

LIDAR MAPPING REPORT

UMATILLA WALLOWA WHITMAN AERIAL SURVEY

Task Order Name: OR_UmatillaWallowaWhitman_1_B22 Task Order Number: 140G0222F0079 PRJ_ID: 224846 WU_ID: 300194

Submitted: September 14, 2023

Submitted to:

United States Geological Survey 1400 Independence Road Rolla, MO 65401 tnm_help@usgs.gov

Submitted by:

Aero-Graphics, Inc. 40 W. Oakland Avenue Salt Lake City, UT 84115 www.aero-graphics.com

LiDAR Mapping Report Umatilla Wallowa Whitman Aerial Survey

TABLE OF CONTENTS

1. Ov	VERVIEW	3
1.1	Project Area	3
1.2	Project Deliverables	3
1.3	Projection, Datum, Units	3
2. Ac	QUISITION	õ
2.1	Flight Planning	5
2.2	Data Acquisition	6
2.3	Acquisition Summary	8
2.4	Ground Control and Check Point Survey	9
3. LI	DAR PROCESSING WORKFLOW 1	1
4. Ac	CURACY TESTING AND RESULTS	4
4.1	Relative Calibration Accuracy Results	4
4.2	Calibration Control Vertical Accuracy1	5
4.3	Point Cloud Testing	5
4.4	Digital Elevation Model Testing	6
4.5	Data Density1	6
Appe	NDIX A – CHECK POINTS 18	8
Appe	NDIX B – CALIBRATION CONTROL ACCURACY REPORT	9

1. OVERVIEW

1.1 PROJECT AREA

Aero-Graphics, Inc., a full-service geospatial firm located in Salt Lake City, Utah, was contracted by the U.S. Geological Survey (USGS) and partners to acquire, process, and deliver leaf-on aerial lidar data and derivative products that adhere to U.S. Geological Survey (USGS) National Geospatial Program (NGP) Lidar Base Specification 2021, Revision A, QL1 standards. The assigned project area covers approximately 557 square miles in Wallowa County, OR, Asotin County, WA, and Idaho County, ID. This report describes the planning, acquisition, and processing of the LiDAR dataset as well as other deliverables.

1.2 PROJECT DELIVERABLES

LiDAR Data	 Classified point cloud data in LAS v1.4 format, zipped to LAZ
Raster Data	 Bare-earth DEM with 0.5 meter resolution in .GeoTIFF format MSHRs and swath separation images delivered in GeoTIFF format
Vector Data	 Surveyed GCPs and checkpoints in .gpkg format Breaklines in geodatabase format Flight index in geodatabase format Relative accuracy, tile index, and AOI shapefiles
Report of Survey	 LiDAR Mapping Report including metadata, methodology, accuracy, and results

1.3 PROJECTION, DATUM, UNITS

Projection		UTM Zone 11N	
EPSG		6340 & 5703	
Darkuns	Vertical	NAVD88 (Geoid18)	
Datum	Horizontal	NAD83 (2011)	
Units		Meters	

2. ACQUISITION

2.1 FLIGHT PLANNING

Aero-Graphics Aerial Department created a unique flight plan for this project using Optech's Airborne Mission Manager (AMM) flight planning software. AMM simulates flight plans based on the project area's terrain, as well as the sensor's model, mount, and settings. These features helped ensure that all contract specifications are met in the most efficient way possible. Prior to mobilizing to the acquisition sites, Aero-Graphics' staff monitored all site conditions and potential weather hazards including wind, rain, snow, and blowing dust. Additionally, Aero-Graphics ensured all airspace clearances were secured by the proper officials before acquisition occurred. A summary of the flight parameters and sensor settings for the Umatilla Wallowa Whitman Aerial Survey are outlined in **Exhibit 2**.

Planned Specifications			
Aircraft		Cessna 310	
Altitude (ft above	e ground level)	7,200	
Speed	(kts)	180	
LiDAR S	ensor	Optech Galaxy T2000	
PRF (k	(Hz)	1,000	
Scan frequency (Hz)		107	
Laser power		High	
	Full	40°	
scan Angle	From nadir	± 20°	
Planned Average Point Density (p/m²)		5.01	
Planned Aggregate P	oint Density (p/m2)	10.02	
Post Spacing at	Cross Track (m)	0.46	
Nadir	Down Track (m)	0.43	
Swath Width (m)		1,575	
Sidelap (%)		55	
No. of Flightlines		132	

Exhibit 2: Summary of planned flight parameters and sensor settings

2.2 DATA ACQUISITION

Aero-Graphics acquired LiDAR data throughout August 2022 with a turbocharged Cessna 310 (**Exhibit 3**). The stability of this platform is ideal for efficient data collection at high and low altitudes and at a variety of airspeeds. Additionally, our Cessna 310 has been customized to house a variety of airborne sensors, and the power system and avionics have been upgraded specifically to meet aerial survey needs.

Exhibit 3: A Cessna 310 was the acquisition platform for this project

The Optech Galaxy T2000 was selected for this project on account of its high accuracy and efficiency (**Exhibit 4**). This sensor uses SwathTrak technology, which dynamically adjusts the scan field of view in real time to maintain a constant swath width over a variety of terrains. It also features up to 8 returns per pulse, which increases the vertical resolution of complex terrains. The sensor is complemented with the use of FMS Nav, which allowed the system operator to monitor the point density and swath attributes of this project in real time, ensuring quality data and full coverage, as shown in **Exhibit 5**. More information about point density can be found in Section 4.4.

Exhibit 4: The Optech Galaxy T2000 was used for data acquisition

2.3 ACQUISITION SUMMARY

Aero-Graphics acquired LiDAR data beginning August 11, 2022 and concluded acquisition on August 29, 2022. As specified in the work order acquisition took place during leaf-on conditions, while most trees and other types of vegetation retained their foliage. Prior to mobilization ground conditions were monitored to ensure the ground was free of snow, ice, and standing water. There were no technical issues such as LiDAR sensor problems during acquisition.

Exhibit 6: The lines flown by date for the Umatilla Wallowa Whitman project

2.4 GROUND CONTROL AND CHECK POINT SURVEY

Aero-Graphics' professional land surveyor identified, targeted, and surveyed 37 ground control points (**Exhibit 7**) for use in data calibration as well as 50 QC check points (**Exhibit 8**) in vegetated and non-vegetated land cover classification as an independent test of accuracy for this project. A combination of precise GPS surveying methods, including static and RTK observations were used to establish the 3D position of ground control points and QC check points. Ground control coordinates can be found in Appendix A. A summary of LiDAR calibration control vertical accuracy can be found in Section 4.2 with a more detailed report in Appendix B.

Exhibit 8: Check Points for the Umatilla Wallowa Whitman project

3. LIDAR PROCESSING WORKFLOW

- 1. **Absolute Sensor Calibration**. Following sensor installation, lever arm values were surveyed. A boresight mission was flown over our fully controlled local range, and when adjusted to the surveyed ground control for roll, pitch, heading, and scale errors, boresight angles were developed for application to the POS processing in subsequent steps.
- 2. **Kinematic Air Point Processing.** The airborne GPS positions (collected at 1-second intervals) were post-processed using Applanix's POSPac MMS GNSS Inertial software (PP-RTX). A smoothed best estimate of trajectory (SBET) was developed by combining the corrected GPS positions with 1/200-second inertial measurement unit (IMU) data, which tracked the plane's roll, pitch, and yaw throughout the flight.
- 3. **Raw LiDAR Point Processing (Calibration).** The SBET and LiDAR range data were combined to solve for the real-world positions of each laser point using Optech's LiDAR Mapping Suite (LMS) software, version 4.6.2. Point cloud data was produced by flight strip in ASPRS v1.4 LAS format. Flight strips were output in the project's coordinate system. LMS's internal noise filtering processes were utilized to flag atmospheric noise points and geometrically unreliable points at the far edges of the swaths as withheld.
- 4. **Relative Calibration.** Performed relative calibration by correcting for roll, pitch, heading, and scale discrepancies between adjacent flightlines; tested resulting relative accuracy. The Aero-Graphics Team generated swath separation images using LP360 software. These images were created from the last return of all points except points classified as noise and/or flagged as withheld. Point Insertion was used as the Surface Method and the cell size was set to 2x the deliverable DEM cell size. The three interval bins used are bulleted above and the parameter to "Modulate source differences by Intensity" was set to 50%. The output GeoTIFF rasters were tiled to the project tile grid, clipped to the master DPA, and formatted (including defining the CRS which matches the project CRS) using GDAL software, version 2.4.0. These results are presented in Section 4.1.
 - a. A **Dz Ortho Raster** was generated as part of this process (**Exhibit 9**). This raster identifies clusters of large residuals and differences in measured elevations between overlapping flightlines. These errors are usually caused by topographic relief or environmental factors and require manual adjustments to correct. In most cases, multiple iterations of the Dz ortho raster are created to aid in fine tuning relative calibration parameters.

Exhibit 9: A Dz ortho raster generated for the Umatilla Wallowa Whitman project

- 5. Vertical Accuracy Assessment Height differences between each static survey point and the laser point surface were identified through comparative tests. Results are presented in Section 4.2.
- 6. **Tiling & Long/Short Filtering** Extremely long and short returns were also filtered out as outliers and classified to low or high noise and flagged as withheld in preparation for ground point classification.
- 7. Classified LAS Processing. The point classification was performed with the ASPRS classes described in Exhibit 10. The bare-earth surface was classified using a combination of TerraScan macro functionality as well as proprietary software. The bare-earth surface was then manually reviewed and corrected to ensure completeness and accuracy. All other classes were also reviewed and corrected manually in Terrascan. LP360 was then used as a final check of the bare-earth dataset. LP360 and TerraScan software were also used to perform statistical analysis of the classes in the LAS files on a per tile level to verify classification metrics and full LAS header information was present in all LAS files.

ASPRS Version 1.4 minimum point cloud classification scheme				
CLASS #	CLASS NAME	DESCRIPTION		
1	Processed, but unclassified	Points that do not fit any other classes		
2	Bare earth	Bare earth surface		
7	Low noise	Low points identified below surface		
9	Water	Points inside of lakes/ponds		
17	Bridge decks	Points on bridge decks		
18	High noise	High points identified above surface		
20	Ignored ground	Points near breakline features; ignored in DEM creation process		

Exhibit 10: The ASPRS classes used in lidar point classification

- 8. **Hydro-Flattened Breakline Collection**. Full point cloud intensity imagery, DEMs, and bare earth terrains were used to manually digitize 3D breaklines. Breakline features were collected for inland streams and rivers with a 30-meter nominal width, and inland ponds and lakes of 2 acres or greater surface area. Elevation values were assigned to all inland ponds and lakes, inland pond and lake islands, and inland stream and river islands, using ESRI and LP360 functionality.
- 9. Hydro-Flattened Raster DEM Creation. A hydro-flattened raster digital elevation model (DEM) was created from a TIN surface generated using the ground classified LiDAR points. The DEMs were generated in LP360 with breaklines enforced and clipped to the project tile grid. The tiled DEMs were reviewed at a scale of 1:5,000 to look for artifacts caused by the DEM generation process and to verify correct and complete hydro-flattening was applied. Upon correction of any outstanding issues, the DEM data was loaded into Global Mapper for its second review and to verify corrections. Final DEMs are formatted using GDAL software version 2.4.0.
- 10. **Maximum Surface Height Rasters Creation**. MSHRs were delivered as tiled GeoTIFFs (32-bit, floating point), with the tile size and naming convention matching the project tile grid. All points, excluding points flagged as withheld, were used to produce MSHRs. The rasters were produced with a binning method in which the highest elevation of all lidar points intersecting each pixel was applied as the pixel elevation in the resulting raster. Final MSHRs were formatted using GDAL software version 2.4.0, spatially defined to match the project CRS, and the cell size equaled 2x the deliverable DEM cell size.

4. ACCURACY TESTING AND RESULTS

4.1 RELATIVE CALIBRATION ACCURACY RESULTS

Inter-swath relative accuracy is defined as the elevation difference in the overlapping area of parallel swaths. Inter-swath polygons were created across the entire dataset in non-vegetated areas on slopes of less than 10 degrees. The generated polygons were attributed with the min, max, and RMSDz data derived from Swath Separation Images. The statistics below are based on the elevation differences calculated between swaths.

Umatilla Wallowa Whitman project area:

■ Inter-swath relative accuracy average of 0.012 m

Exhibit 11: Frequency distribution of interswath RMSDz results for the Umatilla Wallowa Whitman project.

Intra-swath Precision is a measure of the noise present within the lidar sensor. Intra-swath accuracy measures the variations in elevations over a smooth, flat surface. Intra-swath polygons were manually created on level, hard surfaces. The generated polygons were attributed with the min, max, and RMSDz data across the polygon. The intra-swath relative accuracy average was found to be 0.043 m.

4.2 CALIBRATION CONTROL VERTICAL ACCURACY

Vertical absolute accuracy reports were generated as a quality assurance check. The location of each control point is displayed in the Surveyed Ground Control map in **Exhibit 7**. Detailed results for each point are included in **Appendix B**.

Calibration Control Accuracyz: Umatilla Wallowa Whitman Project Area			
Average Error = +0.046 m Average Magnitude = 0.046 m			
Minimum Error = -0.085 m RMSE = 0.051 m			
Maximum Error = +0.087 m σ = 0.052 m			
Survey Sample Size: n = 37			

Exhibit 12: Calibration control vertical accuracy results summary

4.3 POINT CLOUD TESTING

The project specifications require that only Non-Vegetated Vertical Accuracy (NVA) be computed for raw LiDAR point cloud swath files. NVA is defined as the elevation difference between the LiDAR surface and ground surveyed static points collected in open terrain (bare soil, sand, rocks, and short grass) as well as urban terrain (asphalt and concrete surfaces). The NVA for this project was tested with 35 check points. These check points were not used in the calibration or post-processing of the LiDAR point cloud data. Elevations from the unclassified LiDAR surface were measured for the xy location of each check point. Elevations interpolated from the LiDAR surface were then compared to the elevation values of the surveyed control points.

The bare-earth LiDAR dataset was designed to meet or exceed ASPRS Positional Accuracy Standards at the 10 cm vertical accuracy class. Absolute accuracy for non-vegetated areas (NVA) must be accurate within 10.0 cm (0.32 ft) RMSEz and 19.6 cm (0.64 ft) at the 95% confidence level. The tested NVA for this dataset was found to be accurate within 7.5 cm (0.25 ft) in terms of the RMSEz. The resulting NVA stated at the 95% confidence level (RMSEz x 1.96) is 14.6 cm (0.48 ft). Therefore, this dataset meets the required NVA of 10 cm (0.32 ft) at the 95% confidence level as defined by the National Standards for Spatial Data Accuracy (NSSDA).

4.4 DIGITAL ELEVATION MODEL TESTING

The project specifications require the accuracy of the derived DEM be calculated and reported in two ways: (1) Non-Vegetated Vertical Accuracy (NVA) calculated at a 95% confidence level in "bare earth" and "urban" land cover classes and (2) Vegetated Vertical Accuracy (VVA) in all vegetated land cover classes combined calculated based on the 95th percentile error. The NVA for this project was tested with 36 check points. The VVA was tested with 26 check points.

The tested Non-Vegetated Vertical Accuracy (NVA) for this dataset captured from the DEM using bi-linear interpolation to derive the DEM elevations was found to be 7.2 cm in terms of the RMSEz. The resulting accuracy stated as the 95% confidence level (RMSEz x 1.96) is 14.1 cm. Therefore, this dataset meets the required NVA of 19.6 cm at the 95% confidence level.

The tested Vegetated Vertical Accuracy (VVA) for this dataset captured from the DEM using bi-linear interpolation for all classes was found to be 15.8 cm. Therefore, this dataset meets the required VVA of 29.4 cm based on the 95th percentile error.

4.5 DATA DENSITY

The goal for this project was to achieve a minimum LiDAR point density of **8.0** points per square meter. First return density is the best representation of the quality of the acquisition because the density of first returns is independent of vegetation and other random factors that could increase the overall point density. The acquisition mission achieved an actual average of **13.8** points per square meter for first returns. Please note that loss of point density over water is to be expected.

Exhibit 13: Density of first returns only in points per meter² for the Umatilla Wallowa Whitman project.

APPENDIX A – CHECK POINTS

Cumura Dalat	Umatilla Wallowa Whitman Aerial Survey			
Survey Foini	Easting	Northing	Elevation (m)	
NVA-001	5052278.190	541772.425	390.900	
NVA-002	5052682.139	541487.303	390.030	
NVA-003	5054985.961	542609.882	576.124	
NVA-010	5056124.708	544859.909	818.434	
NVA-101	5091257.344	501227.006	849.363	
NVA-102	5081194.221	503484.290	1671.489	
NVA-103	5073474.222	503631.809	1572.324	
NVA-104	5065626.312	506581.194	1433.847	
NVA-105	5030646.414	523846.555	2026.933	
NVA-106	5030031.572	520686.366	1949.595	
NVA-107	5036630.905	527413.245	2037.796	
NVA-108	5077633.703	493461.774	1520.823	
NVA-109	5066371.589	498347.217	1154.728	
NVA-110	5061089.936	488003.146	1004.186	
NVA-111	5051215.716	482560.627	1162.116	
NVA-112	5059706.233	478513.212	1470.986	
NVA-113	5061885.841	474319.505	1351.387	
NVA-114	5078391.982	479333.290	1338.273	
NVA-115	5070514.954	492004.758	1530.828	
NVA-201	5122986.595	471863.378	832.692	
NVA-202	5115455.790	469928.484	1421.643	
NVA-203	5114703.945	468732.132	1477.852	
NVA-204	5109222.238	467563.587	1777.552	
NVA-205	5108707.376	472887.873	1558.549	
NVA-206	5106316.458	480428.472	1469.800	
NVA-207	5107331.311	473998.820	1530.182	
NVA-208	5104837.730	473400.181	1449.820	
NVA-209	5097360.606	464326.780	1086.801	
NVA-210	5104845.069	464828.407	1642.892	
VVA-001	5053915.165	541217.304	429.541	
VVA-101	5085296.890	503650.836	1485.577	
VVA-102	5073257.399	496418.058	1476.682	
VVA-103	5068014.466	511667.242	1635.034	
VVA-104	5037258.297	518763.186	1818.753	
VVA-105	5041329.470	528558.817	1982.968	
VVA-106	5062778.854	507694.901	1398.515	
VVA-107	5057967.810	485288.652	1097.504	
VVA-108	5059251.908	471971.380	1388.803	

VVA-109	5066507.118	475088.841	1424.996
VVA-110	5063287.237	490654.916	1341.191
VVA-201	5123044.406	469616.260	911.310
VVA-202	5108761.648	468362.630	1763.127
VVA-203	5110272.046	476108.852	1346.600
VVA-204	5105868.824	477027.330	1515.197
VVA-205	5101994.019	464278.477	1791.275
VVA-206	5107115.549	464483.773	1846.044
VVA-207	5118534.760	472126.059	1239.247
VVA-208	5107511.371	475938.953	1481.823
VVA-209	5115469.710	470793.171	1376.902
VVA-210	5109439.049	478358.178	1332.256

APPENDIX B – CALIBRATION CONTROL ACCURACY REPORT

Umatilla Wallowa Whitman Aerial Survey					
Survey Point	Known Z (m)	Laser Z (m)	Dz (m)		
GCP-119	375.511	375.576	0.046		
GCP-116	1282.955	1283.035	0.032		
GCP-118	359.054	359.141	0.020		
GCP-114	1347.593	1347.631	0.014		
GCP-115	1618.534	1618.579	0.010		
GCP-110	1741.254	1741.312	-0.002		
GCP-112	1527.166	1527.123	-0.004		
GCP-107	1642.505	1642.470	-0.033		
GCP-111	1607.927	1607.871	-0.034		
GCP-103	1591.511	1591.451	-0.035		
GCP-101	1915.072	1914.987	-0.043		
GCP-109	2008.791	2008.758	-0.047		
GCP-122	1988.240	1988.164	-0.048		
GCP-104	1362.813	1362.766	-0.056		
GCP-105	1097.989	1097.987	-0.060		
GCP-117	1092.618	1092.584	-0.062		
GCP-121	1476.736	1476.732	-0.063		
GCP-113	1340.998	1340.932	-0.066		
GCP-108	1473.709	1473.723	-0.076		
GCP-120	1395.665	1395.675	-0.077		
GCP-106	993.578	993.610	-0.085		
GCP-003	1406.971	1406.909	0.087		
GCP-002	951.700	951.720	0.080		
GCP-001	1309.025	1309.071	0.065		
GCP-008	1560.643	1560.566	0.058		
GCP-007	1303.728	1303.665	0.045		

GCP-005	1281.590	1281.542	0.038
GCP-210	977.599	977.654	0.082
GCP-201	821.313	821.360	0.055
GCP-209	1322.671	1322.689	0.050
GCP-202	1597.508	1597.528	0.047
GCP-204	1446.683	1446.626	0.020
GCP-203	1424.851	1424.807	0.018
GCP-208	1613.140	1613.101	0.004
GCP-207	1857.805	1857.809	-0.039
GCP-206	1380.263	1380.313	-0.044
GCP-205	1154.729	1154.811	-0.057
Average Dz (m)	+0.046		
Minimum Dz (m)	-0.085		
Maximum Dz (m)	+0.087		
Average Magnitude (m)	0.046		

0.051

0.052

RMSE (m)

Std. Deviation (m)