00 | DO_S23_1309_00  | DO_S23_2419_00 |  |
| DO_\$23_2318_00    | DO_S23_0555_00 | DO_S23_1308_00  | DO_S23_2418_00 |  |
| DO_\$23_2317_00    | DO_S23_0554_00 | DO_S23_1307_00  | DO_S23_2417_00 |  |
| DO_\$23_2423_00    | DO_S23_0567_00 | DO_S23_1413_00  | DO_S23_2416_00 |  |
| DO_S23_2422_00     | DO_S23_0566_00 | DO_S23_1412_00  | DO_S23_2415_00 |  |
| DO_S23_2421_00     | DO_S23_0565_00 | DO_S23_1411_00  | DO_S23_2414_00 |  |
| DO_S23_2420_00     | DO_S23_0564_00 | DO_S23_1410_00  | DO_S23_2429_00 |  |
| DO_S23_2329_00     | DO_S23_0563_00 | DO_S23_1319_00  | DO_S23_2428_00 |  |
| DO_\$23_2328_00    | DO_S23_0577_00 | DO_S23_1318_00  | DO_S23_2427_00 |  |
| DO_\$23_2327_00    | DO_S23_0576_00 | DO_S23_1317_00  | DO_S23_2426_00 |  |
| DO_\$23_2433_00    | DO_S23_0575_00 | DO_S23_0376_00  | DO_S23_2425_00 |  |
| DO_S23_2432_00     | DO_S23_0574_00 | DO_S23_0386_00  | DO_S23_2424_00 |  |
| DO_S23_2431_00     | DO_S23_0573_00 | DO_S23_0396_00  | DO_S23_2435_00 |  |
| DO_S23_2430_00     | DO_S23_0572_00 | DO_S23_1306_00  | DO_S23_2434_00 |  |
| DO_S23_2339_00     | DO_S23_0587_00 | DO_S23_1316_00  | DO_S23_1423_00 |  |
| DO_\$23_2338_00    | DO_S23_0586_00 | DO_S23_1528_00  | DO_S23_1422_00 |  |
| DO_\$23_2337_00    | DO_S23_0585_00 | DO_S23_1527_00  | DO_S23_1421_00 |  |
| DO_S23_1326_00     | DO_S23_0584_00 | DO_S23_1526_00  | DO_S23_1420_00 |  |
| DO_S23_1336_00     | DO_S23_0583_00 | DO_S23_1525_00  | DO_S23_1329_00 |  |
| DO_S23_1346_00     | DO_S23_0582_00 | DO_S23_1524_00  | DO_S23_1328_00 |  |
| DO_S23_1356_00     | DO_S23_0581_00 | DO_S23_1523_00  | DO_S23_1327_00 |  |
| DO_S23_1366_00     | DO_S23_0597_00 | DO_S23_1522_00  | DO_S23_1433_00 |  |
|                    |                |                 |                |  |



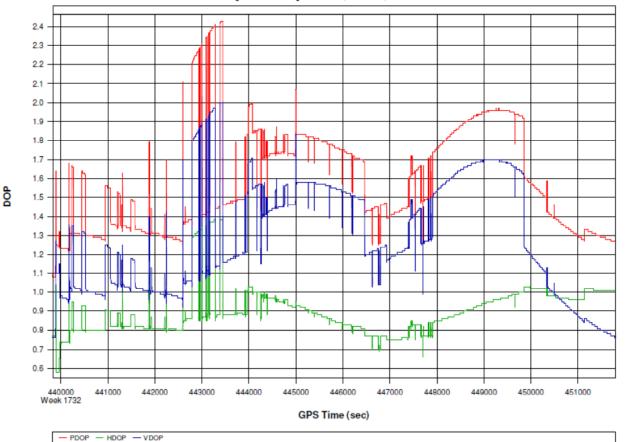

| DO_\$23_1376_00                   | DO_S23_0596_00                   | DO_S23_1521_00                    | DO_S23_1432_00                   |
|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|
| DO_S23_1376_00                    | DO_S23_0595_00                   | DO_523_1521_00                    | DO_523_1431_00                   |
| DO_S23_1396_00                    | DO_S23_0595_00                   | DO_S23_1536_00                    | DO_S23_1431_00                   |
| DO_S23_2306_00                    | DO_S23_0593_00                   | DO_S23_1535_00                    | DO_S23_1339_00                   |
| DO_523_2300_00<br>DO_523_2316_00  | DO_S23_0593_00                   | DO_S23_1535_00<br>DO_S23_1534_00  | DO_S23_1335_00                   |
| DO_523_2510_00<br>DO_\$13_9685_00 | DO_523_0592_00                   | DO_S23_1534_00                    | DO_S23_1338_00<br>DO_S23_1337_00 |
| DO_\$13_9696_00                   | DO_523_0551_00<br>DO_523_1507_00 | DO_523_1532_00<br>DO_\$23_1531_00 | DO_S23_1337_00<br>DO_S23_1443_00 |
| DO_\$13_9695_00                   | DO_523_1506_00                   | DO_S23_1531_00<br>DO_S23_1541_00  | DO_S23_1443_00<br>DO_S23_1442_00 |
| DO_S13_9693_00                    | DO_523_1505_00                   | DO_523_1541_00<br>DO_S23_1551_00  | DO_S23_1442_00<br>DO_S23_1441_00 |
| DO_\$13_9693_00                   | DO_523_1505_00<br>DO_523_1504_00 | DO_S23_1551_00<br>DO_S23_1561_00  | DO_S23_1441_00<br>DO_S23_1440_00 |
| DO_S23_0606_00                    | DO_523_1504_00<br>DO_523_1503_00 | DO_S23_1501_00<br>DO_S23_2501_00  | DO_S23_1440_00<br>DO_S23_1349_00 |
| DO_S23_0605_00                    | DO_523_1503_00<br>DO_523_1502_00 | DO_S23_2501_00<br>DO_S23_1520_00  | DO_523_1349_00<br>DO_523_1348_00 |
| DO_S23_0005_00                    | DO_523_1502_00<br>DO_523_1517_00 | DO_523_1320_00<br>DO_523_1429_00  | DO_523_1348_00<br>DO_523_1347_00 |
| DO_S23_0615_00                    | DO_523_1517_00<br>DO_523_1516_00 | DO_523_1429_00<br>DO_523_1428_00  | DO_523_1347_00<br>DO_523_1453_00 |
| DO_S23_0615_00                    | DO_523_1516_00<br>DO_523_1515_00 | DO_523_1428_00<br>DO_523_1427_00  | DO_523_1453_00<br>DO_523_1452_00 |
|                                   |                                  | DO_523_1427_00<br>DO_523_1426_00  |                                  |
| DO_S23_0625_00                    | DO_S23_1514_00                   | DO_523_1426_00<br>DO_523_1425_00  | DO_S23_1451_00                   |
| DO_S23_0635_00                    | DO_S23_1513_00                   |                                   | DO_S23_1450_00                   |
| DO_S23_0604_00                    | DO_S23_1512_00                   | DO_S23_1424_00                    | DO_S23_1359_00                   |
| DO_S23_0603_00                    | DO_S23_1511_00                   | DO_S23_1530_00                    | DO_S23_1358_00                   |
| DO_S23_0602_00                    | DO_S23_0477_00                   | DO_S23_1439_00                    | DO_S23_1357_00                   |
| DO_S23_0614_00                    | DO_S23_0476_00                   | DO_S23_1438_00                    | DO_S23_1463_00                   |
| DO_S23_0613_00                    | DO_S23_0475_00                   | DO_S23_1437_00                    | DO_S23_1462_00                   |
| DO_S23_0612_00                    | DO_S23_0474_00                   | DO_S23_1436_00                    | DO_S23_1461_00                   |
| DO_S23_0611_00                    | DO_S23_0489_00                   | DO_S23_1435_00                    | DO_S23_1460_00                   |
| DO_S23_0624_00                    | DO_S23_0488_00                   | DO_S23_1434_00                    | DO_S23_1369_00                   |
| DO_S23_0623_00                    | DO_S23_0487_00                   | DO_S23_1540_00                    | DO_S23_1368_00                   |
| DO_S23_0622_00                    | DO_S23_0486_00                   | DO_S23_1449_00                    | DO_S23_1367_00                   |
| DO_S23_0621_00                    | DO_S23_0485_00                   | DO_S23_1448_00                    | DO_S23_1473_00                   |
| DO_S23_0528_00                    | DO_S23_0484_00                   | DO_S23_1447_00                    | DO_S23_1472_00                   |
| DO_S23_0634_00                    | DO_S23_0590_00                   | DO_S23_1446_00                    | DO_S23_1471_00                   |
| DO_S23_0633_00                    | DO_S23_0499_00                   | DO_S23_1445_00                    | DO_S23_1470_00                   |
| DO_S23_0632_00                    | DO_S23_0498_00                   | DO_S23_1444_00                    | DO_S23_1379_00                   |
| DO_S23_0631_00                    | DO_S23_0497_00                   | DO_S23_1550_00                    | DO_S23_1378_00                   |
| DO_S23_0630_00                    | DO_S23_0496_00                   | DO_S23_1459_00                    | DO_S23_1377_00                   |
| DO_S23_0539_00                    | DO_S23_0495_00                   | DO_S23_1458_00                    | DO_S23_1483_00                   |
| DO_S23_0538_00                    | DO_S23_0494_00                   | DO_S23_1457_00                    | DO_S23_1482_00                   |
| DO_S23_0643_00                    | DO_S23_1500_00                   | DO_S23_1456_00                    | DO_S23_1481_00                   |
| DO_\$23_0642_00                   | DO_S23_1409_00                   | DO_\$23_1455_00                   | DO_S23_1480_00                   |
| DO_S23_0641_00                    | DO_S23_1408_00                   | DO_S23_1454_00                    | DO_S23_1389_00                   |
| DO_S23_0640_00                    | DO_S23_1407_00                   | DO_S23_1560_00                    | DO_S23_1388_00                   |
| DO_S23_0549_00                    | DO_S23_1406_00                   | DO_S23_1469_00                    | DO_S23_2326_00                   |
| DO_S23_0548_00                    | DO_S23_1405_00                   | DO_S23_1468_00                    | DO_S23_2336_00                   |




| DO_S23_0652_00  | DO_S23_1404_00 | DO_S23_1467_00 | DO_S23_2442_00 |
|-----------------|----------------|----------------|----------------|
| DO_S23_0651_00  | DO_S23_1510_00 | DO_S23_1466_00 | DO_S23_2441_00 |
| DO_S23_0650_00  | DO_S23_1419_00 | DO_S23_1465_00 | DO_S23_2440_00 |
| DO_S23_0559_00  | DO_S23_1418_00 | DO_S23_1464_00 | DO_S23_2349_00 |
| DO_S23_0558_00  | DO_S23_1417_00 | DO_S23_1570_00 | DO_S23_2348_00 |
| DO_S23_0661_00  | DO_S23_1416_00 | DO_S23_1479_00 | DO_S23_2347_00 |
| DO_S23_0660_00  | DO_S23_1415_00 | DO_S23_1478_00 | DO_S23_2359_00 |
| DO_S23_0569_00  | DO_S23_1414_00 | DO_S23_1477_00 | DO_S23_2358_00 |
| DO_S23_0568_00  | DO_S23_0473_00 | DO_S23_1476_00 | DO_S23_2357_00 |
| DO_S23_0671_00  | DO_S23_0472_00 | DO_S23_1475_00 | DO_S23_2346_00 |
| DO_S23_0670_00  | DO_S23_0471_00 | DO_S23_1474_00 | DO_S23_2356_00 |
| DO_S23_0579_00  | DO_S23_0470_00 | DO_S23_1580_00 | DO_S23_1325_00 |
| DO_\$23_0578_00 | DO_S23_0379_00 | DO_S23_1489_00 | DO_S23_1335_00 |
| DO_S23_0681_00  | DO_S23_0378_00 | DO_S23_1488_00 | DO_S23_1345_00 |


# Appendix C: GPS Processing Reports for Each Mission

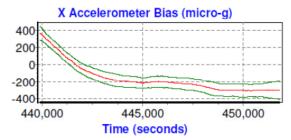


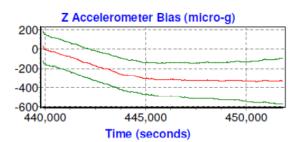


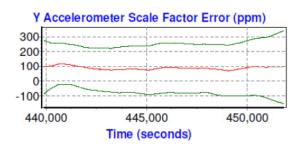


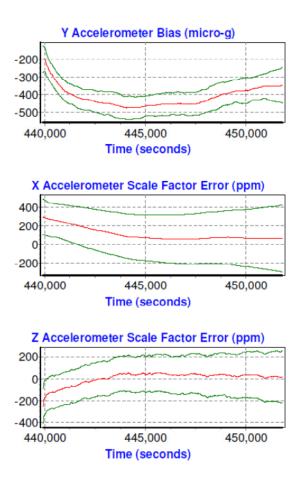

80a [Combined] - Number of Satellites Bar Plot



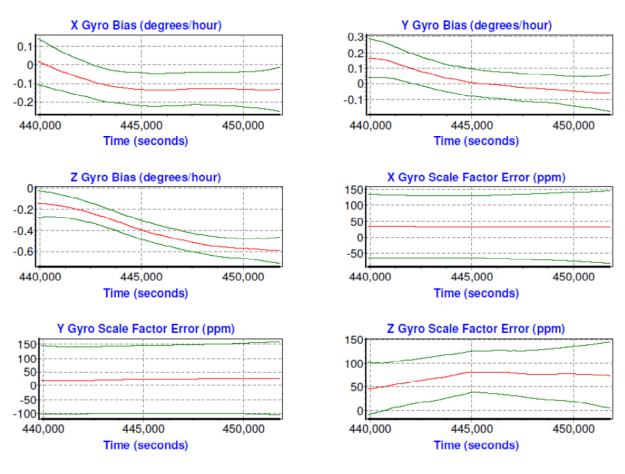

80a [Combined] - Forward/Reverse or Combined RMS Plot

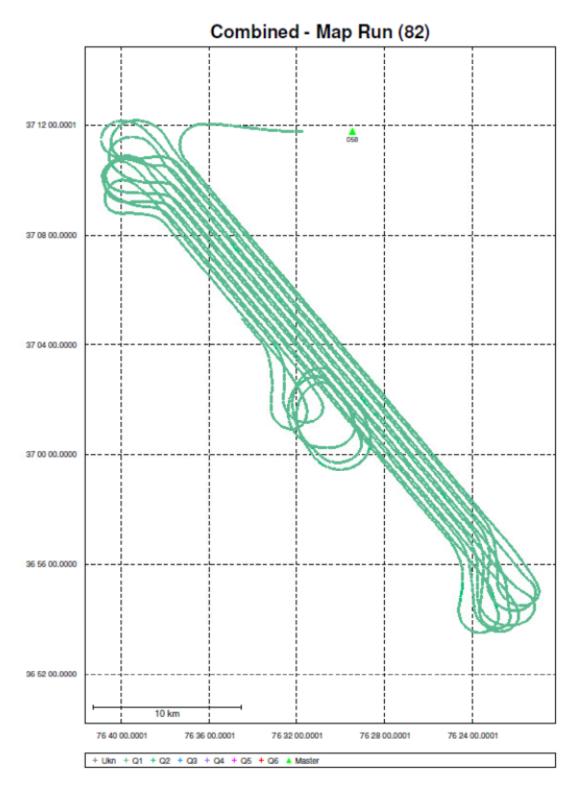


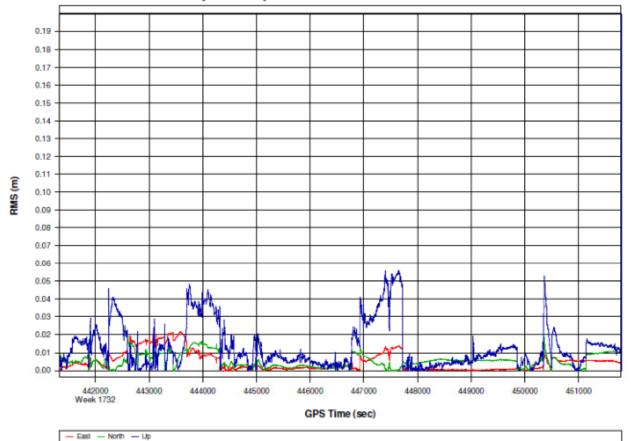


80a [Combined] - PDOP, HDOP, VDOP Plots


**Processing Summary Information** Program: POSGPS Version: 4.30.3108 Project: D:\Projects\Dewberry\Va\Norfolk\_2013\13080a\pos\GPS\80a.gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 135984 No processed position: 123996 Missing Fwd or Rev: 4 With bad C/A code: o With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0300 (m) C/A Code: 1.04 (m) L1 Doppler: 0.020 (m/s) Fwd/Rev Separation RMS Values: East: 0.042 (m) North: 0.033 (m) Height: 0.158 (m) Fwd/Rev Sep. RMS for 25%-75% weighting (11827 occurances): East: 0.010 (m)

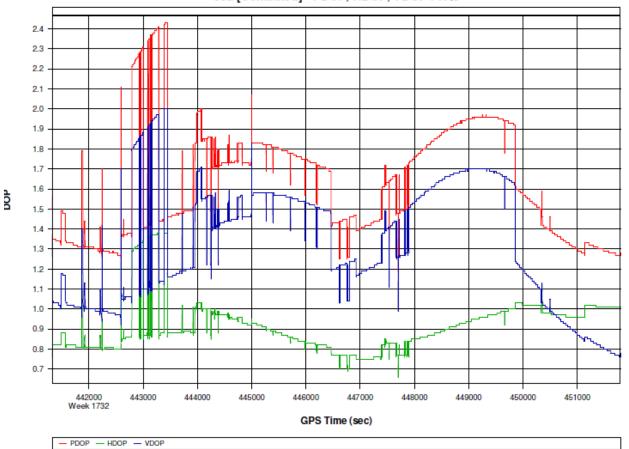
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 94 of 232 North: 0.009 (m) Height: 0.031 (m) **Quality Number Percentages:** Q 1: 99.0 % Q 2: 1.0 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % **Position Standard Deviation Percentages:** 0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD\_DOP over 10.00: DOP over Tol: 0.0 % **Baseline Distances:** Maximum: 35.259 (km) Minimum: 0.925 (km) Average: 17.735 (km) First Epoch: 9.509 (km) Last Epoch: 3.478 (km)



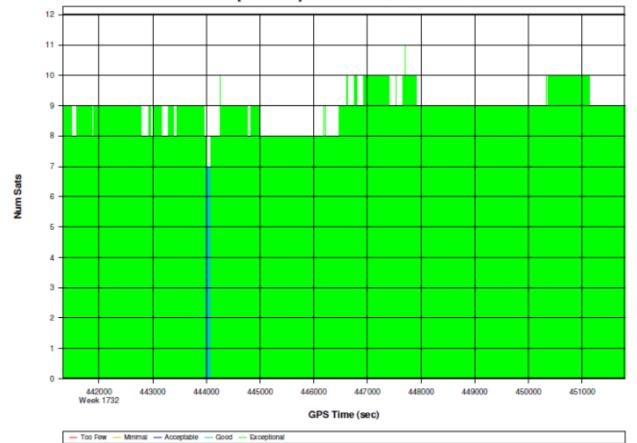







🛯 Dewberry

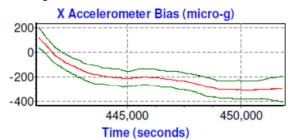


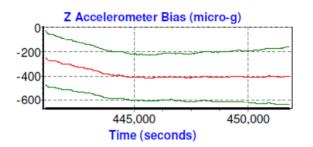


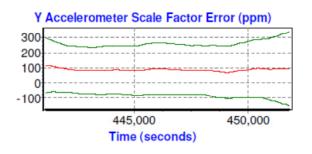


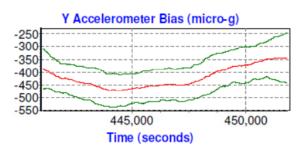

80a [Combined] - Forward/Reverse or Combined RMS Plot

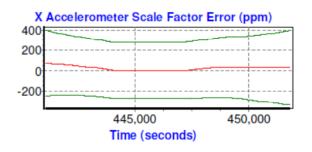


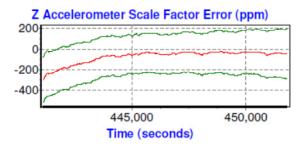

#### 80a [Combined] - PDOP, HDOP, VDOP Plots



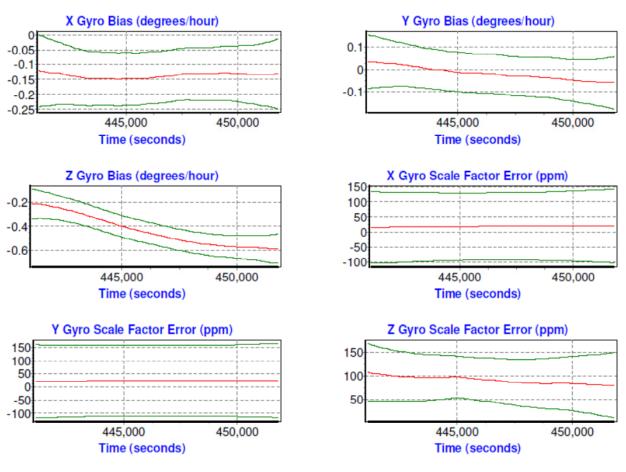


80a [Combined] - Number of Satellites Bar Plot


**Processing Summary Information Program: POSGPS** Version: 4.30.3108 Project: D:\Projects\Dewberry\Va\Norfolk\_2013\13080a\pos\GPS\80a.gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 135984 No processed position: 125507 Missing Fwd or Rev: 4 With bad C/A code: o With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0298 (m) C/A Code: 1.02 (m) L1 Doppler: 0.019 (m/s) Fwd/Rev Separation RMS Values: East: 0.013 (m) North: 0.011 (m) Height: 0.026 (m) Fwd/Rev Sep. RMS for 25%-75% weighting (10471 occurances): East: 0.010 (m) North: 0.009 (m)

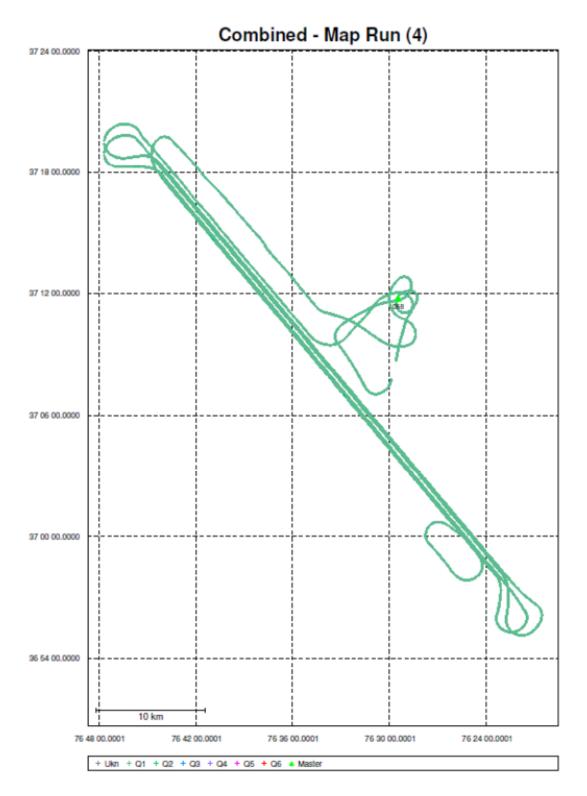

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 100 of 232 Height: 0.026 (m) **Quality Number Percentages:** Q 1: 99.1 % Q 2: 0.9 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % **Position Standard Deviation Percentages:** 0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD\_DOP over 10.00: DOP over Tol: 0.0 % **Baseline Distances:** Maximum: 35.259 (km) Minimum: 3.478 (km) Average: 18.685 (km) First Epoch: 14.725 (km) Last Epoch: 3.478 (km)



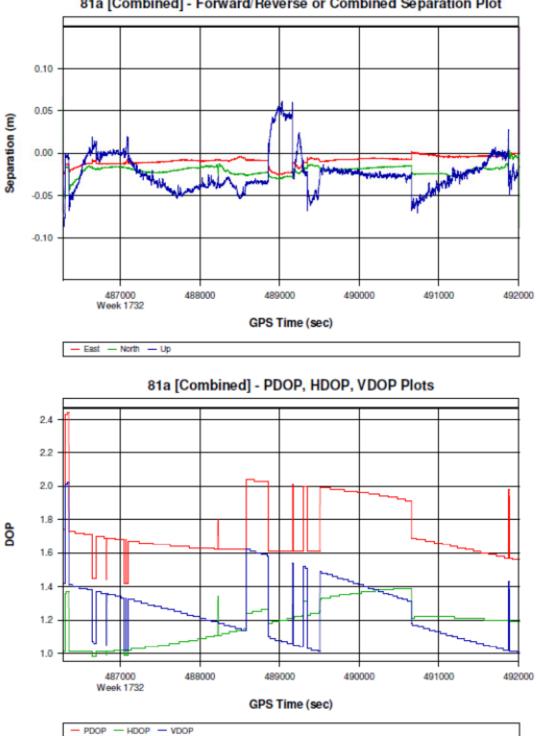




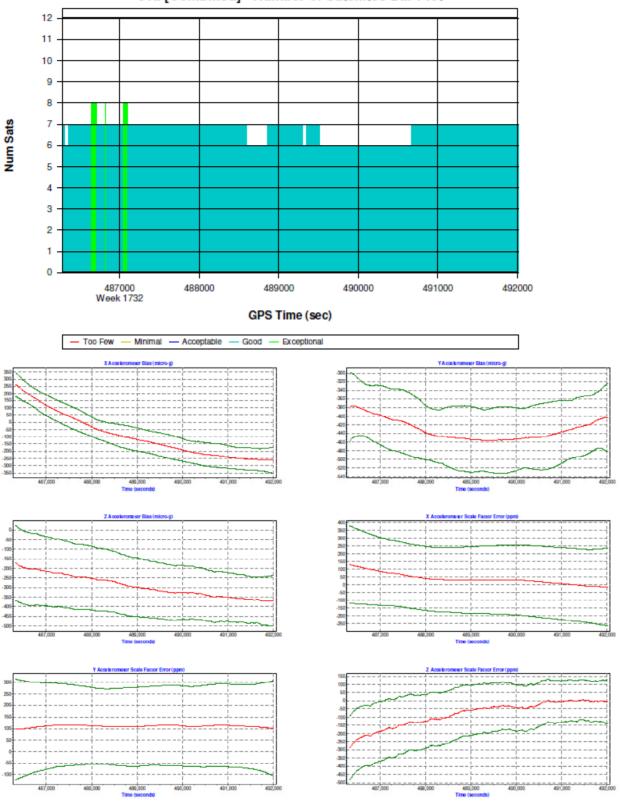





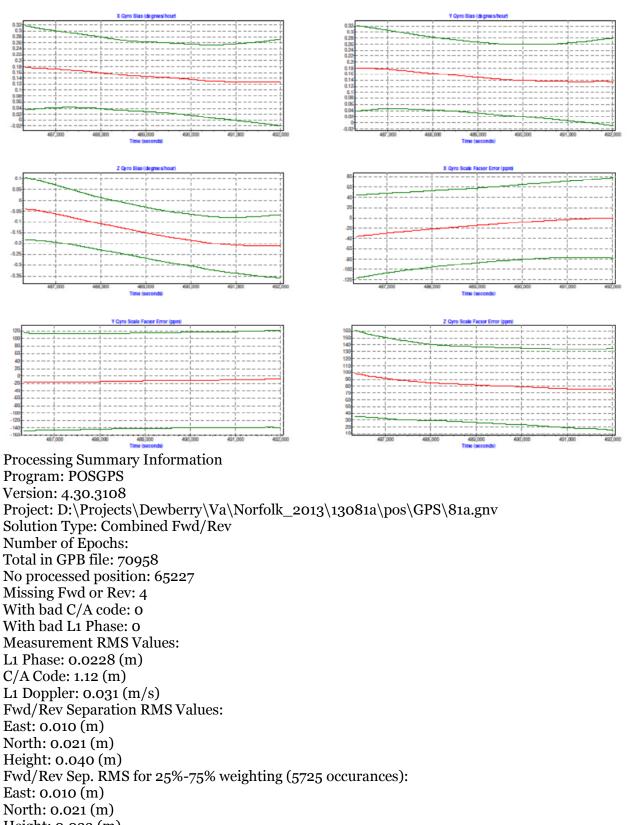



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 102 of 232




Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 103 of 232

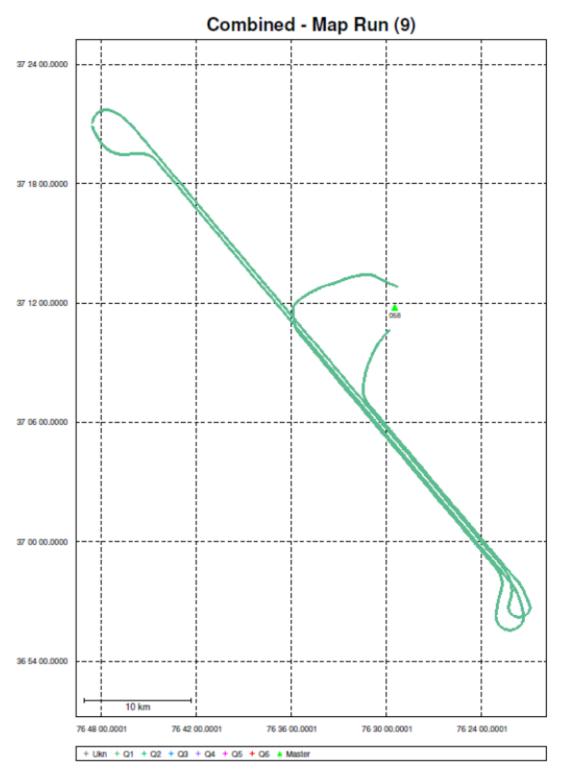



81a [Combined] - Forward/Reverse or Combined Separation Plot

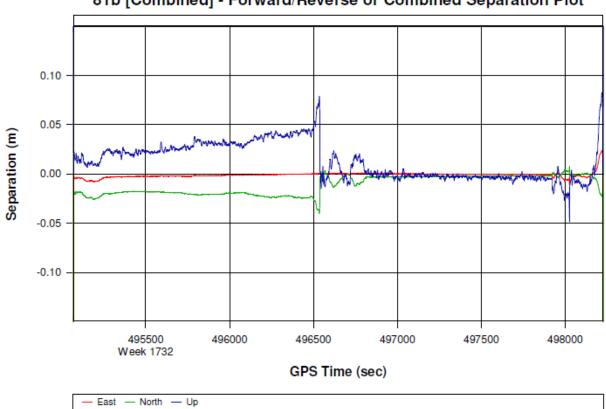
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 104 of 232



81a [Combined] - Number of Satellites Bar Plot

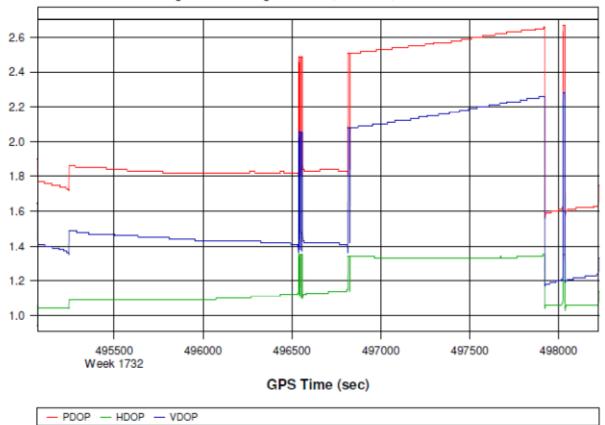

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 105 of 232




Height: 0.033 (m) Quality Number Percentages:

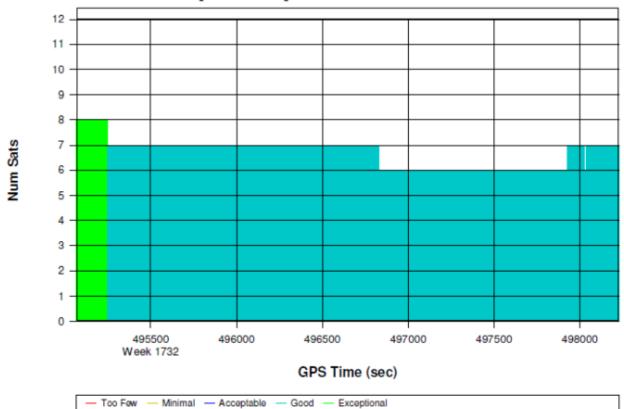
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 106 of 232 Q 1: 99.4 % Q 2: 0.6 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % Position Standard Deviation Percentages: 0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD\_DOP over 10.00: DOP over Tol: 0.0 % **Baseline Distances:** Maximum: 32.953 (km) Minimum: 0.656 (km) Average: 16.175 (km) First Epoch: 7.473 (km) Last Epoch: 5.691 (km)

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 107 of 232



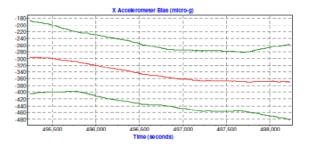

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 108 of 232

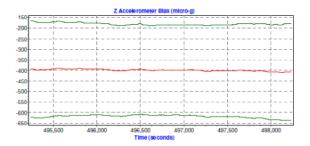


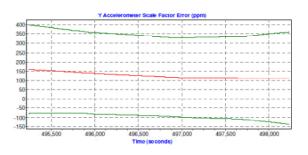

81b [Combined] - Forward/Reverse or Combined Separation Plot

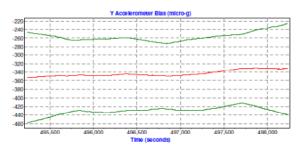
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 109 of 232

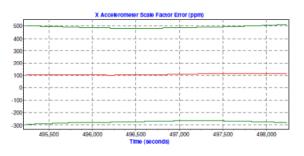


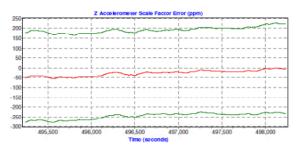

## 81b [Combined] - PDOP, HDOP, VDOP Plots


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 110 of 232

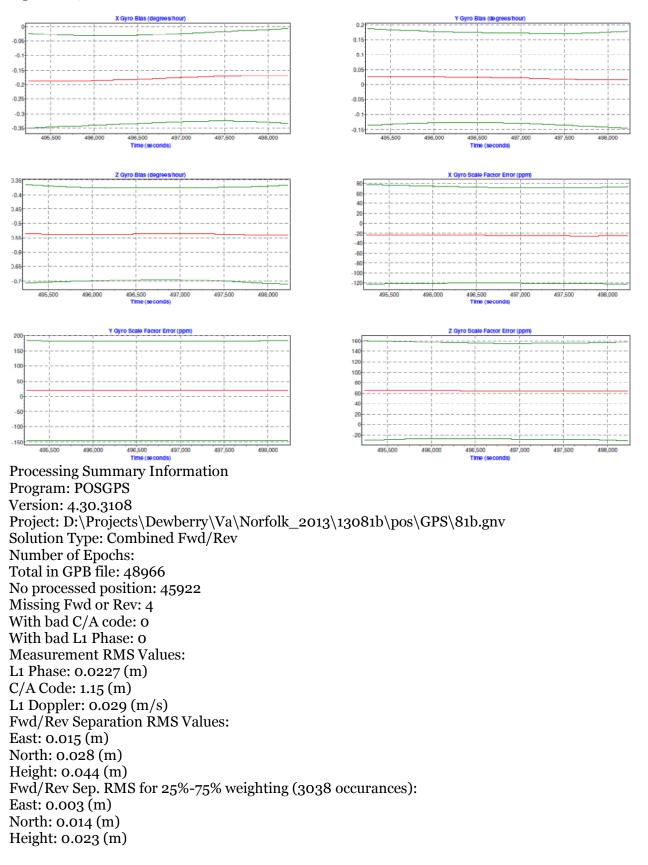




## 81b [Combined] - Number of Satellites Bar Plot


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 111 of 232



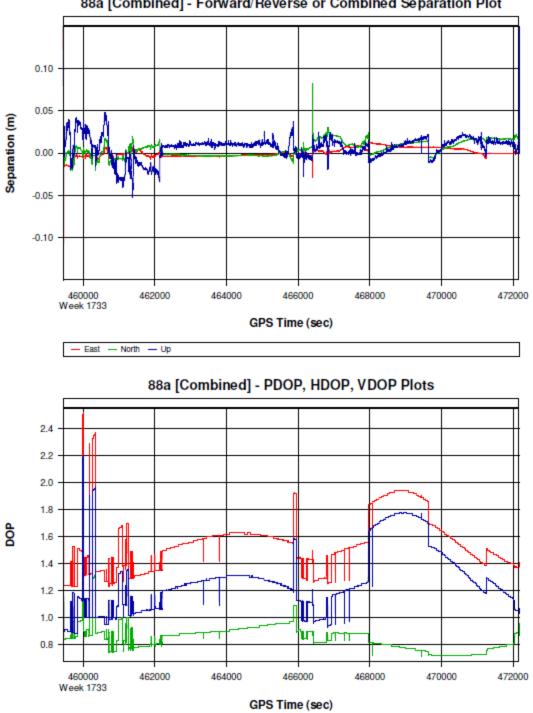






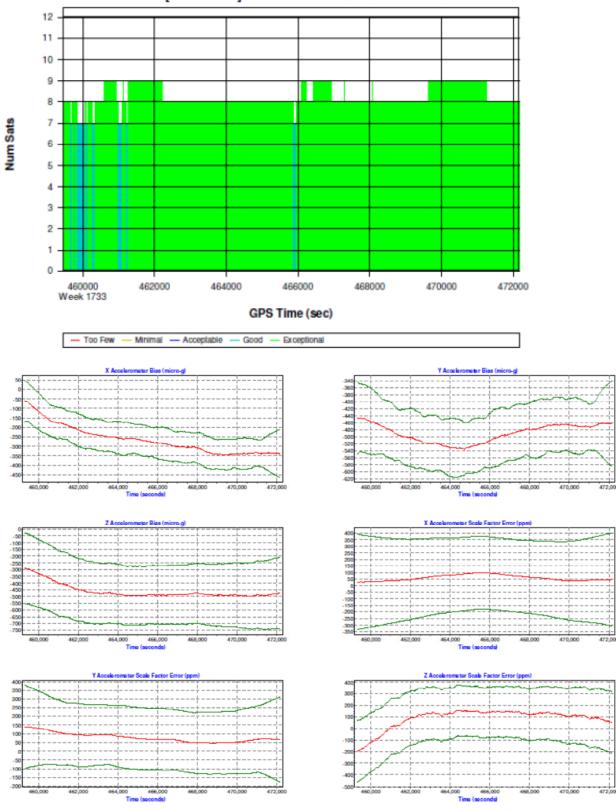





Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 112 of 232



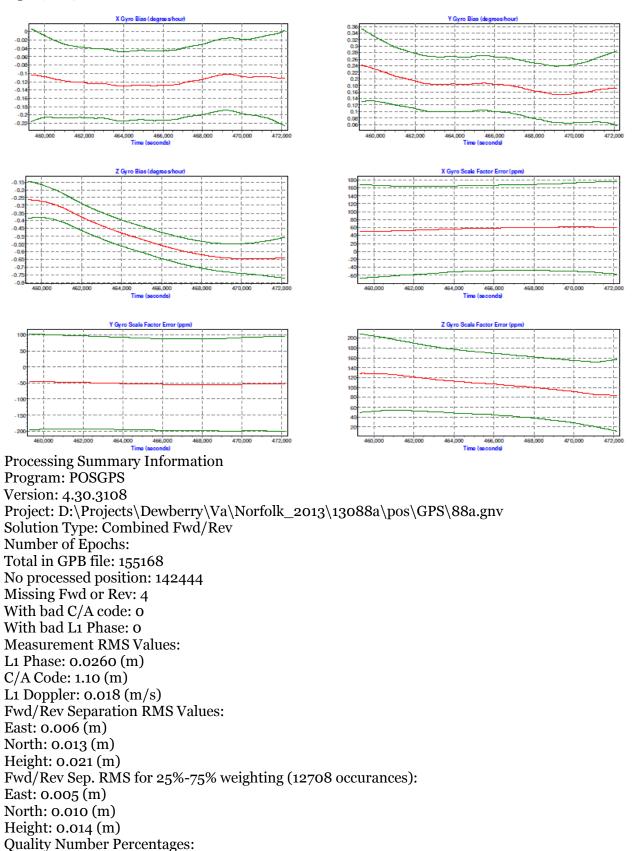
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 113 of 232 **Quality Number Percentages:** Q 1: 99.9 % Q 2: 0.1 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % **Position Standard Deviation Percentages:** 0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD\_DOP over 10.00: DOP over Tol: 0.0 % **Baseline Distances:** Maximum: 33.176 (km) Minimum: 2.361 (km) Average: 17.860 (km) First Epoch: 6.556 (km) Last Epoch: 2.361 (km)






88a [Combined] - Forward/Reverse or Combined Separation Plot

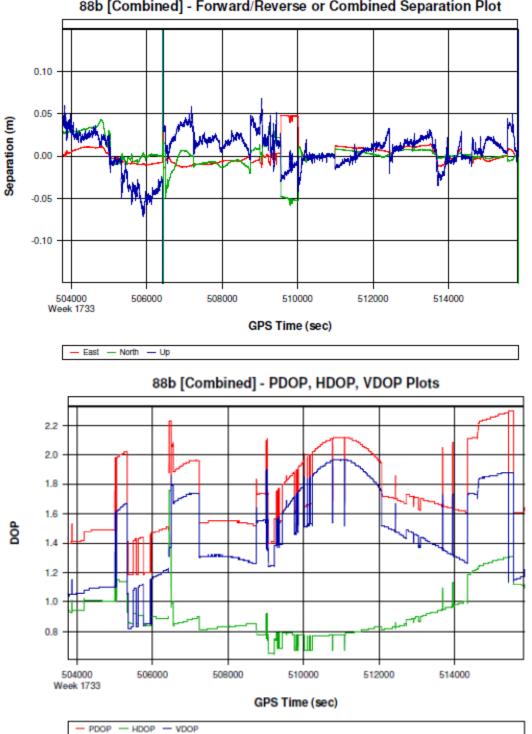
- PDOP - HDOP - VDOP


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 116 of 232



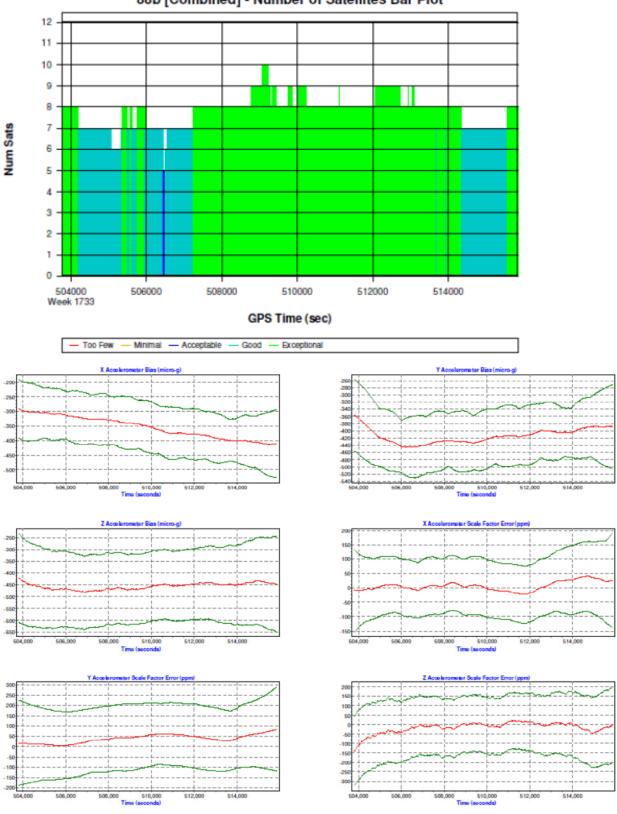
88a [Combined] - Number of Satellites Bar Plot




Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 117 of 232



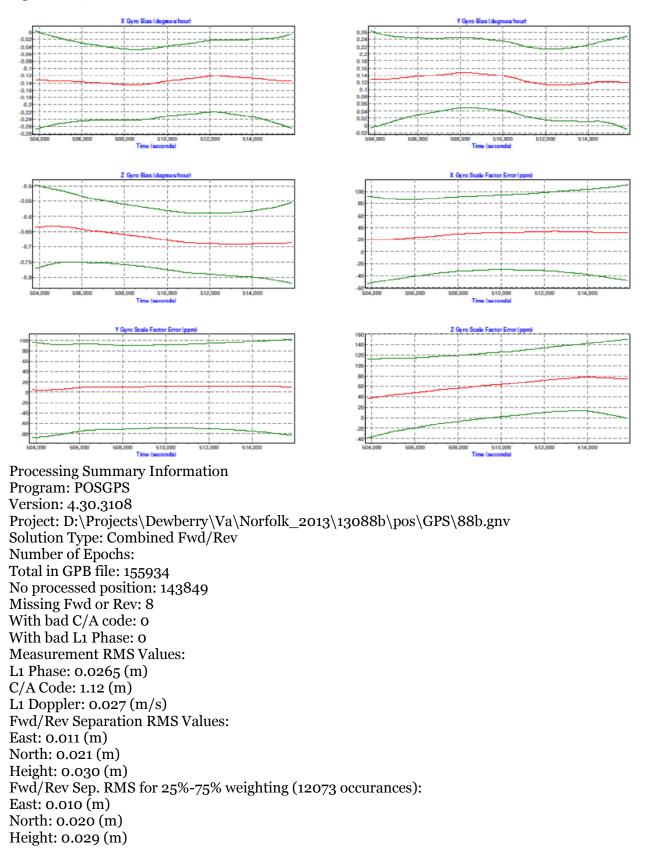
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 118 of 232 Q 1: 99.5 % Q 2: 0.5 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % Position Standard Deviation Percentages: 0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD\_DOP over 10.00: DOP over Tol: 0.0 % **Baseline Distances:** Maximum: 36.679 (km) Minimum: 3.087 (km) Average: 18.294 (km) First Epoch: 28.454 (km) Last Epoch: 29.355 (km)




Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 120 of 232

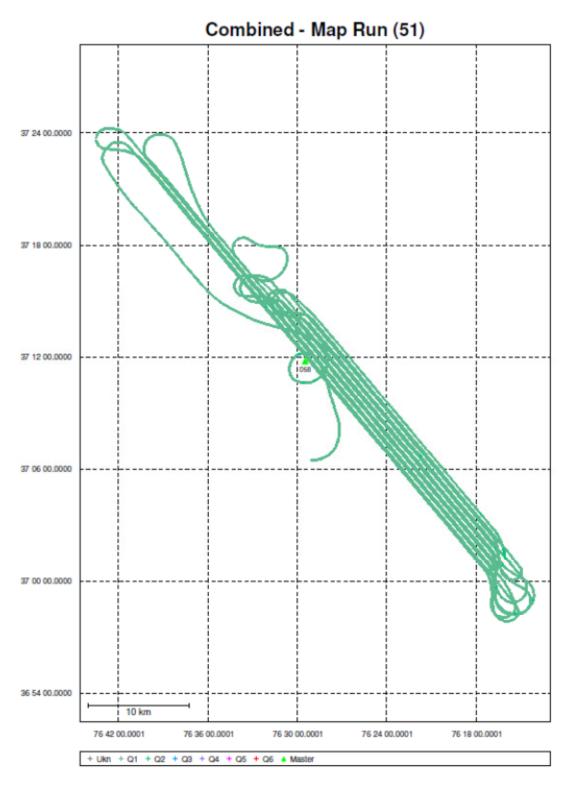


88b [Combined] - Forward/Reverse or Combined Separation Plot

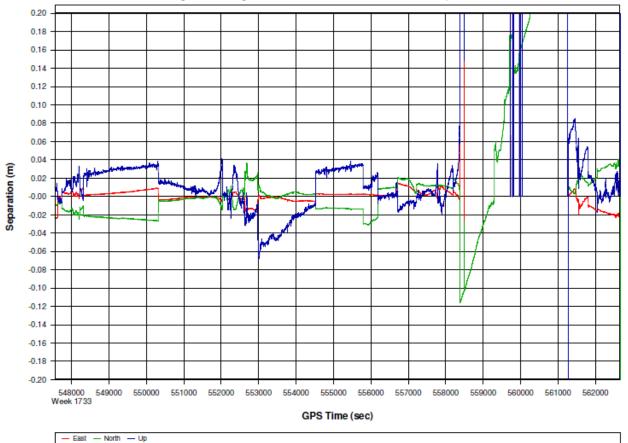

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 121 of 232



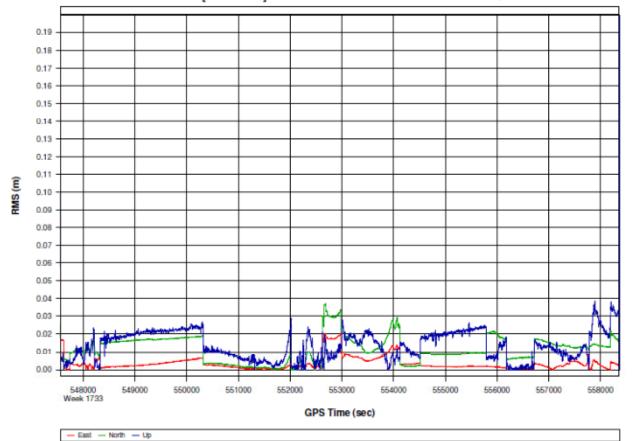
88b [Combined] - Number of Satellites Bar Plot



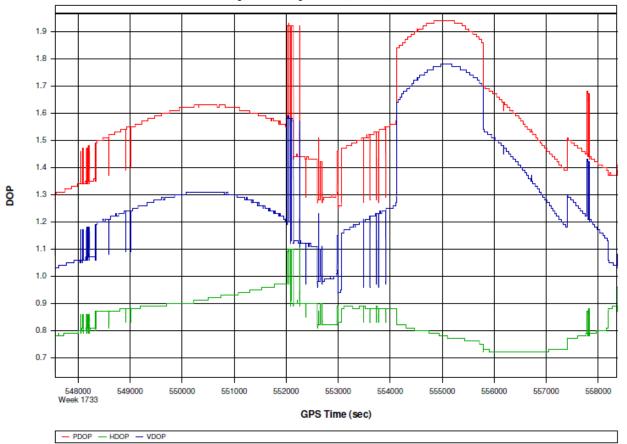

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 122 of 232



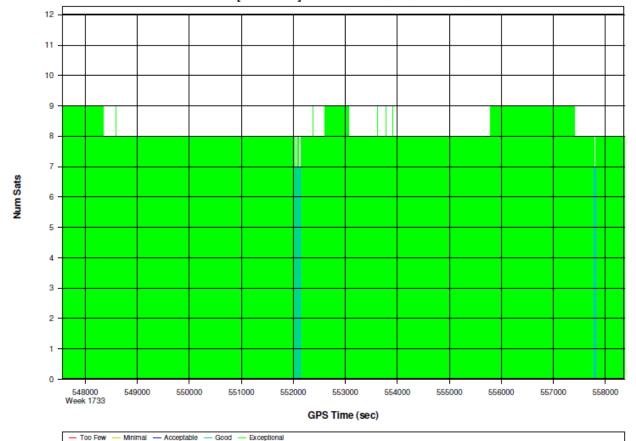

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 123 of 232 **Quality Number Percentages:** Q 1: 99.0 % Q 2: 1.0 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % **Position Standard Deviation Percentages:** 0.00 - 0.10 m: 88.9 % 0.10 - 0.30 m: 11.1 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD\_DOP over 10.00: DOP over Tol: 0.0 % **Baseline Distances:** Maximum: 37.012 (km) Minimum: 0.926 (km) Average: 17.514 (km) First Epoch: 29.014 (km) Last Epoch: 28.011 (km)


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 124 of 232




Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 125 of 232



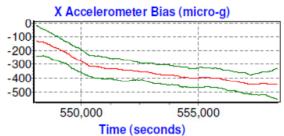

89a [Combined] - Forward/Reverse or Combined Separation Plot

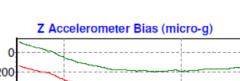


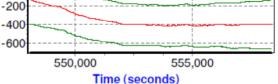
89a [Combined] - Forward/Reverse or Combined RMS Plot

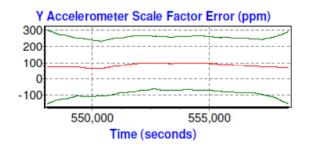


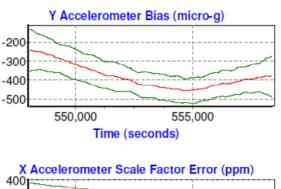
89a [Combined] - PDOP, HDOP, VDOP Plots

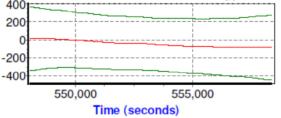


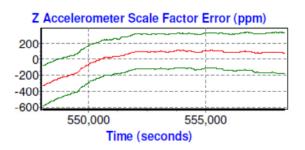


89a [Combined] - Number of Satellites Bar Plot


**Processing Summary Information Program: POSGPS** Version: 4.30.3108 Project: D:\Projects\Dewberry\Va\Norfolk\_2013\13089a\pos\GPS\89a.gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 162207 No processed position: 151395 Missing Fwd or Rev: 4 With bad C/A code: o With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0298 (m) C/A Code: 1.10 (m) L1 Doppler: 0.018 (m/s) Fwd/Rev Separation RMS Values: East: 0.008 (m) North: 0.019 (m) Height: 0.026 (m) Fwd/Rev Sep. RMS for 25%-75% weighting (10806 occurances): East: 0.007 (m) North: 0.019 (m)

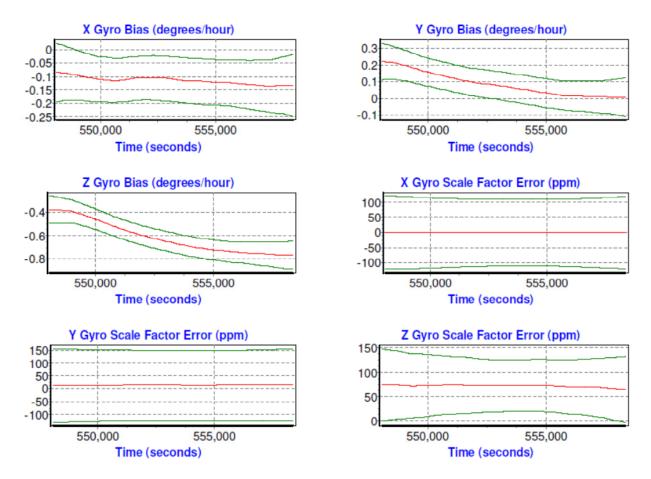


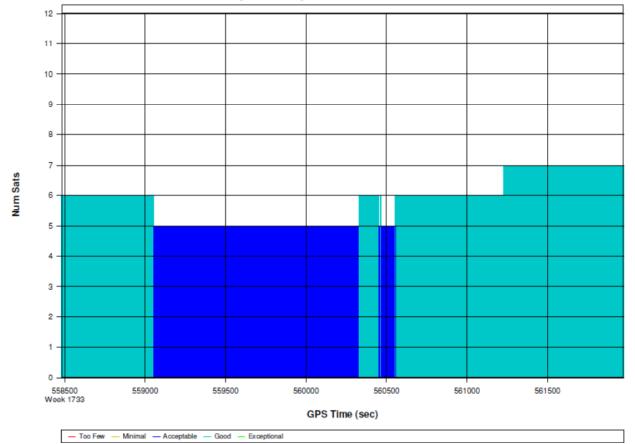


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 129 of 232 Height: 0.022 (m) **Quality Number Percentages:** Q 1: 99.1 % Q 2: 0.9 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % **Position Standard Deviation Percentages:** 0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD\_DOP over 10.00: DOP over Tol: 0.0 % **Baseline Distances:** Maximum: 33.051 (km) Minimum: 0.954 (km) Average: 14.602 (km) First Epoch: 9.799 (km) Last Epoch: 27.866 (km)





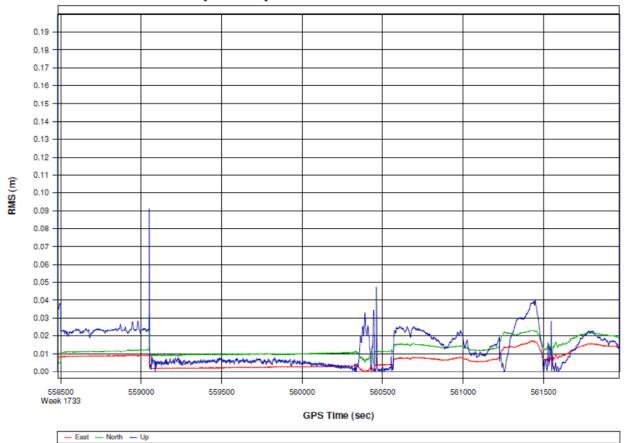







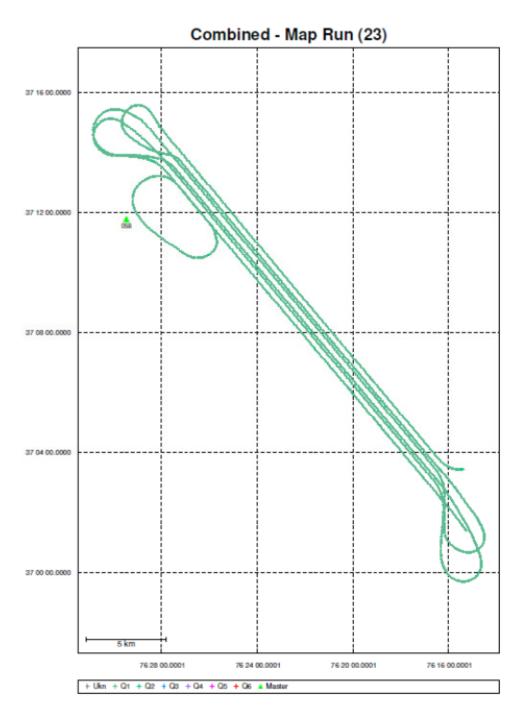




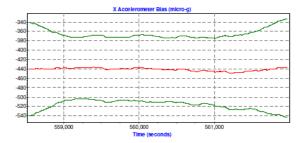




89a2 [Combined] - Number of Satellites Bar Plot

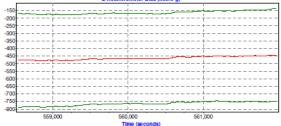
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 132 of 232

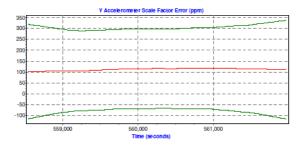



89a2 [Combined] - PDOP, HDOP, VDOP Plots

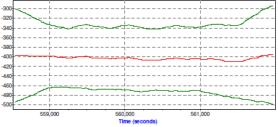



## 89a2 [Combined] - Forward/Reverse or Combined RMS Plot

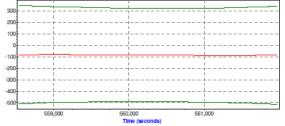

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 134 of 232

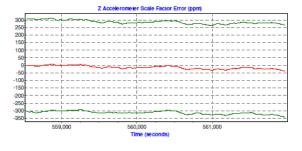



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 135 of 232

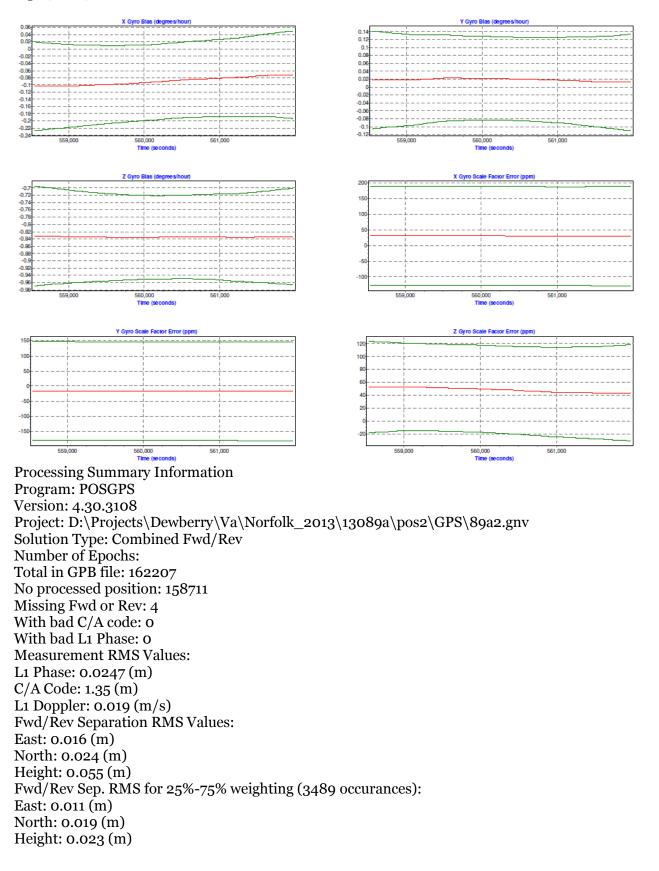



### Z Accelerometer Blas (micro-



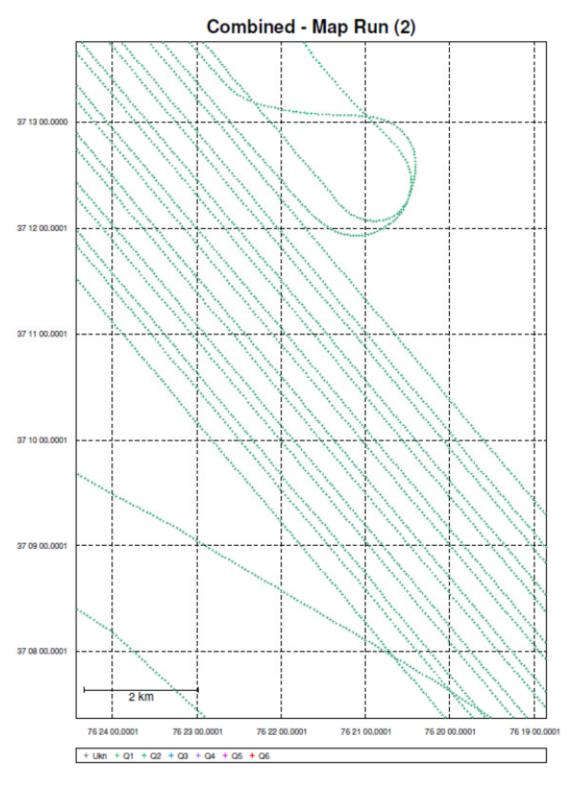




### Y Accelerometer Blas (micro-g

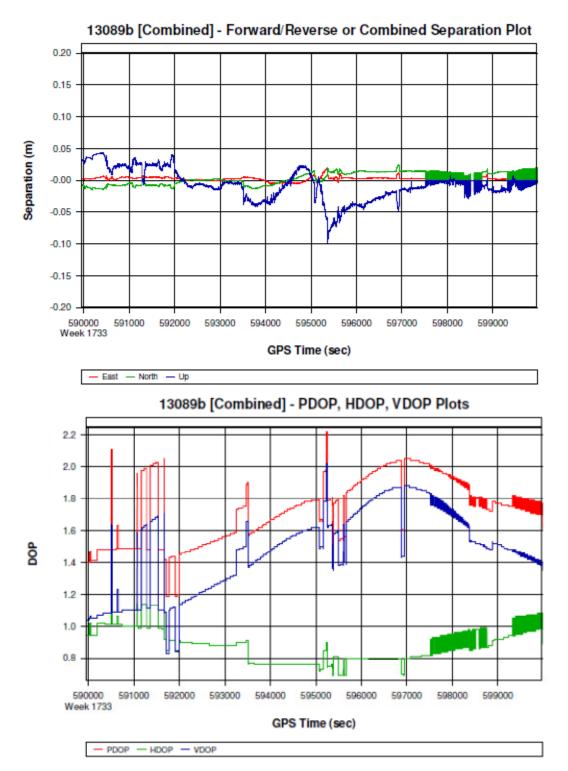



#### X Accelerometer Scale Factor Error (ppm)

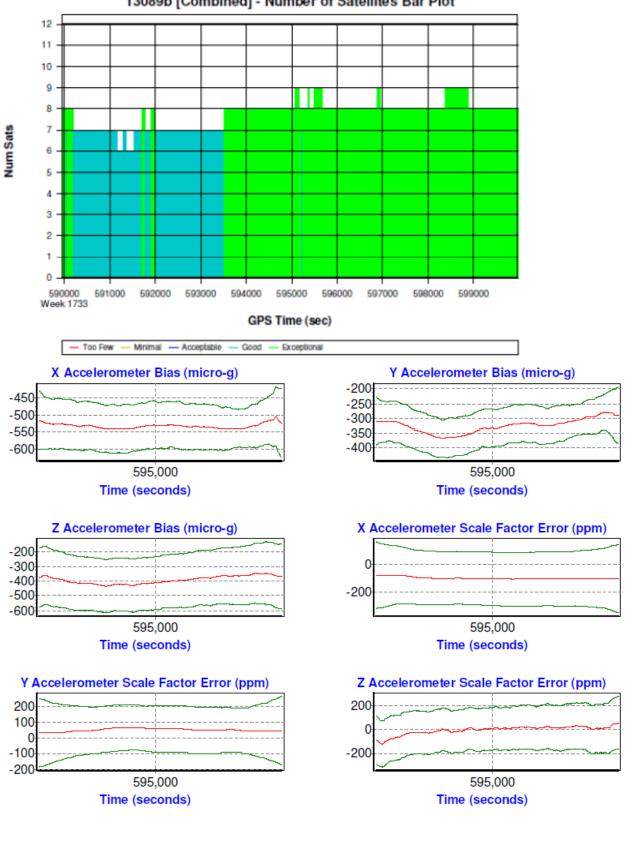





Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 136 of 232

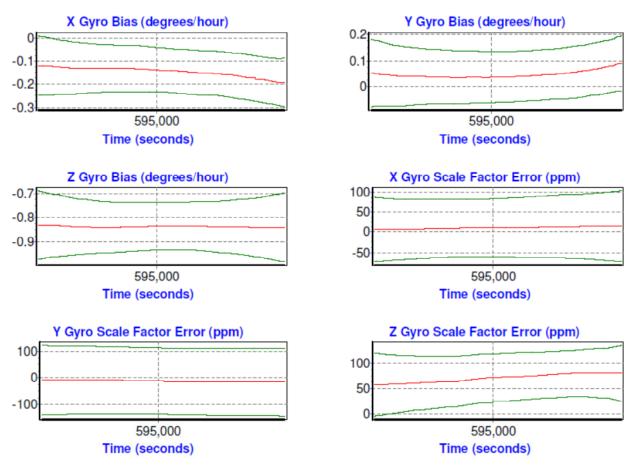



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 137 of 232 **Quality Number Percentages:** Q 1: 99.5 % Q 2: 0.5 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % **Position Standard Deviation Percentages:** 0.00 - 0.10 m: 60.5 % 0.10 - 0.30 m: 39.5 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD\_DOP over 10.00: DOP over Tol: 39.4 % **Baseline Distances:** Maximum: 30.893 (km) Minimum: 1.152 (km) Average: 13.398 (km) First Epoch: 28.490 (km) Last Epoch: 25.968 (km)

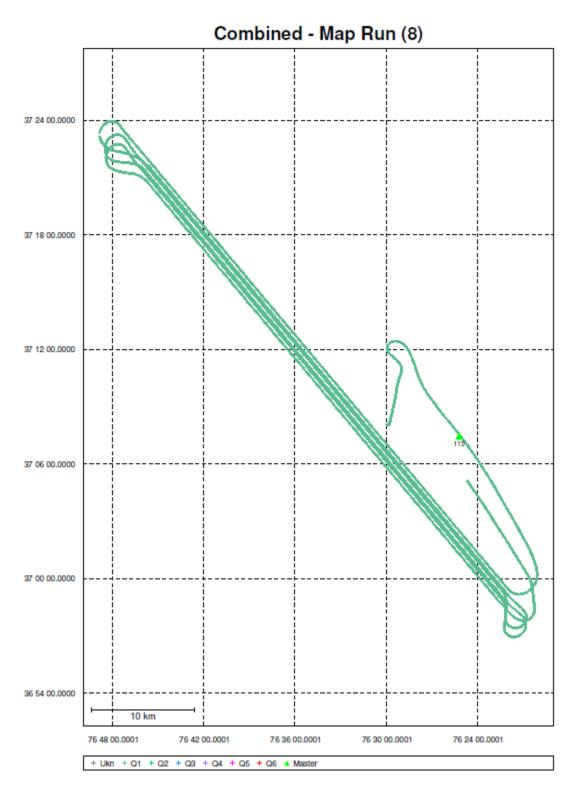

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 138 of 232



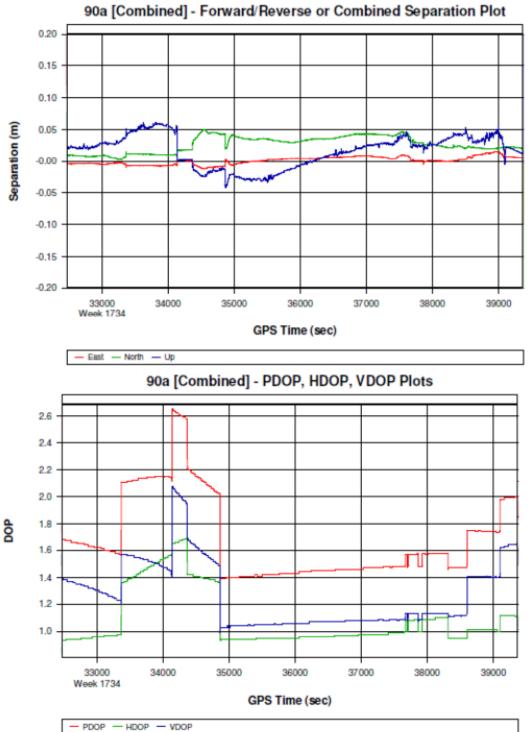
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 139 of 232

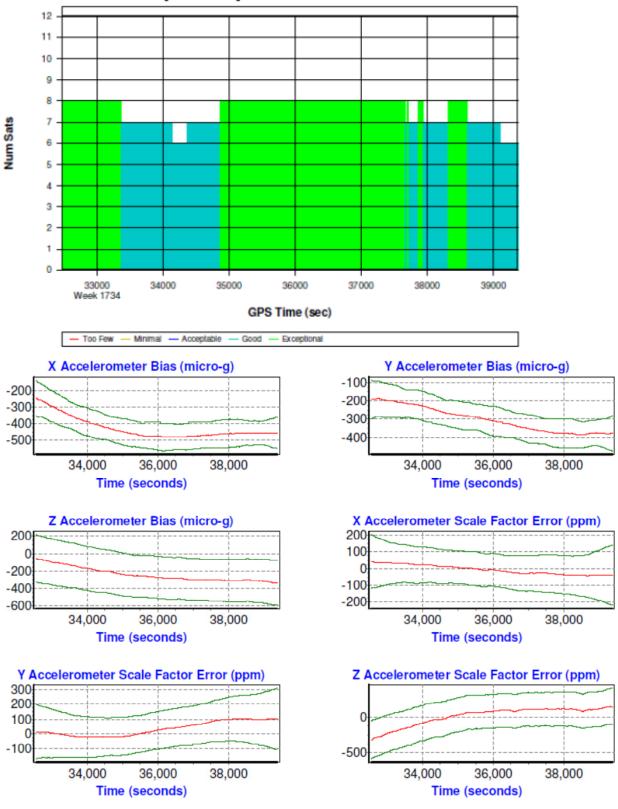



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 140 of 232



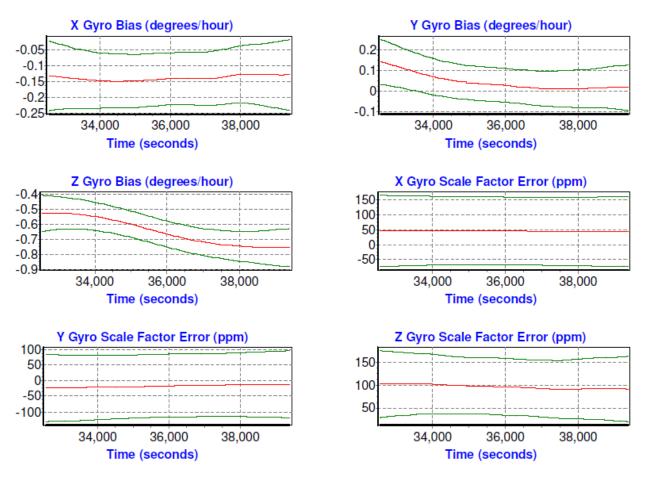

13089b [Combined] - Number of Satellites Bar Plot



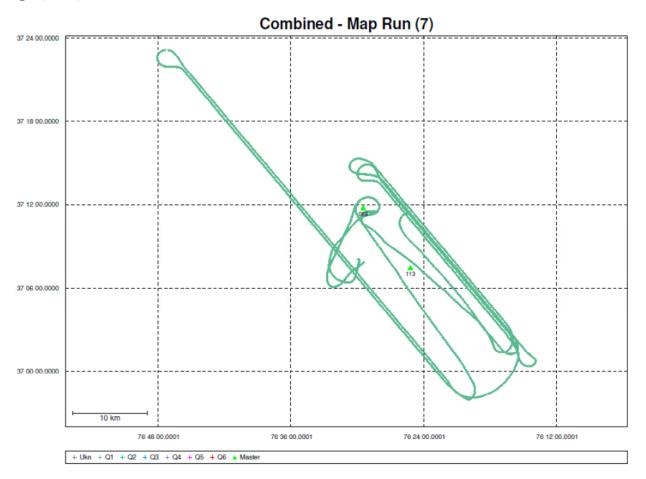




Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 142 of 232

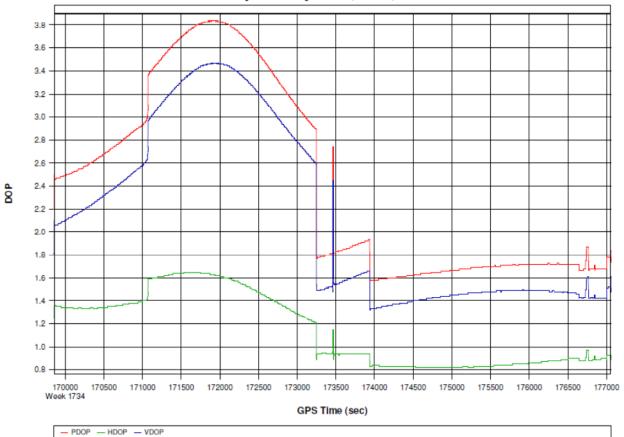



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 143 of 232

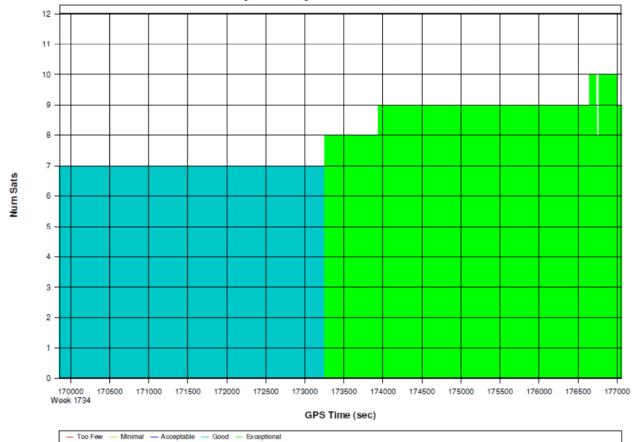




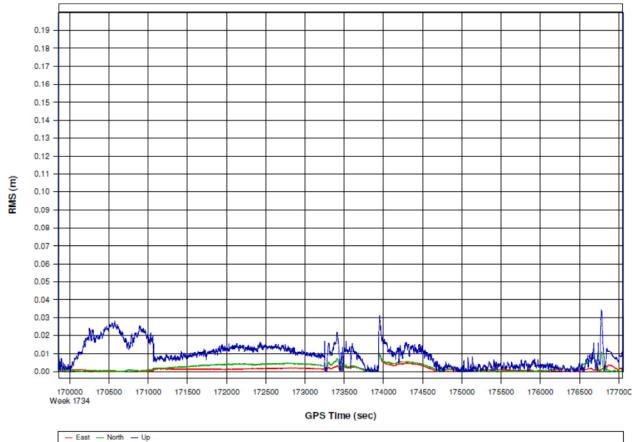

90a [Combined] - Number of Satellites Bar Plot







Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 146 of 232



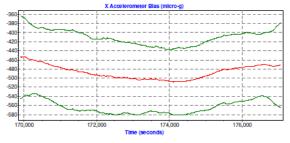

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 147 of 232

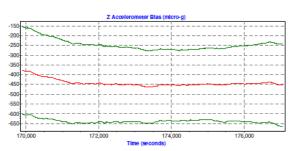


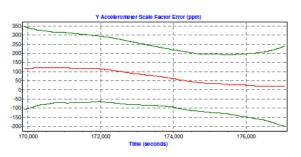
13091a [Combined] - PDOP, HDOP, VDOP Plots

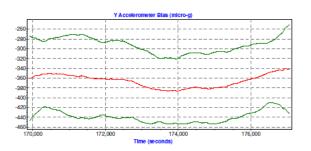


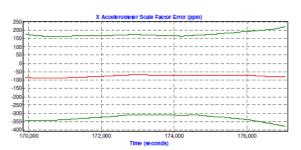
13091a [Combined] - Number of Satellites Bar Plot

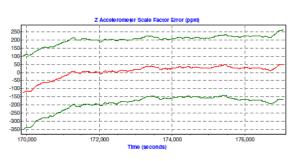




#### 13091a [Combined] - Forward/Reverse or Combined RMS Plot


**Processing Summary Information Program: POSGPS** Version: 4.30.3108 Project: C:\Projects\VA\Norfolk\13091a\pos\GPS\13091a.gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 78684 No processed position: 71478 Missing Fwd or Rev: 4 With bad C/A code: o With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0192 (m) C/A Code: 0.97 (m) L1 Doppler: 0.020 (m/s) Fwd/Rev Separation RMS Values: East: 0.004 (m) North: 0.009 (m) Height: 0.017 (m)Fwd/Rev Sep. RMS for 25%-75% weighting (7200 occurances): East: 0.003 (m) North: 0.004 (m)

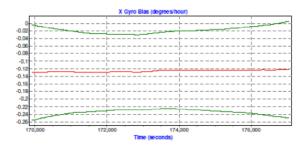

TO# G13PD00279 January 29, 2014 Page 150 of 232 Height: 0.016 (m) **Quality Number Percentages:** Q 1: 100.0 % Q 2: 0.0 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % **Position Standard Deviation Percentages:** 0.00 - 0.10 m: 77.8 % 0.10 - 0.30 m: 22.2 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD\_DOP over 10.00: DOP over Tol: 10.0 % **Baseline Distances:** Maximum: 34.181 (km) Minimum: 1.104 (km) Average: 14.521 (km) First Epoch: 7.294 (km) Last Epoch: 6.917 (km)

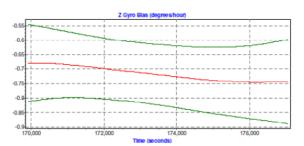

Norfolk, VA LiDAR

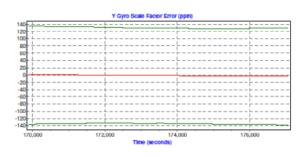


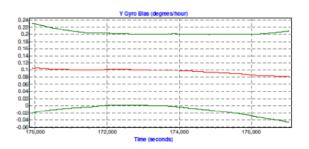


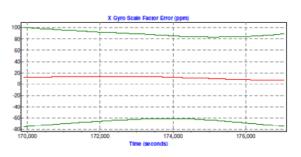


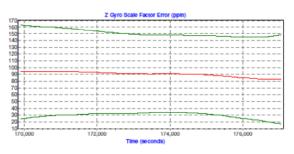



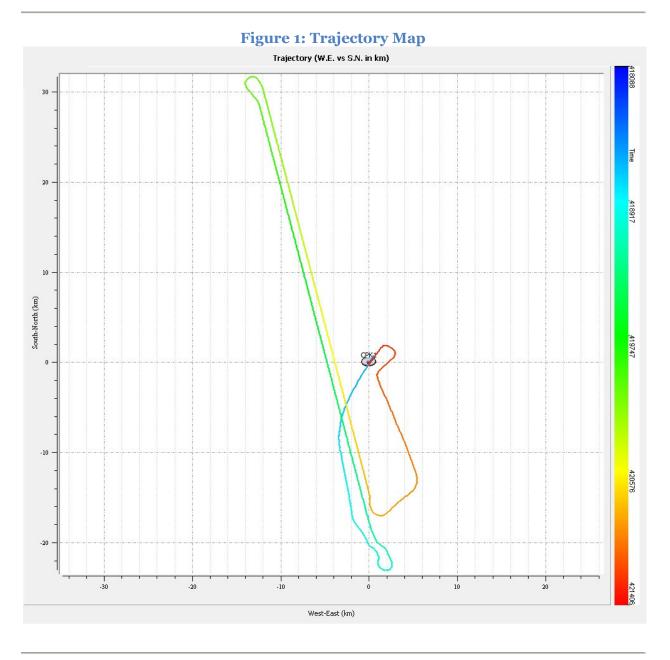





Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 151 of 232

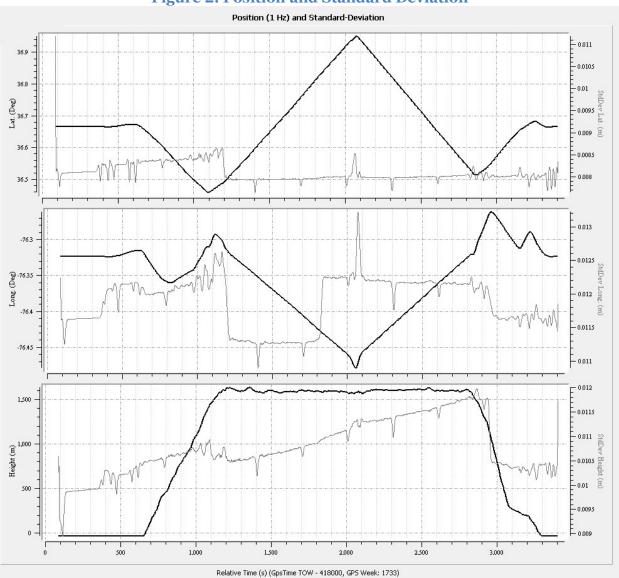






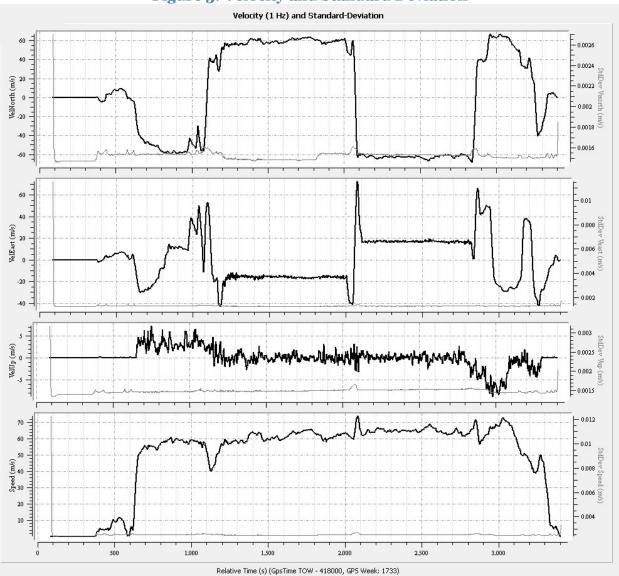





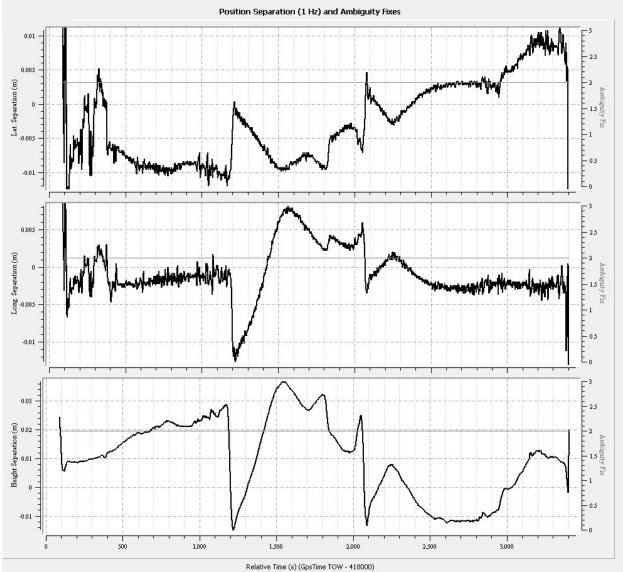




Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 152 of 232

## THE ATLANTIC GROUP Output Results for JD13087\_1

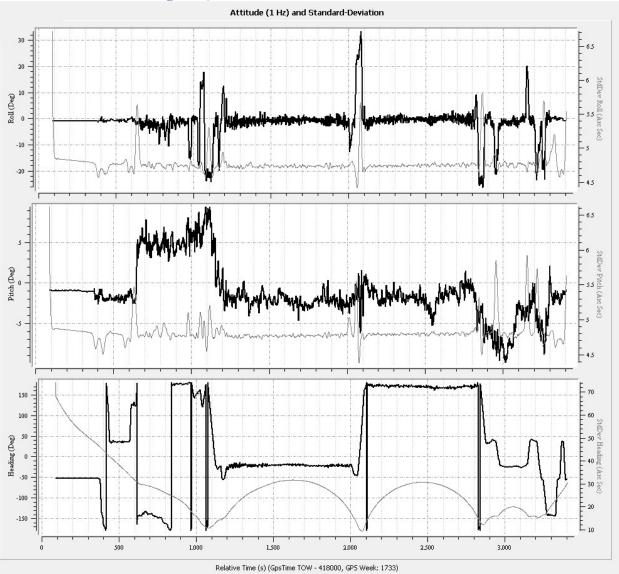



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 153 of 232



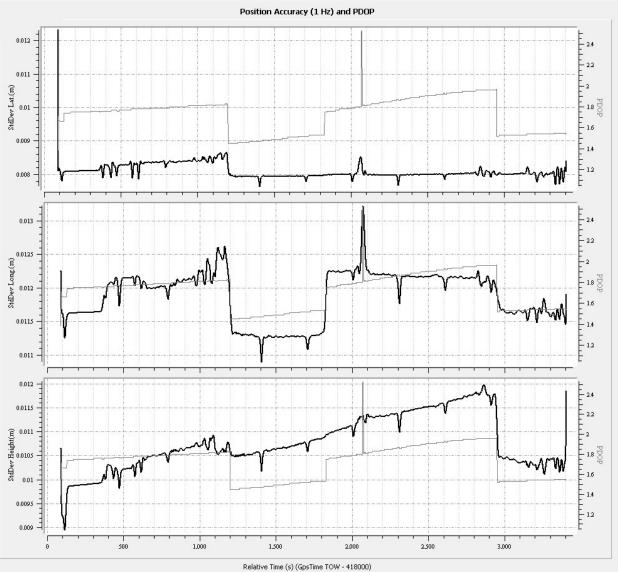

**Figure 2: Position and Standard Deviation** 

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 154 of 232



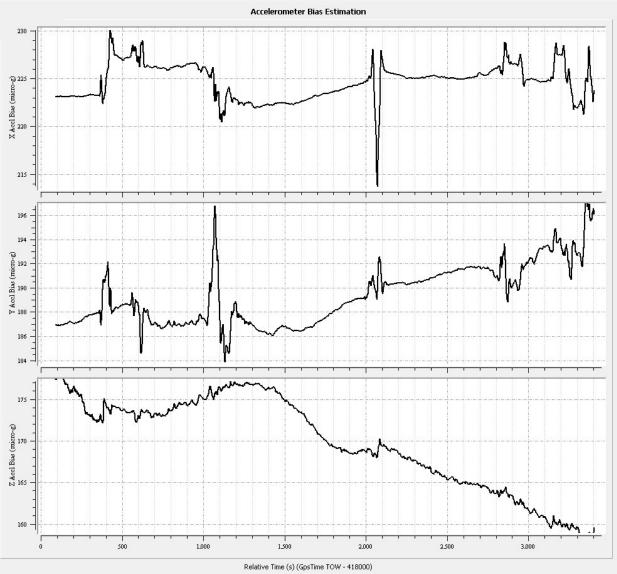

**Figure 3: Velocity and Standard Deviation** 




#### Figure 4: Forward/Reverse or Combined Separation Plot

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 156 of 232




#### Figure 5: Attitude and Standard Deviation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 157 of 232



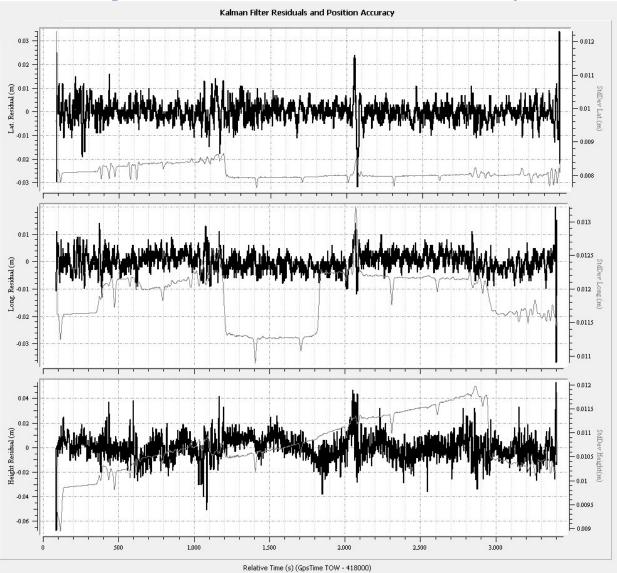
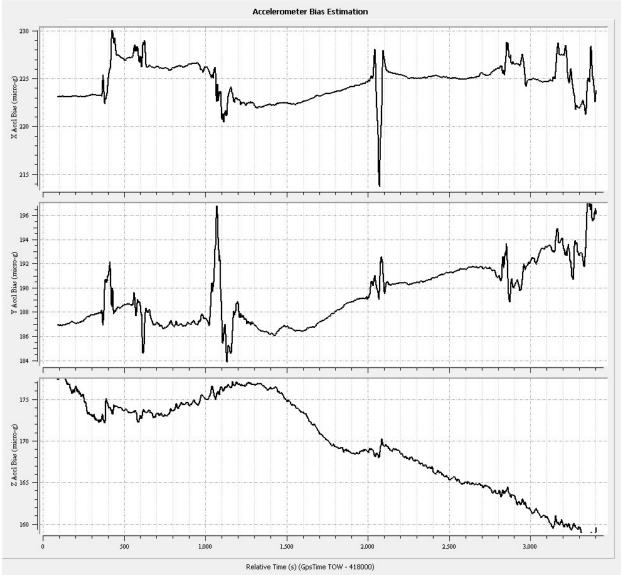
**Figure 6: Position Accuracy and PDOP** 

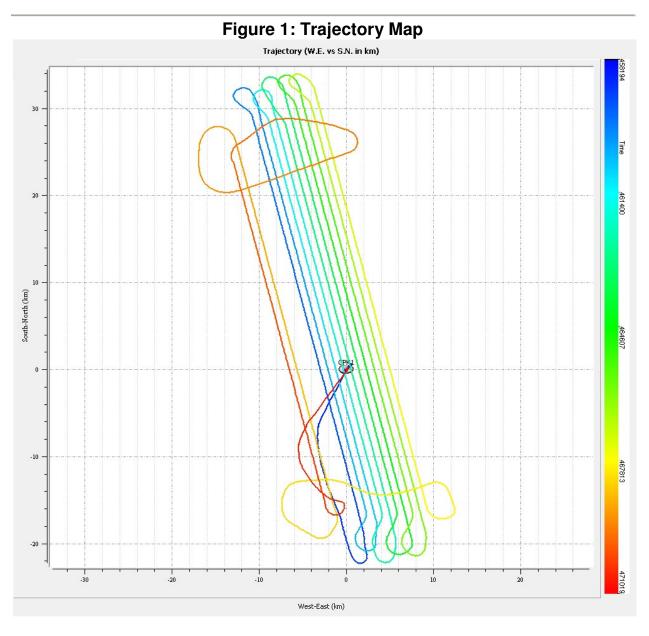
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 158 of 232



#### Figure 7: Accelerometer Bias Estimation

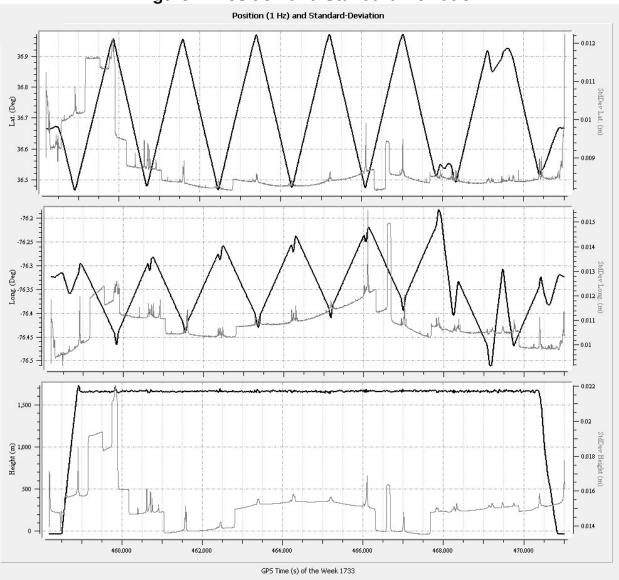
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 159 of 232



Figure 8: Kalman Filter Residuals and Position Accuracy

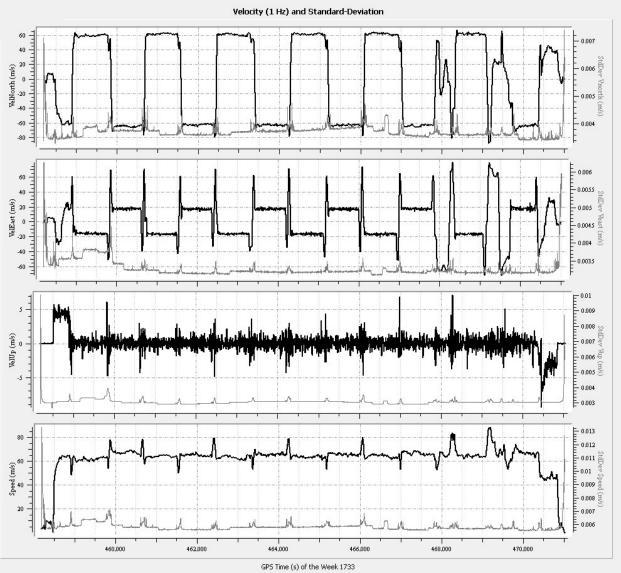
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 160 of 232



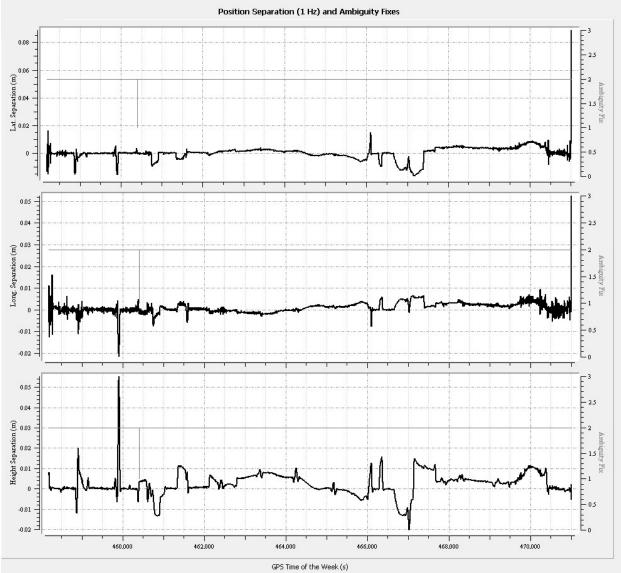

#### **Figure 9: Gyro Bias Estimation**

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 161 of 232




## Output Result for JD13088\_1

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 162 of 232




#### Figure 2: Position and Standard Deviation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 163 of 232



### Figure 3: Velocity and Standard Deviation



### Figure 4: Forward/Reverse or Combined Separation Plot

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 165 of 232

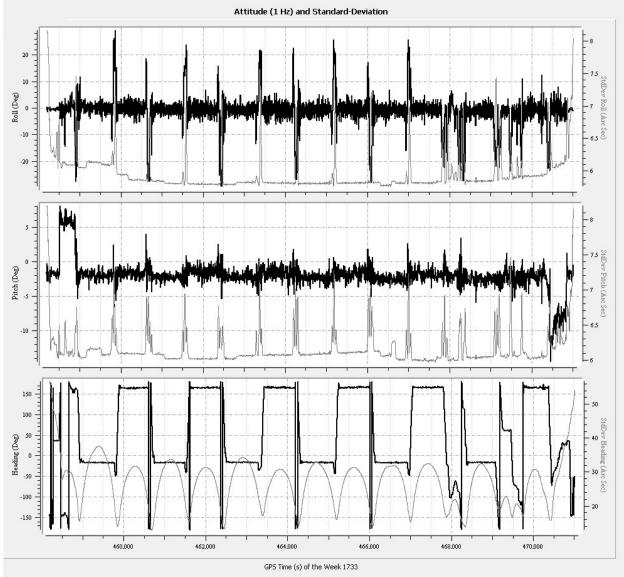



Figure 5: Attitude and Standard Deviation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 166 of 232

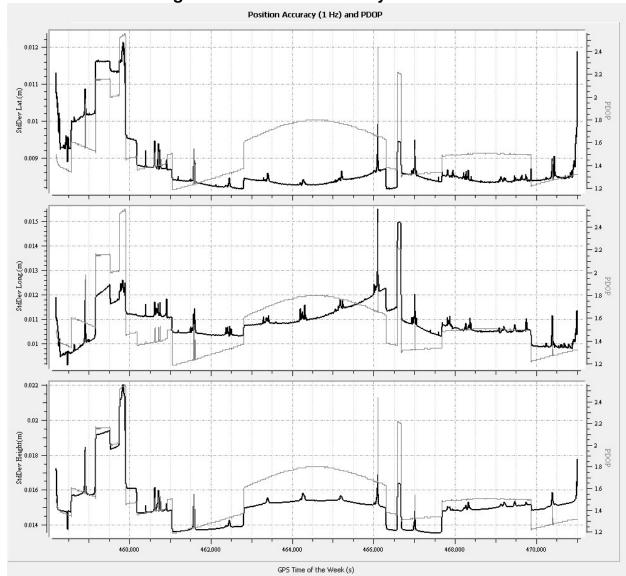
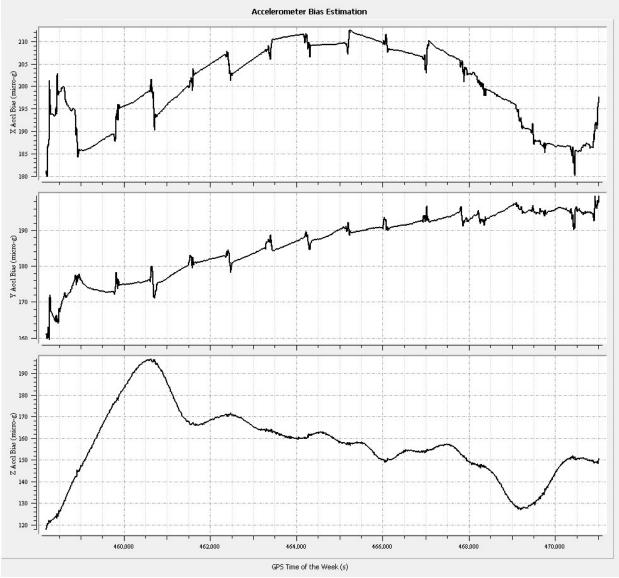
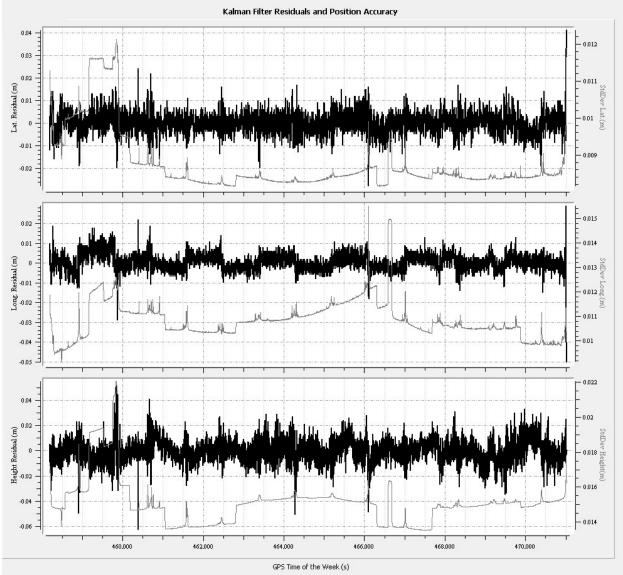
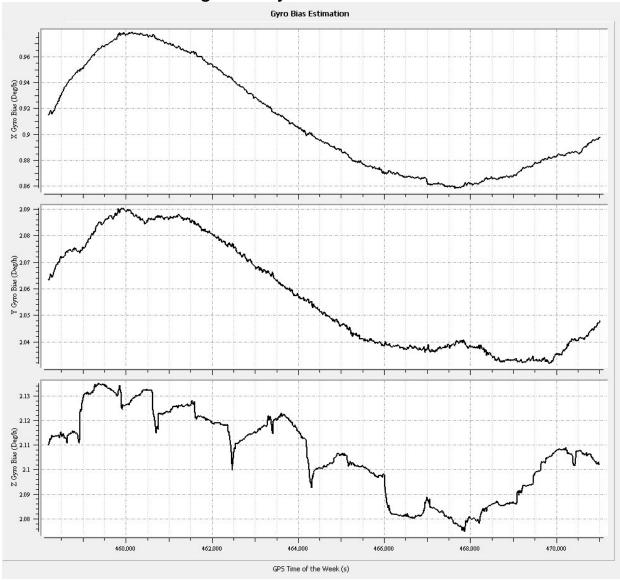





Figure 6: Position Accuracy and PDOP

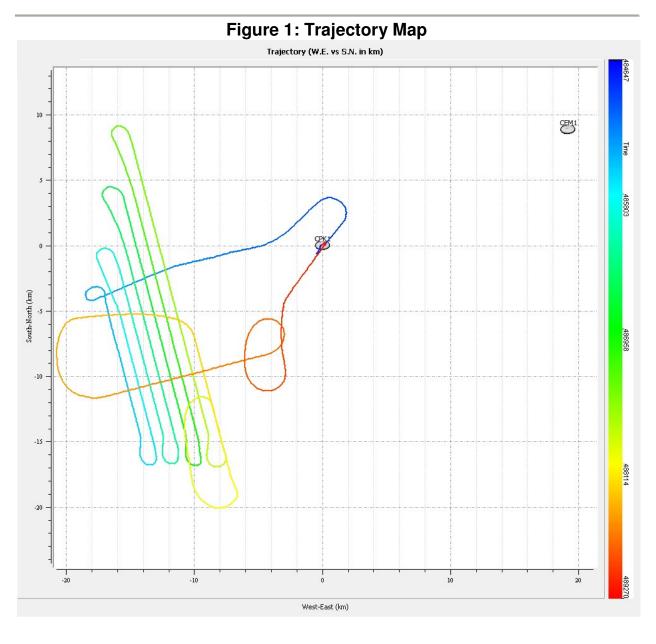
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 167 of 232



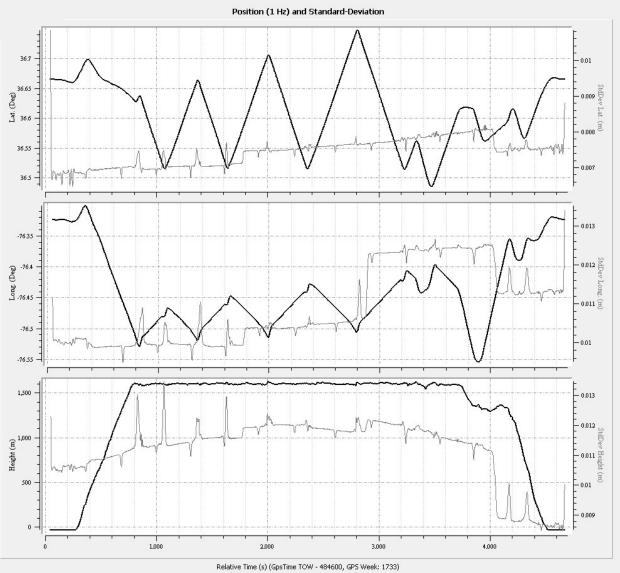

### Figure 7: Accelerometer Bias Estimation



### Figure 8: Kalman Filter Residuals and Position Accuracy

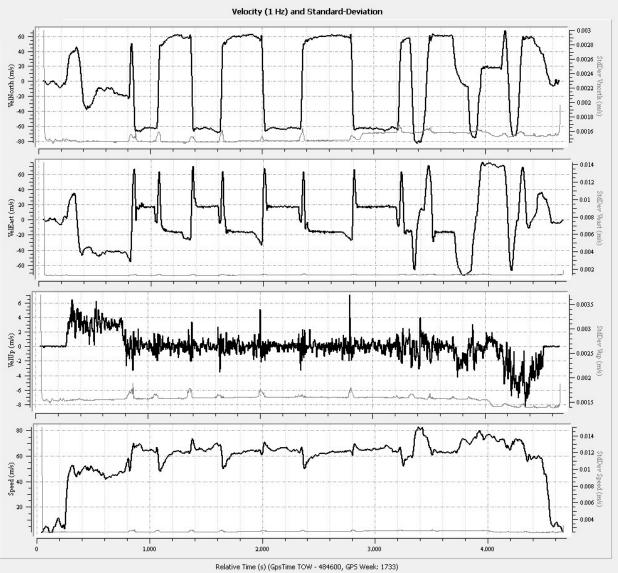

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 169 of 232




### Figure 9: Gyro Bias Estimation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 170 of 232

## Output Result for JD13088\_2




Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 171 of 232

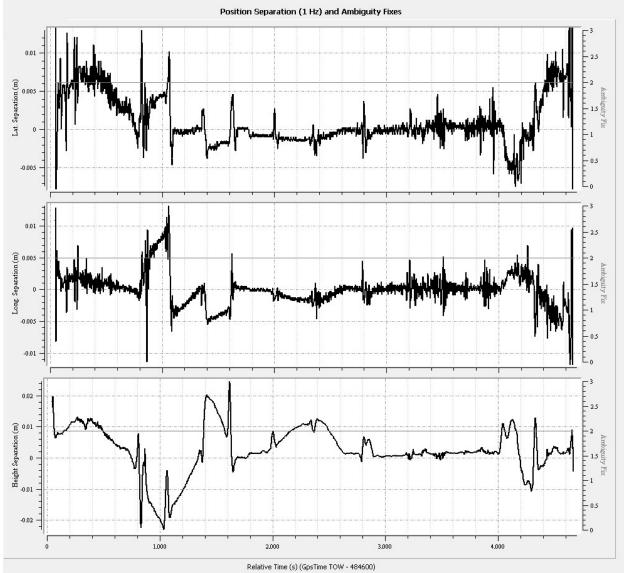
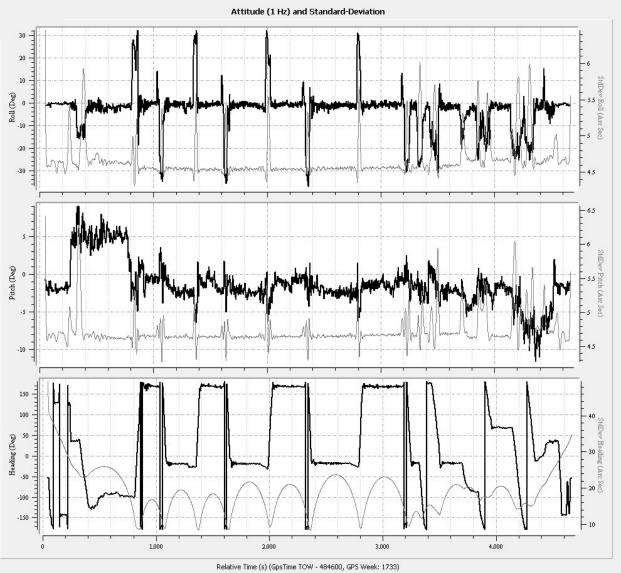


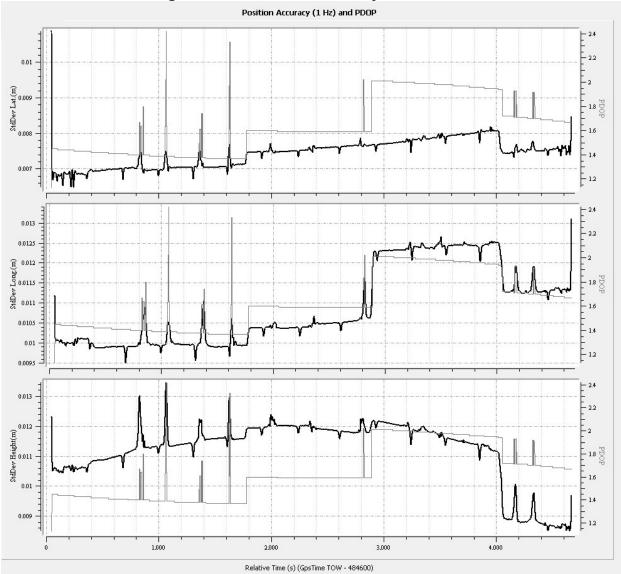


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 172 of 232



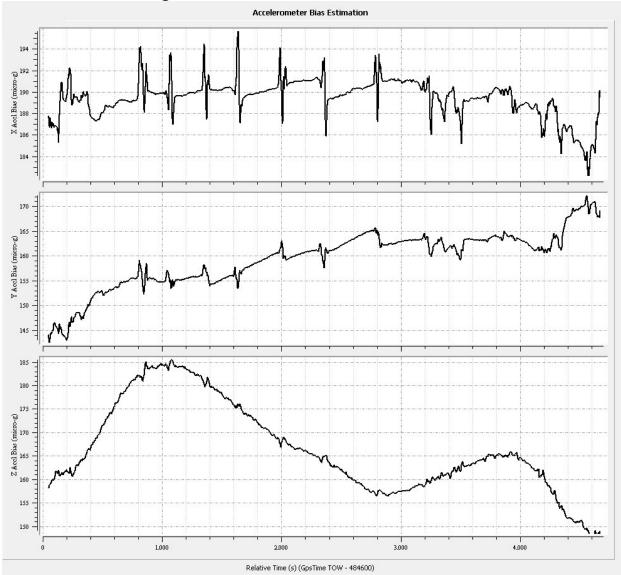
### **Figure 3: Velocity and Standard Deviation**



Figure 4: Forward/Reverse or Combined Separation Plot

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 174 of 232






Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 175 of 232

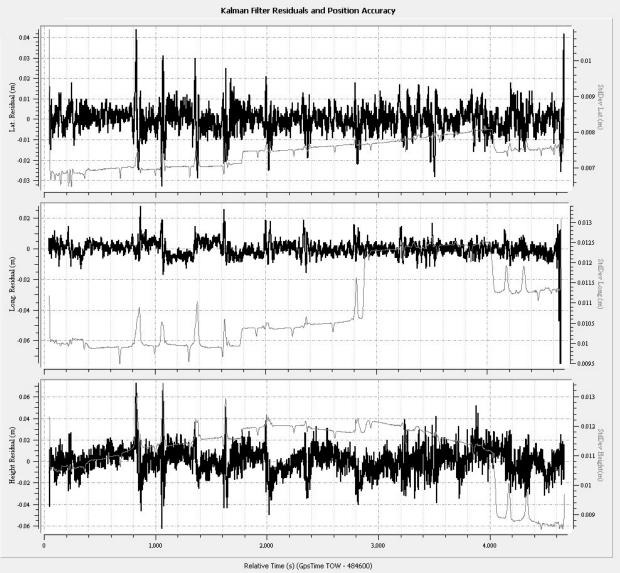
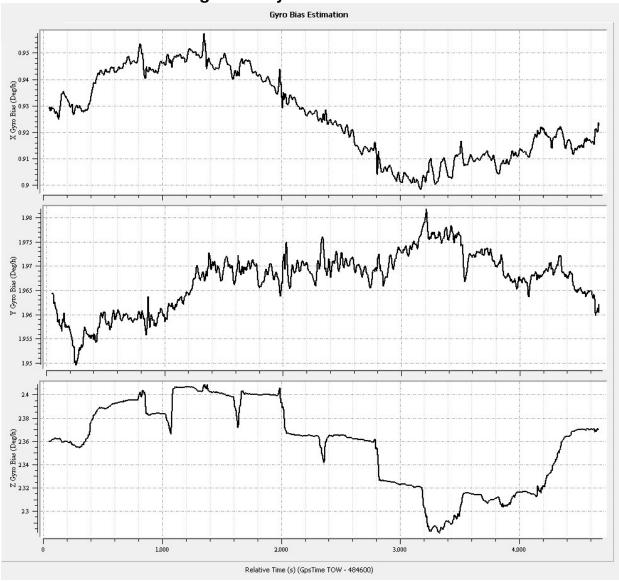


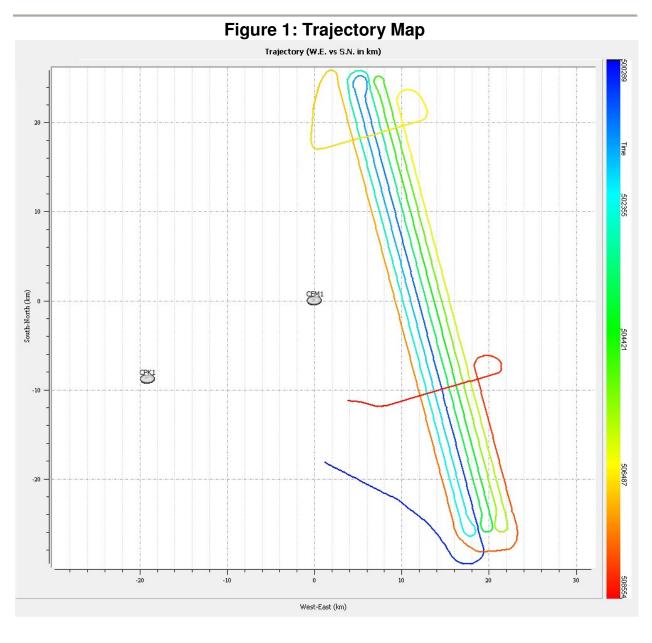
**Figure 6: Position Accuracy and PDOP** 

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 176 of 232

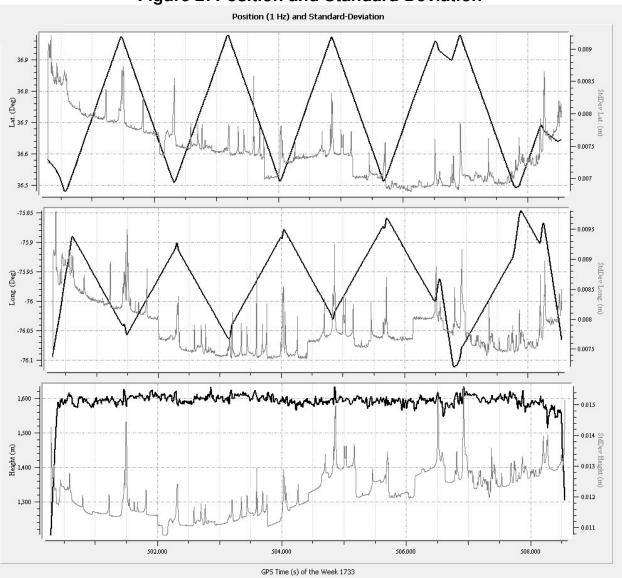




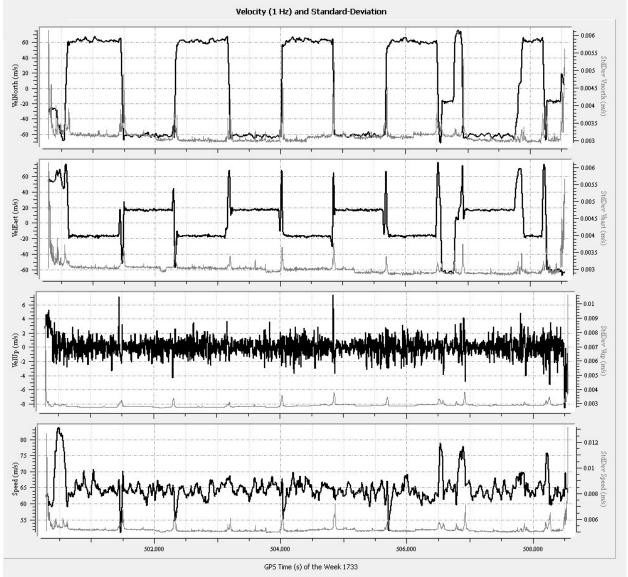


Figure 8: Kalman Filter Residuals and Position Accuracy



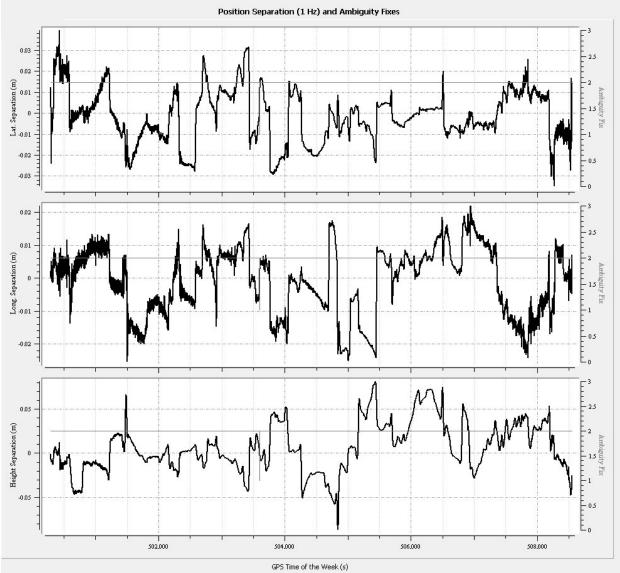



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 179 of 232

## Output Results for JD13088\_3




Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 180 of 232




#### **Figure 2: Position and Standard Deviation**

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 181 of 232



### Figure 3: Velocity and Standard Deviation



#### Figure 4: Forward/Reverse or Combined Separation Plot

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 183 of 232

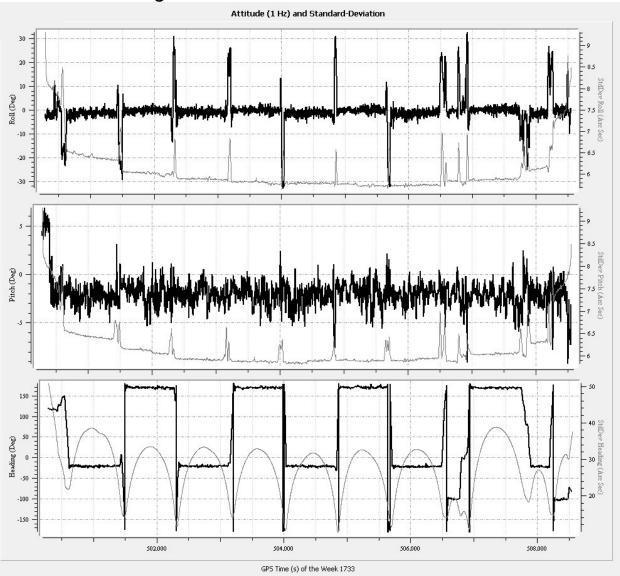
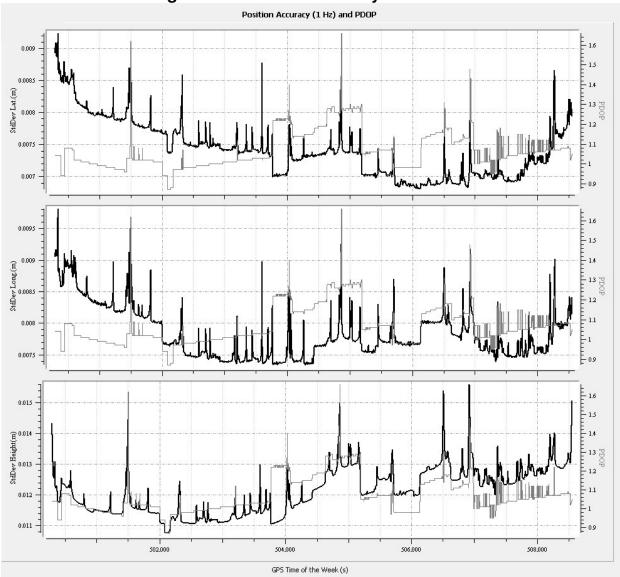




Figure 5: Attitude and Standard Deviation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 184 of 232



**Figure 6: Position Accuracy and PDOP** 

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 185 of 232

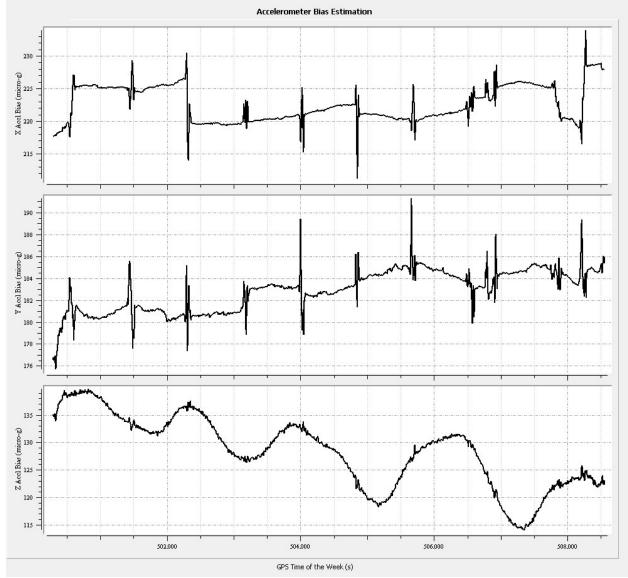
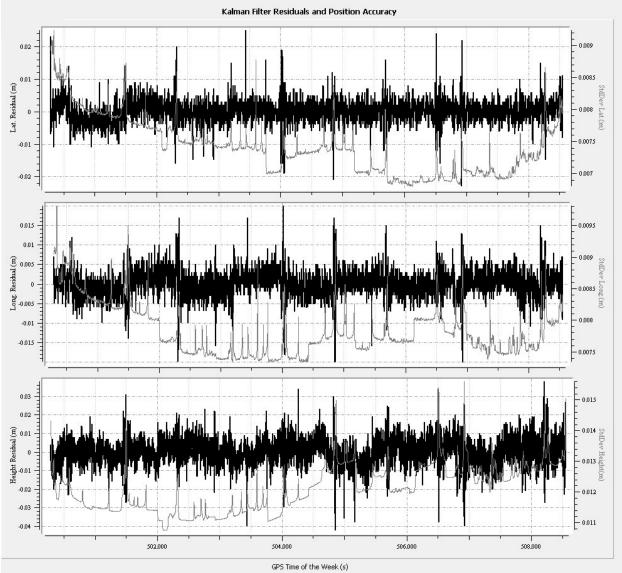
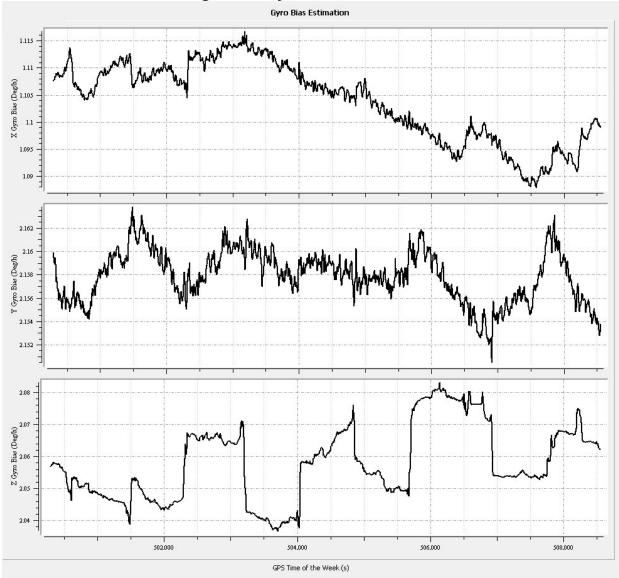
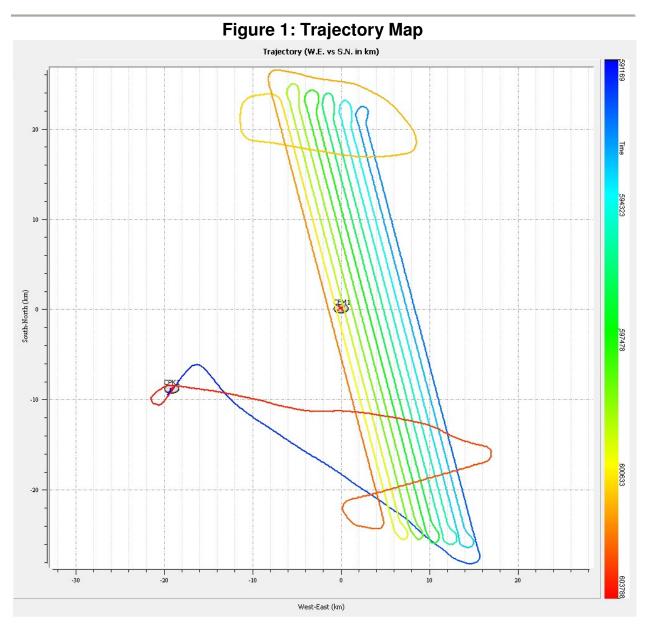
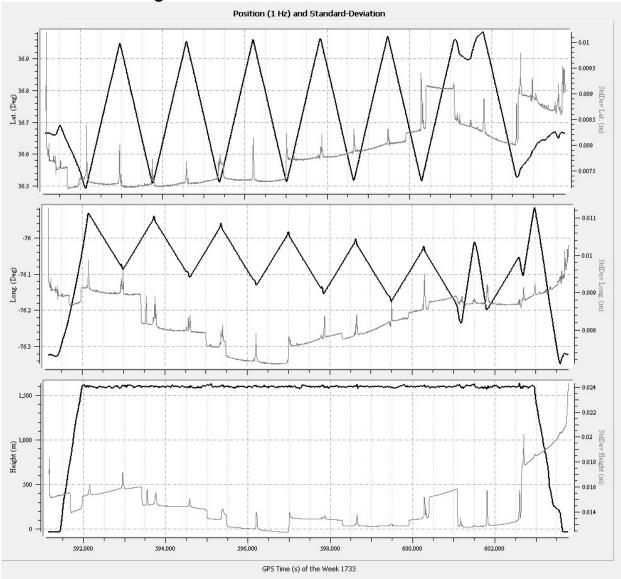





Figure 7: Accelerometer Bias Estimation



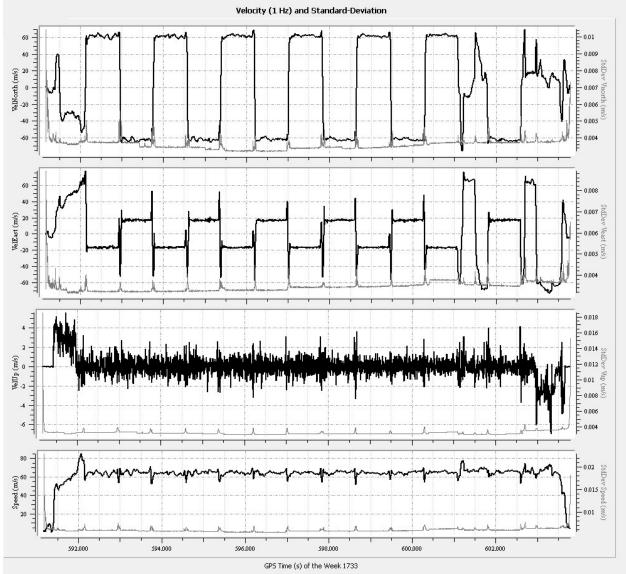






## Figure 9: Gyro Bias Estimation

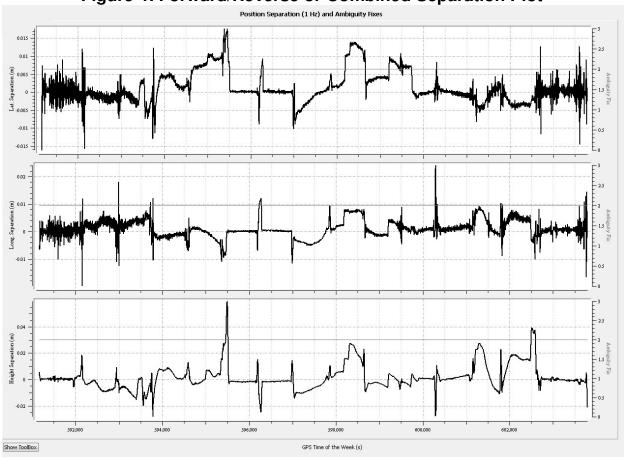
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 188 of 232

# Output Results for JD13089\_1



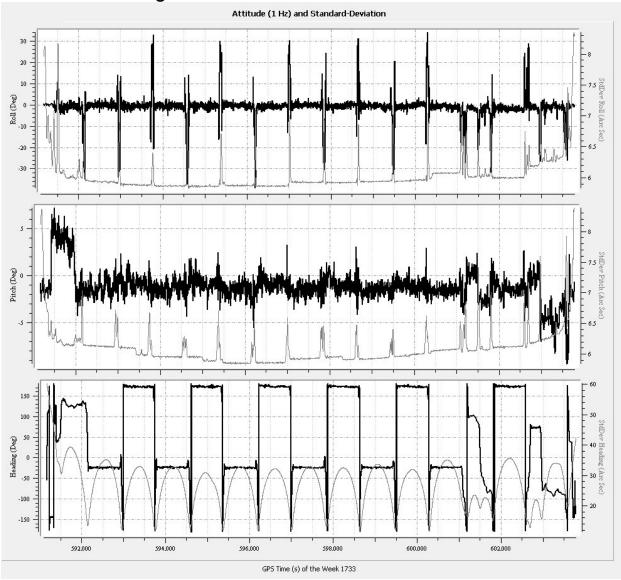

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 189 of 232




#### Figure 2: Position and Standard Deviation

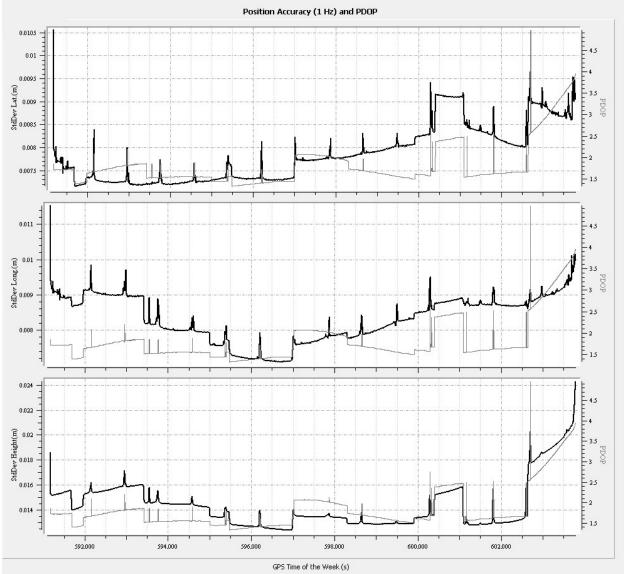
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 190 of 232




### Figure 3: Velocity and Standard Deviation

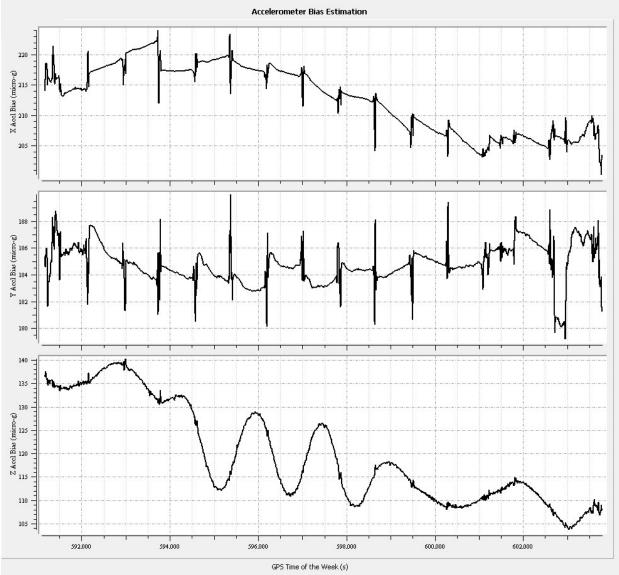
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 191 of 232



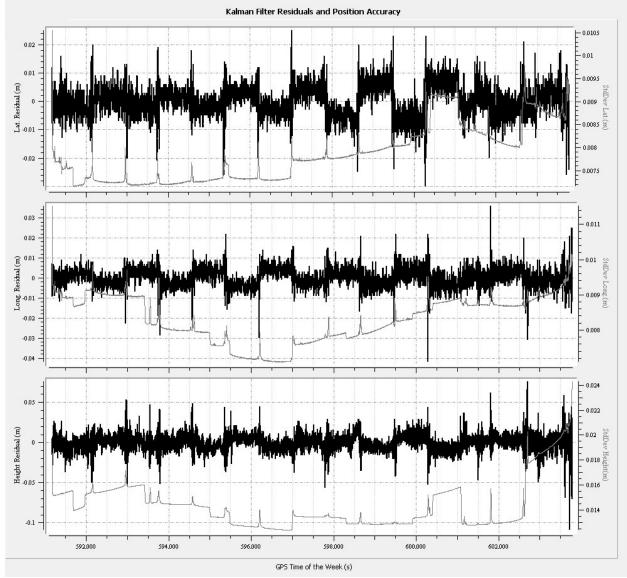

## Figure 4: Forward/Reverse or Combined Separation Plot

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 192 of 232



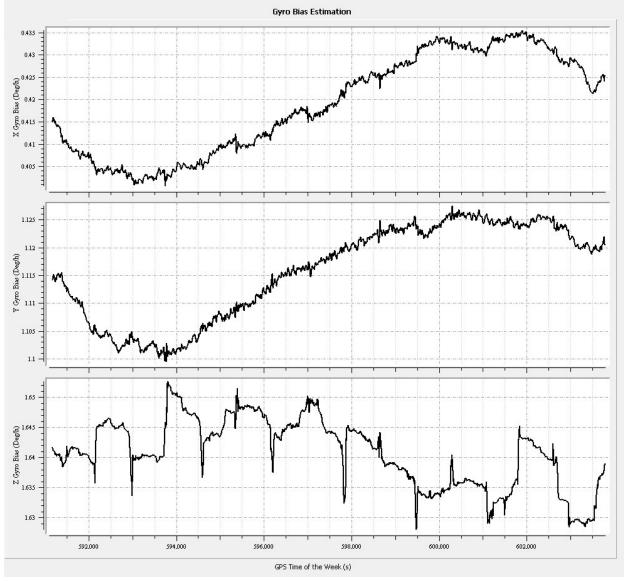



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 193 of 232



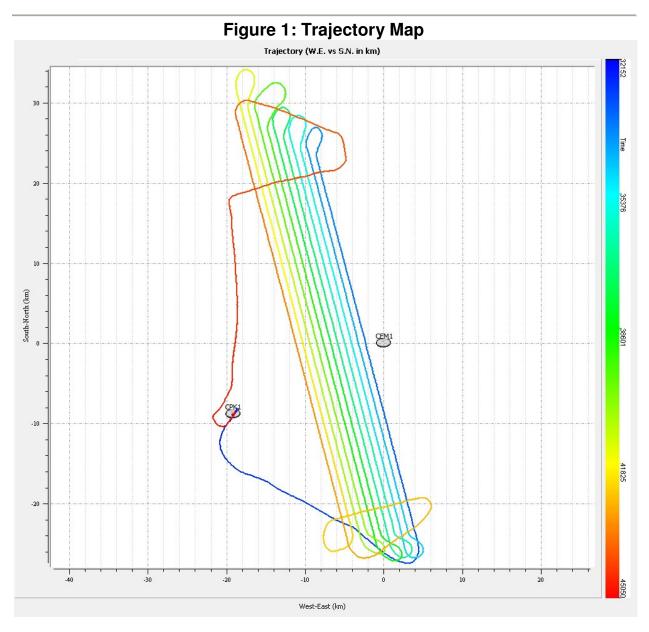

#### **Figure 6: Position Accuracy and PDOP**

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 194 of 232



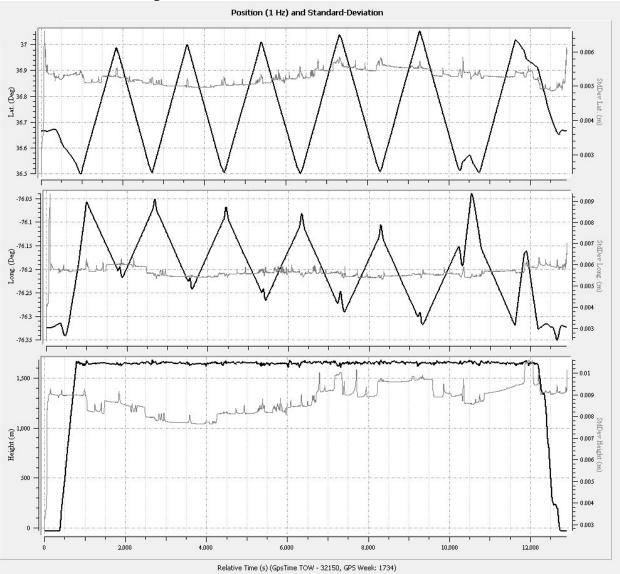






## Figure 8: Kalman Filter Residuals and Position Accuracy

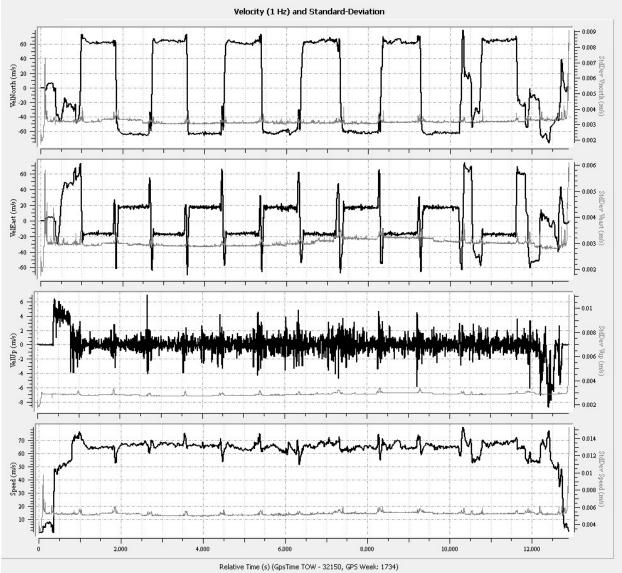
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 196 of 232



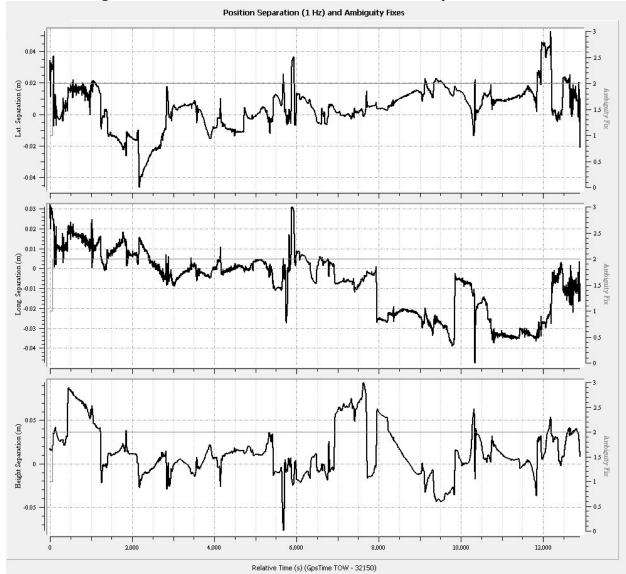

## Figure 9: Gyro Bias Estimation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 197 of 232




# Output Results for JD13090\_1

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 198 of 232




#### **Figure 2: Position and Standard Deviation**

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 199 of 232

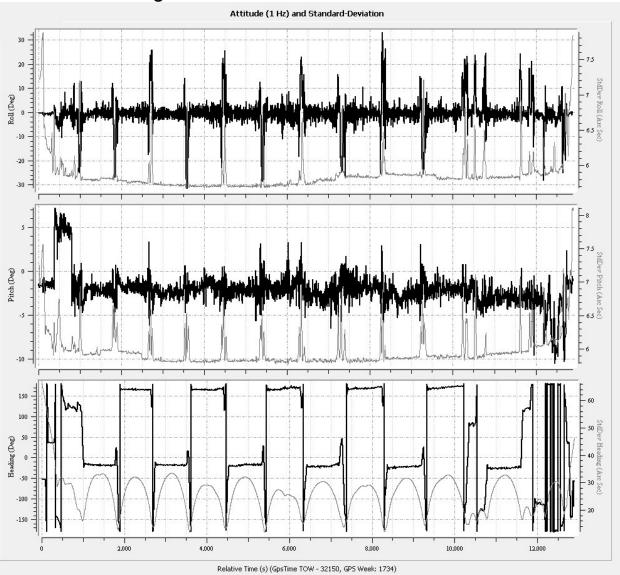
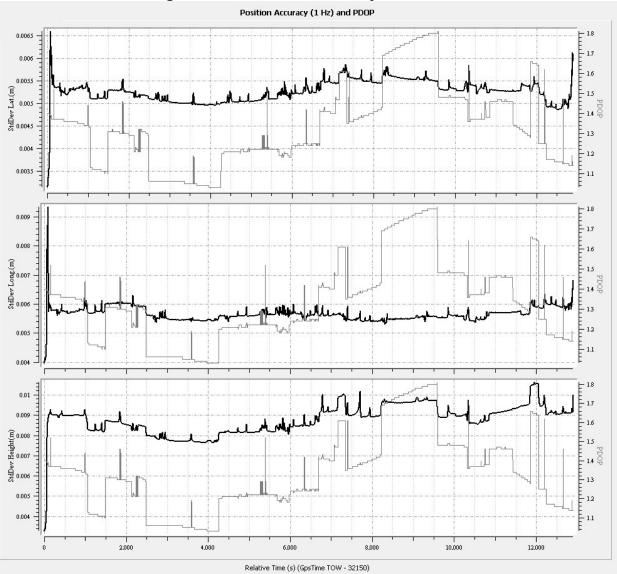


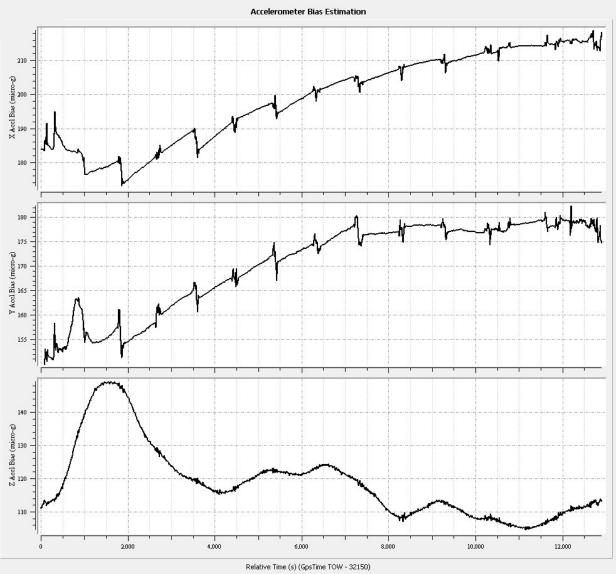
### Figure 3: Velocity and Standard Deviation



## Figure 4: Forward/Reverse or Combined Separation Plot

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 201 of 232



Figure 5: Attitude and Standard Deviation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 202 of 232

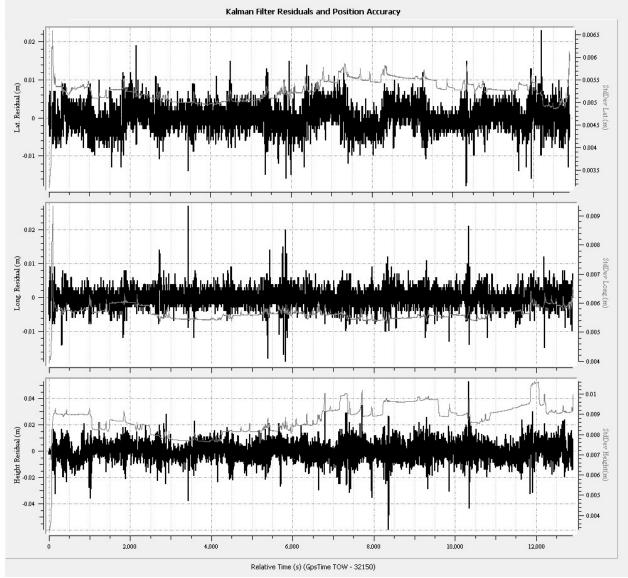
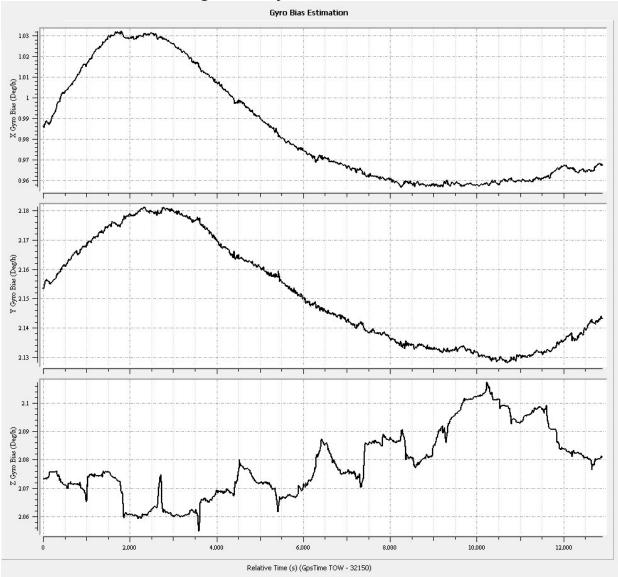


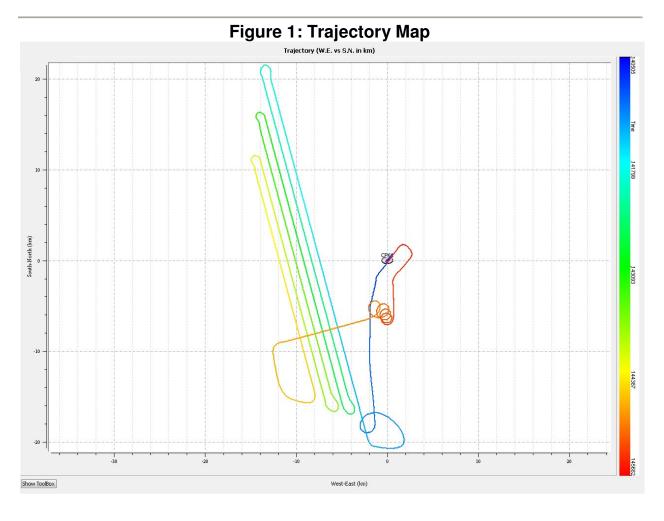


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 203 of 232



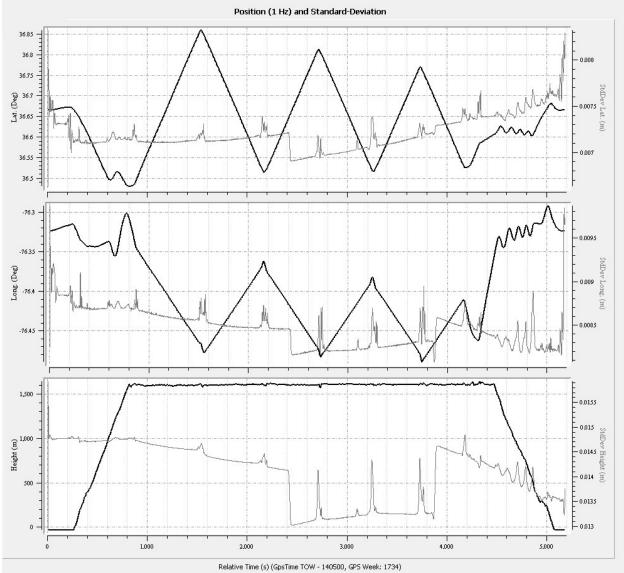




Figure 8: Kalman Filter Residuals and Position Accuracy

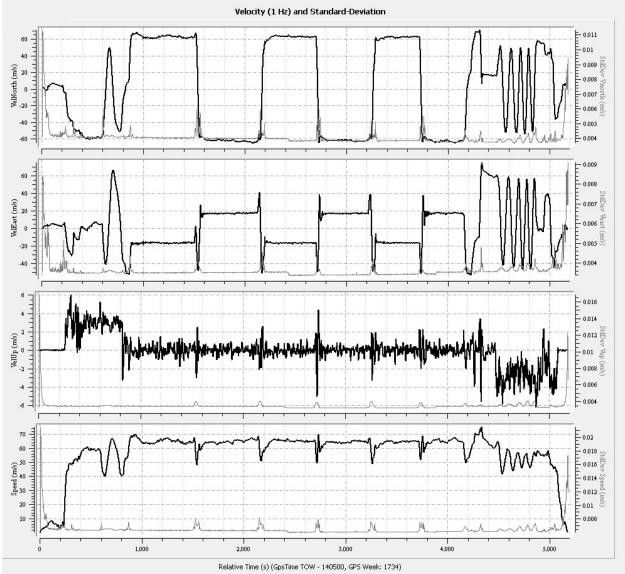
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 205 of 232



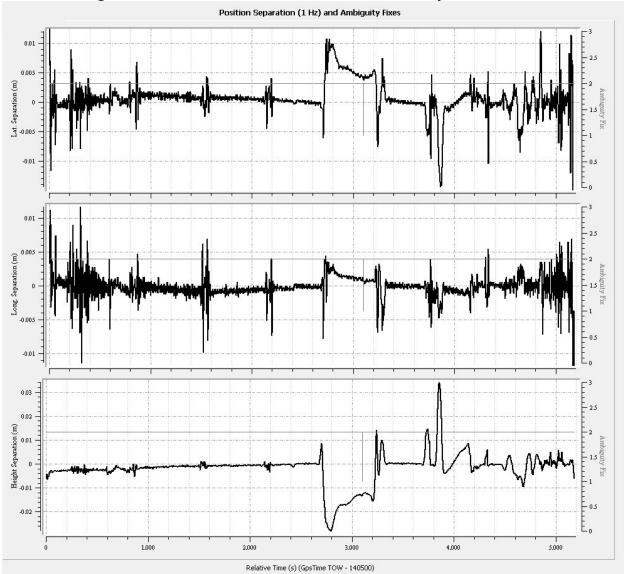

## Figure 9: Gyro Bias Estimation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 206 of 232




# Output Results for JD13091\_1

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 207 of 232







Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 208 of 232

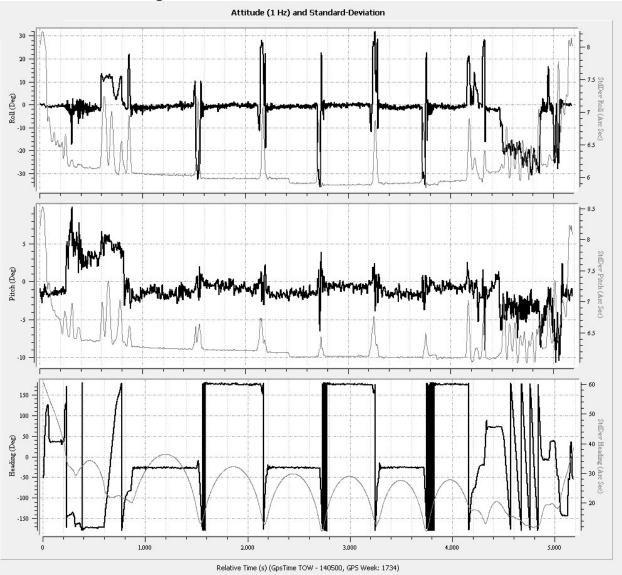
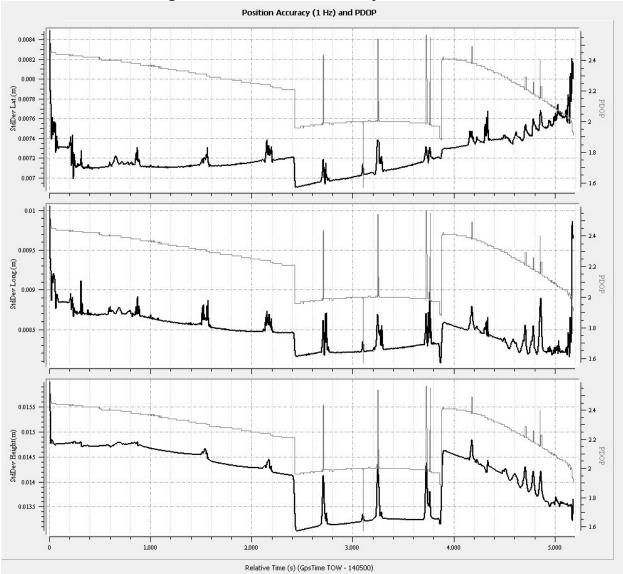


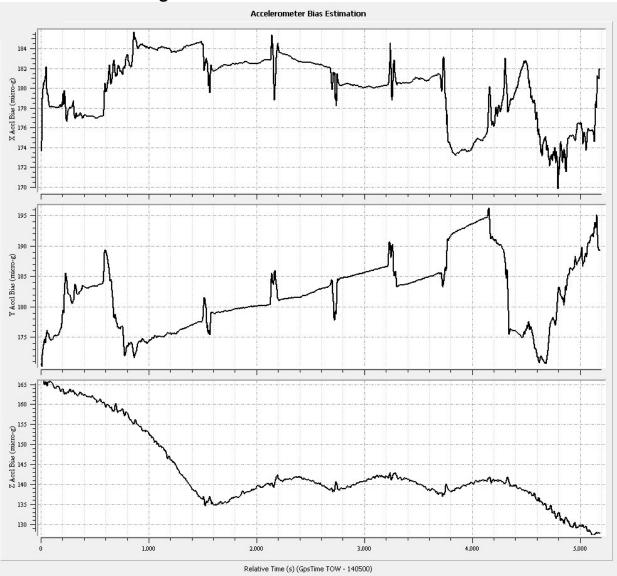
### Figure 3: Velocity and Standard Deviation



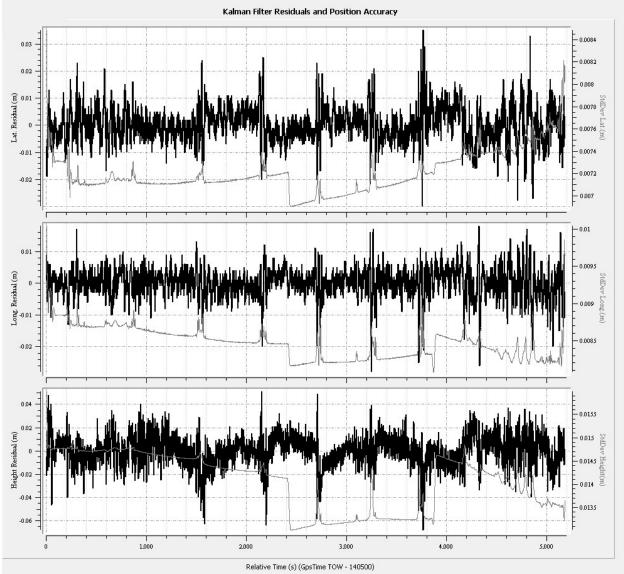


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 210 of 232

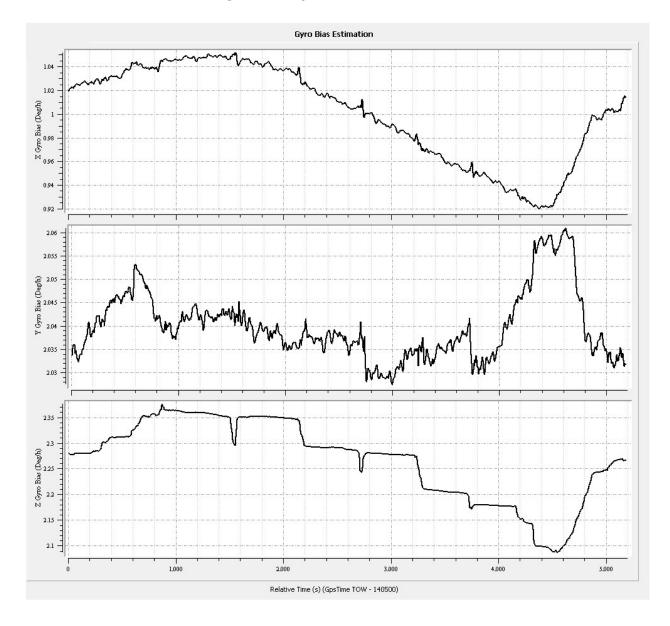





Figure 5: Attitude and Standard Deviation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 211 of 232



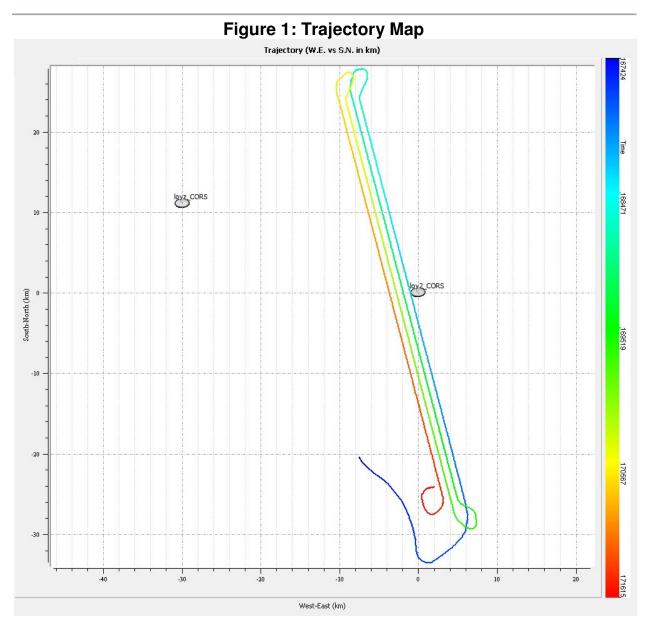

**Figure 6: Position Accuracy and PDOP** 


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 212 of 232

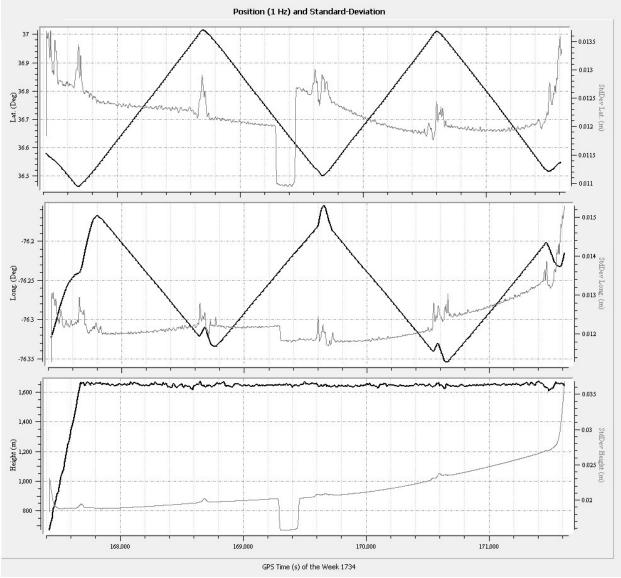


#### Figure 7: Accelerometer Bias Estimation



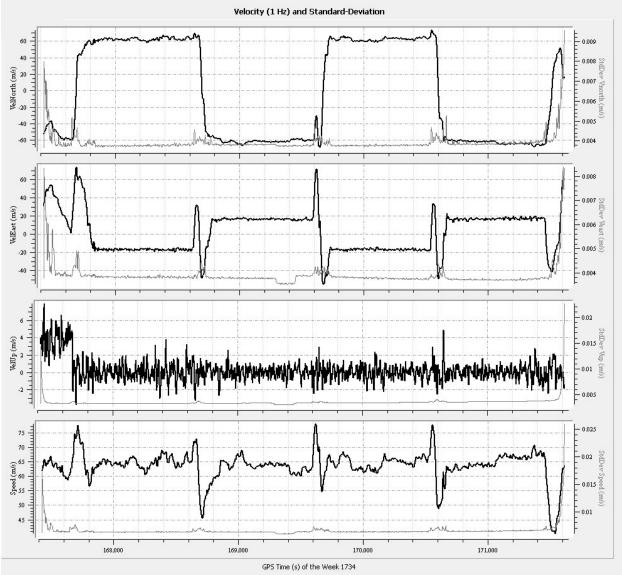

### Figure 8: Kalman Filter Residuals and Position Accuracy




# Figure 9: Gyro Bias Estimation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 215 of 232

# Output Results for JD13091\_2




Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 216 of 232





Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 217 of 232



### Figure 3: Velocity and Standard Deviation

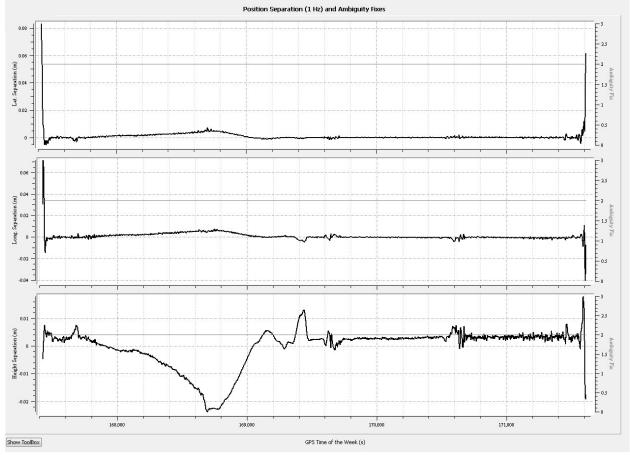
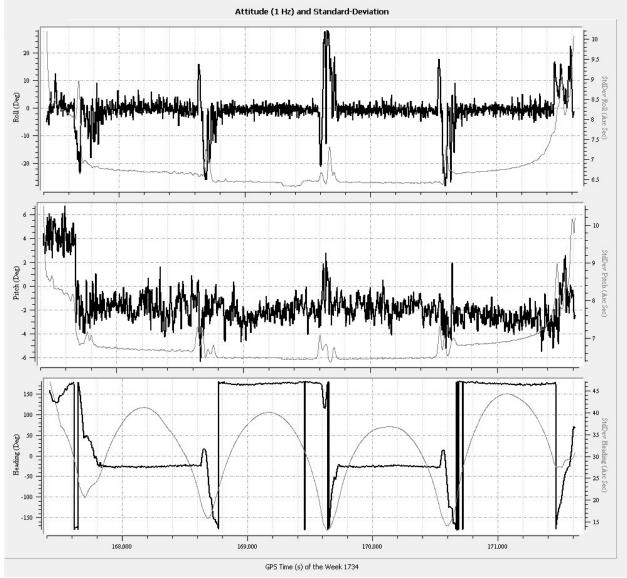




Figure 4: Forward/Reverse or Combined Separation Plot





Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 220 of 232

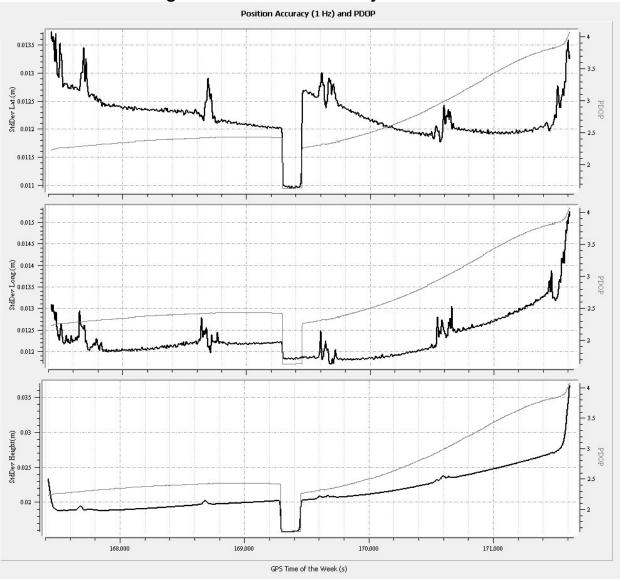
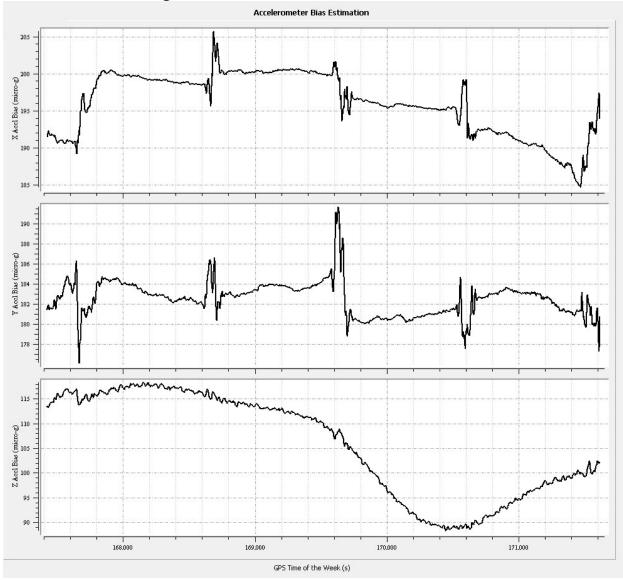




Figure 6: Position Accuracy and PDOP

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 221 of 232





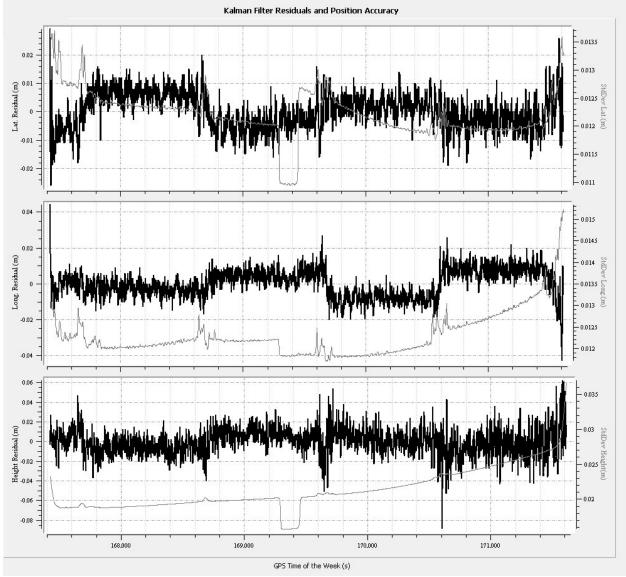
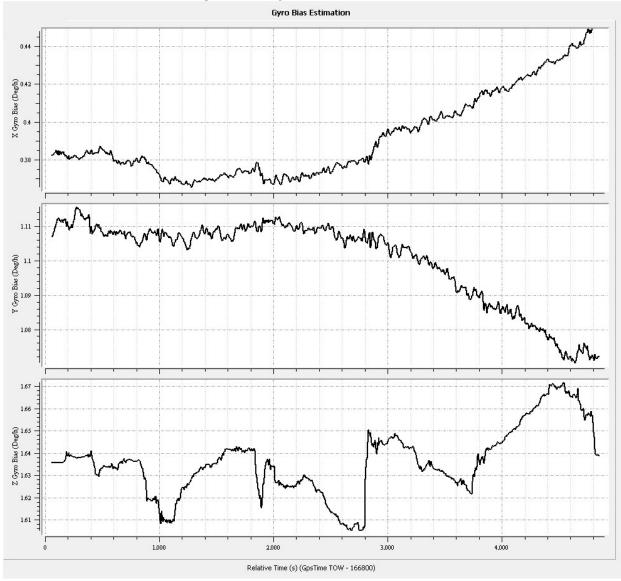
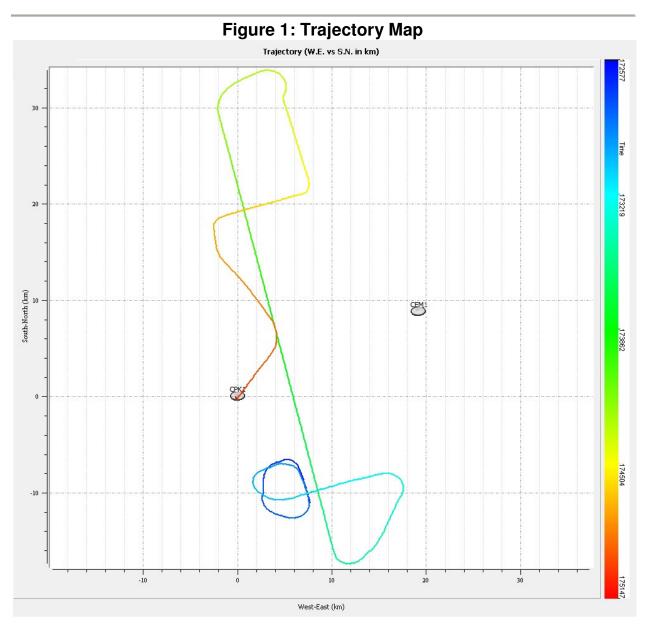
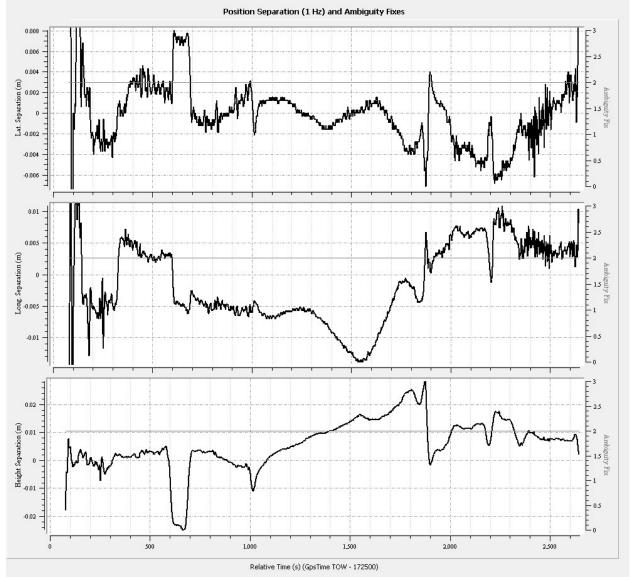




Figure 8: Kalman Filter Residuals and Position Accuracy


Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 223 of 232




# Figure 9: Gyro Bias Estimation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 224 of 232

## Output Result for JD13091\_3



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 225 of 232





Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 226 of 232

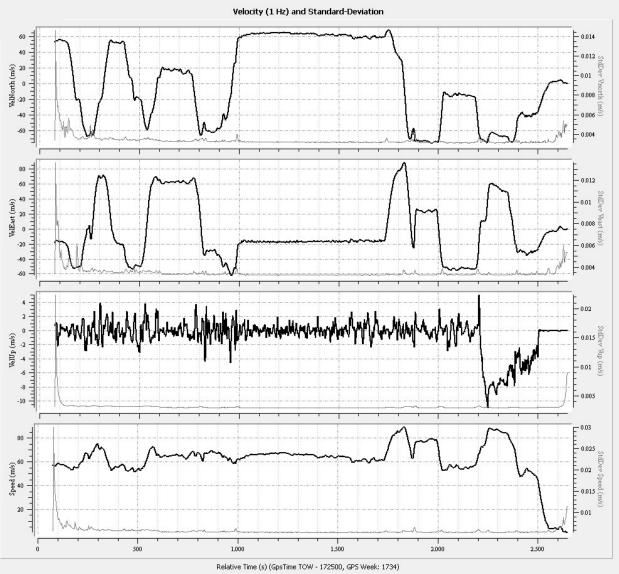
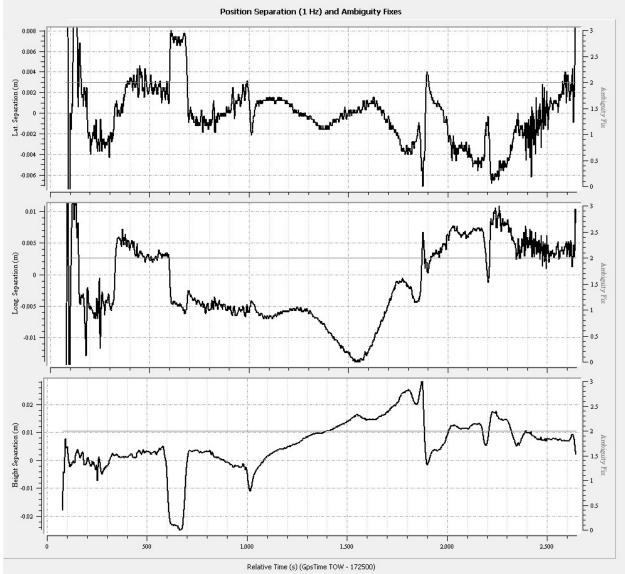
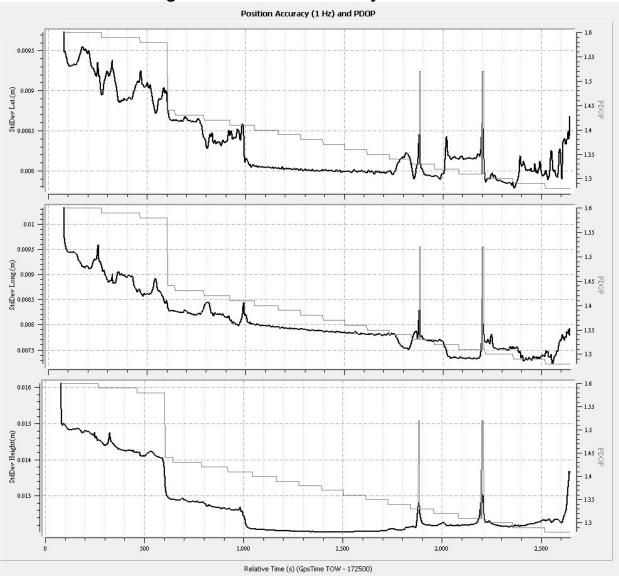



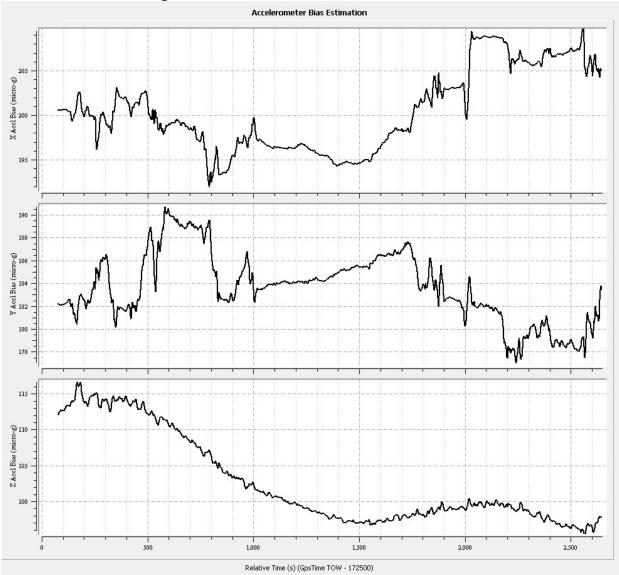

Figure 3: Velocity and Standard Deviation



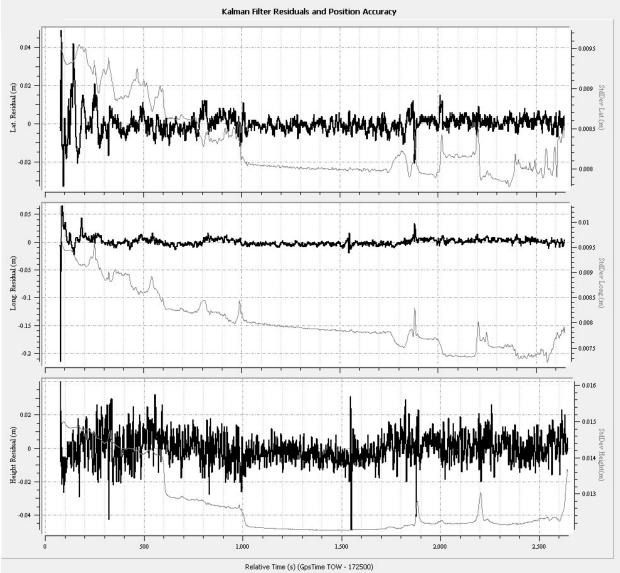

### Figure 4: Forward/Reverse or Combined Separation Plot

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 228 of 232




Figure 5: Attitude and Standard Deviation

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 229 of 232




**Figure 6: Position Accuracy and PDOP** 

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 230 of 232



#### Figure 7: Accelerometer Bias Estimation





Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 232 of 232

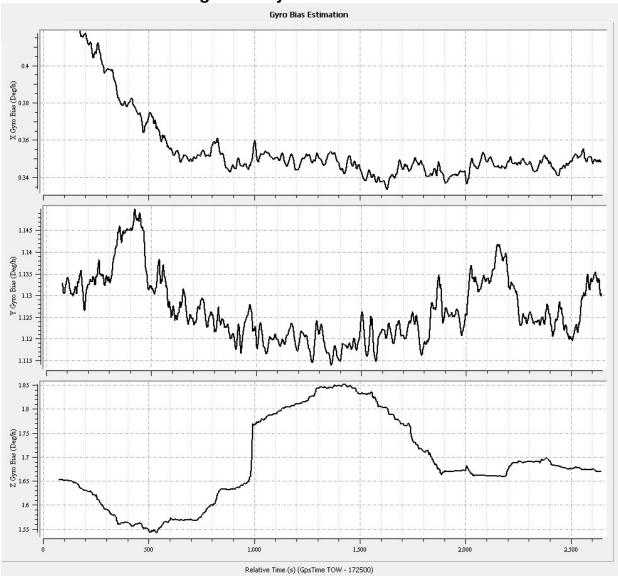



Figure 9: Gyro Bias Estimation