# TN Blount County QL2 LiDAR

Report Produced for U.S. Geological Survey

USGS Contract: G10PC00013

Task Order: G15PD00210

Report Date: October 13, 2015

SUBMITTED BY:

**Dewberry** 1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

SUBMITTED TO: U.S. Geological Survey Denver Federal Center Building 810, MS 510 Denver, CO 80225 303.202.4502

# **Table of Contents**

| Executive Summary                                     | 4  |
|-------------------------------------------------------|----|
| The Project Team                                      | 4  |
| Survey Area                                           | 4  |
| Date of Survey                                        | 4  |
| Coordinate Reference System                           | 4  |
| LiDAR Vertical Accuracy                               | 5  |
| Project Deliverables                                  | 5  |
| Project Tiling Footprint                              | 6  |
| LiDAR Acquisition Report                              | 7  |
| LiDAR Acquisition Details                             | 7  |
| LiDAR System parameters                               | 7  |
| Acquisition Status Report and Flightlines             | 8  |
| LiDAR Control                                         | 9  |
| Airborn GPS Kinematic                                 | 11 |
| Generation and Calibration of Laser Points (raw data) | 11 |
| Boresight and Relative accuracy                       | 12 |
| LiDAR Processing & Qualitative Assessment             | 14 |
| Initial Processing                                    | 14 |
| Final Swath Vertical Accuracy Assessment              | 14 |
| Inter-Swath (Between Swath) Relative Accuracy         | 14 |
| Intra-Swath (Within a Single Swath) Relative Accuracy | 16 |
| Horizontal Alignment                                  | 17 |
| Point Density and Spatial Distribution                | 17 |
| LiDAR Quantitative Review                             | 18 |
| Survey Vertical Accuracy Checkpoints                  | 19 |
| Vertical Accuracy Test Procedures                     | 21 |
| NVA                                                   | 21 |
| VVA                                                   | 21 |
| Vertical Accuracy Results                             | 23 |
| Horizontal Accuracy Test Procedures                   | 26 |
| Horizontal Accuracy Results                           | 27 |
| LiDAR Completeness Review                             | 27 |
|                                                       |    |



Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 4 of 71

## **Executive Summary**

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR) technology for the Blount County Tennessee Project Area.

The LiDAR data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 7000ft by 4000ft. A total of 526 tiles were produced for the project encompassing an area of approximately 435 sq. miles.

#### THE PROJECT TEAM

Dewberry served as the prime contractor for the project. The Atlantic Group was contracted and responsible for the acquisition, survey, LAS classification, all LiDAR products, breakline production, and Digital Elevation Model (DEM) production. Dewberry then performed a Macro QC on the finished Data.

The Atlantic Group completed ground surveying for the project and delivered surveyed checkpoints. Their task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the LiDAR-derived surface model. They also verified the GPS base station coordinates used during LiDAR data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project.

#### **SURVEY AREA**

The project area addressed by this report falls within the project area encompassing Blount County, Tennessee.

#### **DATE OF SURVEY**

The LiDAR aerial acquisition was conducted between March 22, 2015 and March 29, 2015.

#### **COORDINATE REFERENCE SYSTEM**

Data produced for the project were delivered in the following reference system.

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 adjustment (NAD 83 (2011))

**Vertical Datum:** The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)

Coordinate System: Tennessee State Plane (FIPS 4100)

**Units:** Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey feet. **Geoid Model:** Geoid12A (Geoid 12A was used to convert ellipsoid heights to orthometric heights).



Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 5 of 71

#### LIDAR VERTICAL ACCURACY

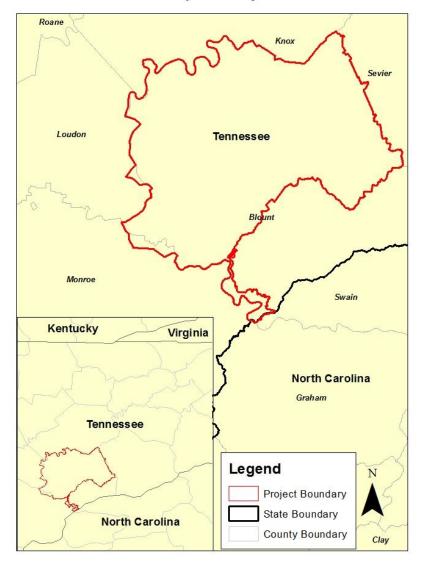
For the Blount County TN LiDAR Project, the tested  $RMSE_z$  of the classified LiDAR data for checkpoints in non-vegetated terrain equaled **0.28 ft** compared with the 0.33 ft specification; and the NVA of the classified LiDAR data computed using  $RMSE_z \ge 1.9600$  was equal to **0.55 ft**, compared with the 0.64 ft specification.

For the Blount County TN LiDAR Project, the tested VVA of the classified LiDAR data computed using the 95<sup>th</sup> percentile was equal to **0.63 ft**, compared with the 0.96 ft specification.

Additional accuracy information and statistics for the classified LiDAR data, raw swath data, and bare earth DEM data are found in the following sections of this report.

#### **PROJECT DELIVERABLES**

The deliverables for the project are listed below.


- 1. Raw Point Cloud Data (Swaths)
- 2. Classified Point Cloud Data (Tiled)
- 3. Bare Earth Surface (Raster DEM IMG Format)
- 4. Intensity Images (8-bit gray scale, tiled, GeoTIFF format)
- 5. Breakline Data (File GDB)
- 6. Independent Survey Checkpoint Data (Report & Points)
- 7. Calibration Points
- 8. Metadata
- 9. Project Report (Acquisition, Processing, QC)
- 10. Project Extents, Including a shapefile derived from the LiDAR Deliverable
- 11. Contours (1 Foot)



Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 6 of 71

## **PROJECT TILING FOOTPRINT**

Five hundred twenty six (526) tiles were delivered for the project. Each tile's extent is 7,000 feet by 4,000 feet (see Appendix B for a complete listing of delivered tiles).



Blount County TN Project Area

Figure 1 - Project Map



Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 7 of 71

# **LiDAR Acquisition Report**

Dewberry elected to subcontract the LiDAR Acquisition and Calibration activities to The Atlantic Group. The Atlantic Group was responsible for providing LiDAR acquisition, calibration and all deliverables to Dewberry.

Dewberry received calibrated swath data from The Atlantic Group on June 9, 2015

# LIDAR ACQUISITION DETAILS

Atlantic acquired forty eight (48) passes of the AOI as a series of perpendicular and/or adjacent flight lines. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. At least two (2) GPS reference station(s) were in operation during all missions, sampling positions at 1 Hz or higher frequently. Differential GPS baseline lengths did not exceed 40 km, unless otherwise approved. Differential GPS unit in aircraft recorded sample positions at 2 Hz or more frequently. LiDAR data was only acquired when GPS PDOP was  $\leq$  4 and at least 6 satellites were in view.

Atlantic monitored weather and atmospheric conditions and conducted LiDAR missions only when conditions existed that would not degrade sensor ability in the collection of data. These conditions included no snow, rain, fog, smoke, mist and/or low clouds. LiDAR systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. Atlantic accessed reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition.

Within 72-hours prior to the planned day(s) of acquisition, Atlantic closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis. Atlantic LiDAR sensors are calibrated at a designated site located at the Fayetteville Municipal Airport (FYM) in Fayetteville, TN and are periodically checked and adjusted to minimize corrections at project sites.

## LIDAR SYSTEM PARAMETERS

Atlantic operated a Partenavia S.P.A. P 68 C/TC (N775MW) outfitted with a Leica ALS70-HP LiDAR system during the collection of the study area. Table 1 illustrates The Atlantic Group system parameters for LiDAR acquisition on this project.

| Lidar System Acquisition Parameters         |                 |  |  |  |
|---------------------------------------------|-----------------|--|--|--|
| Item                                        | Parameter       |  |  |  |
| System                                      | Leica ALS-70 HP |  |  |  |
| Nominal Pulse Spacing (m)                   | 0.6             |  |  |  |
| Nominal Pulse Density (pls/m <sup>2</sup> ) | 2.5             |  |  |  |
| Nominal Flight Height (AGL meters)          | 1144            |  |  |  |
| Nominal Flight Speed (kts)                  | 125             |  |  |  |

| Pass Heading (degree)                   | 90       |
|-----------------------------------------|----------|
| Sensor Scan Angle (degree)              | 45       |
| Scan Frequency (Hz)                     | 34.5     |
| Pulse Rate of Scanner (kHz)             | 265.6    |
| Line Spacing (m)                        | 884      |
| Pulse Duration of Scanner (ns)          | 4        |
| Pulse Width of Scanner (m)              | 0.46     |
| Central Wavelength of Sensor Laser (nm) | 1064     |
| Sensor Operated with Multiple Pulses    | Yes      |
| Beam Divergence (mrad)                  | 0.15     |
| Nominal Swath With (m)                  | 1657     |
| Nominal Swath Overlap (%)               | 20       |
| Scan Pattern                            | Triangle |

Table 1: The Atlantic Group LiDAR System Parameters

#### ACQUISITION STATUS REPORT AND FLIGHTLINES

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. The Acquisition Manager contacted air traffic control and coordinated flight pattern requirements. LiDAR acquisition began immediately upon notification that control base stations were in place. During flight operations, the flight crew monitored weather and atmospheric conditions. LiDAR missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of PDOPs, and performed the first Q/C review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines impacted by unfavorable conditions were marked as invalid and re-flown immediately or at an optimal time.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 9 of 71

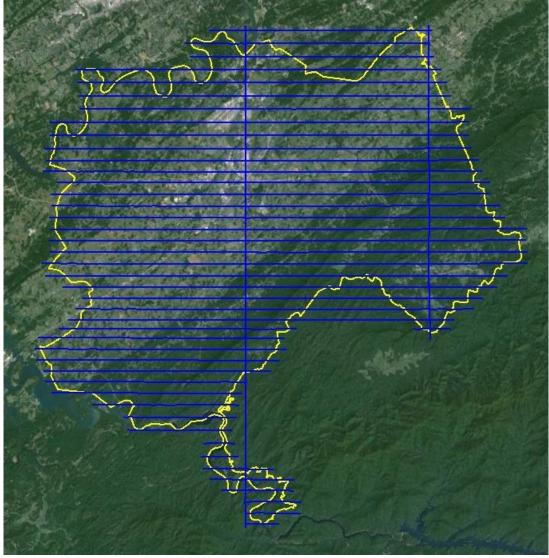



Figure 2 shows the combined trajectory of the flightlines.

Figure 2: Trajectories as flown by The Atlantic Group

# LIDAR CONTROL

Twenty three (23) checkpoints were used by Atlantic to control the lidar acquisition for the Tennessee LiDAR project area. The coordinates of all used base stations are provided in the table below. All control and calibration points are also provided in shapefile format as part of the final deliverables.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 10 of 71

|             | GPS Reference Station Coordinates |             |                              |  |  |  |
|-------------|-----------------------------------|-------------|------------------------------|--|--|--|
| Designation | Easting                           | Northing    | Height (Ellipsoid<br>Meters) |  |  |  |
| CP02        | 2569395.5                         | 551637.8125 | 964.4320068                  |  |  |  |
| СРоз        | 2531378.5                         | 549101.25   | 818.1920166                  |  |  |  |
| CP04        | 2532422.75                        | 522438.5313 | 889.6140137                  |  |  |  |
| CP05        | 2524416                           | 476995.9375 | 938.7299805                  |  |  |  |
| CPo6        | 2616548                           | 516012.0938 | 932.8150024                  |  |  |  |
| CP07        | 2630807.5                         | 497405.5    | 1028.514038                  |  |  |  |
| CPo8        | 2580369.75                        | 523890.25   | 1048.215942                  |  |  |  |
| CP09        | 2565529.25                        | 439864.9375 | 892.1380005                  |  |  |  |
| CP10        | 2540614                           | 468746.0313 | 978.6209717                  |  |  |  |
| CP11        | 2554916.5                         | 508009.5    | 1035.623047                  |  |  |  |
| CP12        | 2612510.5                         | 542933      | 1038.729981                  |  |  |  |
| CP13        | 2557989.25                        | 536402.125  | 928.4630127                  |  |  |  |
| CP14        | 2537833.75                        | 505017.4688 | 949.4609985                  |  |  |  |
| CP15        | 2553561.25                        | 486702.4063 | 979.5200195                  |  |  |  |
| CP16        | 2599276.25                        | 543585.0625 | 899.8220215                  |  |  |  |
| CP17        | 2582487.75                        | 498521.7813 | 1052.719971                  |  |  |  |
| CP18        | 2575184                           | 470420.9375 | 1270.154053                  |  |  |  |
| CP19        | 2532524.25                        | 490262.4688 | 872.367981                   |  |  |  |
| CP20        | 2566807.5                         | 484660      | 1012.064026                  |  |  |  |
| D295        | 2535919.5                         | 471039.75   | 904.8619995                  |  |  |  |
| GPS34V292   | 2565288.75                        | 518326.875  | 1030.833984                  |  |  |  |
| LHT682      | 2592821.5                         | 557256.125  | 1074.078003                  |  |  |  |
| SETPOINT    | 2565307.25                        | 544380.5    | 953.492981                   |  |  |  |

Table 2 – Base Stations used to control LiDAR acquisition

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 11 of 71

# AIRBORN GPS KINEMATIC

Differential GPS unit in aircraft collected positions at 2 Hz. Airborne GPS data was processed using the Inertial Explorer (version 8.5.4320) software. Flights were flown with a minimum of 6 satellites in view (10° above the horizon) and with a PDOP of  $\leq 4$  when laser online. Distances from base station to aircraft were kept to a maximum of 40 km.

For all flights, the GPS data can be classified as good, with GPS residuals of 3 cm average or better but none larger than 10 cm being recorded.

Data collected by the lidar unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

GPS processing results for each lift are included in Appendix C.

## **GENERATION AND CALIBRATION OF LASER POINTS (RAW DATA)**

The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete. Subsequently, the mission points are output using Leica's CloudPro post processor with the most recent boresight values. The initial point generation for each mission calibration is verified within TerraScan using distance colored points to identify errors. If a calibration error greater than specification is observed within the mission, the roll, pitch and scanner scale corrections that need to be applied are calculated. Once validated each output mission is imported into the GeoCue software package. Here a project level supplementary coverage check is carried out to ensure no data voids unreported by Field Operations are present.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 12 of 71

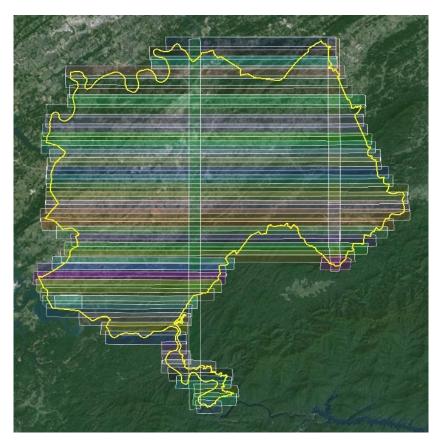



Figure 3 – LiDAR Swath output showing complete coverage.

#### **BORESIGHT AND RELATIVE ACCURACY**

For effective data management, each imported mission is tiled out in GeoCue to a project specific tile scheme or index. Relative accuracy and internal quality are then checked using a number of carefully selected tiles in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed by the generation of Z-Difference colored intensity orthos in GeoCue. The color scale of these orthos are adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission alignment. When available, surveyed control points are used to supplement and verify the calibration of the data.

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 13 of 71

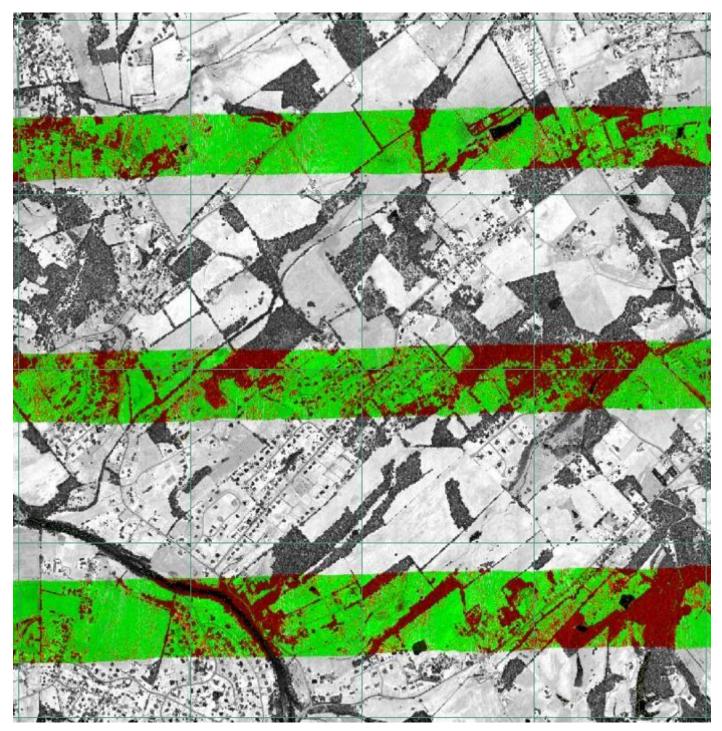



Figure 4 – Delta Z ortho sub-sample

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 14 of 71

# LiDAR Processing & Qualitative Assessment

# **INITIAL PROCESSING**

Once Dewberry receives the calibrated swath data from the acquisition provider, Dewberry performs several validations on the dataset. These validations include vertical accuracy of the swath data, inter-swath (between swath) relative accuracy validation, intra-swath (within a single swath) relative accuracy validation, verification of horizontal alignment between swaths, and confirmation of point density and spatial distribution. This initial assessment allows Dewberry to determine if the data are suitable for full-scale production. Addressing issues at this stage allows the data to be corrected while imposing the least disruption possible on the overall production workflow and overall schedule.

## **Final Swath Vertical Accuracy Assessment**

Once Dewberry received the calibrated swath data from The Atlantic Group, Dewberry tested the vertical accuracy of the non-vegetated terrain swath data prior to additional processing. Dewberry tested the vertical accuracy of the swath data using the thirty non-vegetated (open terrain and urban) independent survey check points. The vertical accuracy is tested by comparing survey checkpoints in non-vegetated terrain to a triangulated irregular network (TIN) that is created from the raw swath points. Only checkpoints in non-vegetated terrain can be tested against raw swath data because the data has not undergone classification techniques to remove vegetation, buildings, and other artifacts from the ground surface. Checkpoints are always compared to interpolated surfaces created from the LiDAR point cloud because it is unlikely that a survey checkpoint will be located at the location of a discrete LiDAR point. Project specifications require a NVA of (19.6 cm) 0.64 ft based on the RMSE<sub>z</sub> (10 cm or 0.33 ft) x 1.96. The dataset for the Blount County TN Project satisfies this criteria. This raw LiDAR swath data set was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSE<sub>z</sub> Vertical Accuracy Class. Actual NVA accuracy was found to be RMSE<sub>z</sub> = 0.28 ft (8.53 cm), equating to +/-0.54 ft (16.46 cm) at 95% confidence level. The table below shows all calculated statistics for the raw swath data.

| 100 %<br>of<br>Totals | # of<br>Points | RMSEz<br>(ft)<br>NVA<br>Spec=0.33<br>ft | NVA- Non-<br>vegetated<br>Vertical<br>Accuracy<br>((RMSEz x<br>1.9600)<br>Spec=0.64 ft | Mean<br>(ft) | Median<br>(ft) | Skew | Std<br>Dev<br>(ft) | Min<br>(ft) | Max<br>(ft) | Kurtosis |
|-----------------------|----------------|-----------------------------------------|----------------------------------------------------------------------------------------|--------------|----------------|------|--------------------|-------------|-------------|----------|
| NVA                   | 30             | 0.28                                    | 0.54                                                                                   | -0.07        | -0.09          | 0.86 | 0.27               | -0.50       | 0.58        | 0.44     |

Table 3: NVA at 95% Confidence Level for Raw Swaths

## Inter-Swath (Between Swath) Relative Accuracy

Dewberry verified inter-swath or between swath relative accuracy of the dataset by creating Delta-Z (DZ) orthos. According to the SOW, USGS LiDAR Base Specifications v1.2, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet inter-swath relative accuracy of 8 cm RMSDz or less with maximum differences less than 16 cm. These measurements are to be taken in non-vegetated and flat open terrain using single or only returns from all classes. Measurements are calculated in the DZ orthos on

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 15 of 71

1-meter pixels or cell sizes. Areas in the dataset where overlapping flight lines are within 8 cm of each other within each pixel are colored green, areas in the dataset where overlapping flight lines have elevation differences in each pixel between 8 cm -12 cm are colored yellow, and areas in the dataset where overlapping flight lines have elevation differences in each pixel greater than 12 cm are colored red. Pixels that do not contain points from overlapping flight lines are colored according to their intensity values. Areas of vegetation and steep slopes (slopes with 12 cm or more of valid elevation change across 1 linear meter) are expected to appear yellow or red in the DZ orthos. If the project area is heavily vegetated, Dewberry may also create DZ Orthos from the initial ground classification only, while keeping all other parameters consistent. This allows Dewberry to review the ground classification relative accuracy beneath vegetation and to ensure flight line ridges or other issues do not exist in the final classified data.

Flat, open areas are expected to be green in the DZ orthos. Large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data, especially when these yellow/red sections follow the flight lines and not the terrain or areas of vegetation. The DZ orthos for Blount County are shown in the figure below; this project meets inter-swath relative accuracy specifications.

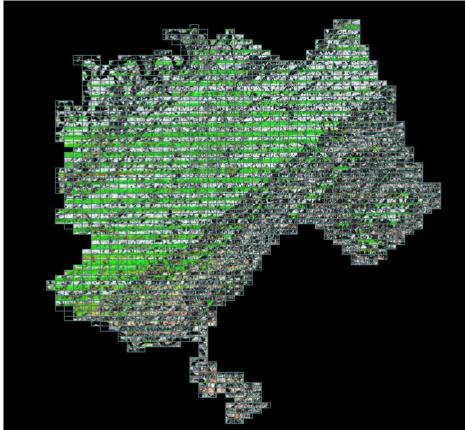



Figure 5- Single return DZ Orthos for the Blount County TN LiDAR Project. Inter-swath relative accuracy passes specifications.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 16 of 71

#### Intra-Swath (Within a Single Swath) Relative Accuracy

Dewberry verifies the intra-swath or within swath relative accuracy by using Quick Terrain Modeler (QTM) scripting and visual reviews. QTM scripting is used to calculate the RMSD<sub>z</sub> of all points within each 1-meter pixel/cell size of each swath. Dewberry analysts then identify planar surfaces acceptable for repeatability testing and analysts review the QTM results in those areas. According to the SOW, USGS LiDAR Base Specifications v1.2, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet intra-swath relative accuracy of 6 cm RMSDz or less. The image below shows examples of the intra-swath relative accuracy of Blount County TN LiDAR; this project meets intra-swath relative accuracy specifications.



Figure 6–Intra-swath relative accuracy. The top left image shows the full project area; areas where the RMSDz is ≤6 cm per pixel within each swath are colored green and areas exceeding 6 cm RMSDz are colored red. The top right image shows a large portion of the dataset; flat, open areas are colored green as they are within 6 cm RMSDz whereas sloped terrain is colored red because it exceeds 6 cm RMSDz, as expected, due to actual slope/terrain change. The bottom image is a close-up of a flat area. With the exception of few trees and a building (shown in red as the RMSDz in vegetated areas and high slopes/terrain angles will exceed 6 cm) this open flat area is acceptable for repeatability testing. Intra-swath relative accuracy passes specifications. Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 17 of 71

# **Horizontal Alignment**

To ensure horizontal alignment between adjacent or overlapping flight lines, Dewberry uses QTM scripting and visual reviews. QTM scripting is used to create files similar to DZ orthos for each swath but this process highlights planar surfaces, such as roof tops. In particular, horizontal shifts or misalignments between swaths on roof tops and other elevated planar surfaces are highlighted. Visual reviews of these features, including additional profile verifications, are used to confirm the results of this process. The image below shows an example of the horizontal alignment between swaths for Blount County, TN; no horizontal alignment issues were identified.

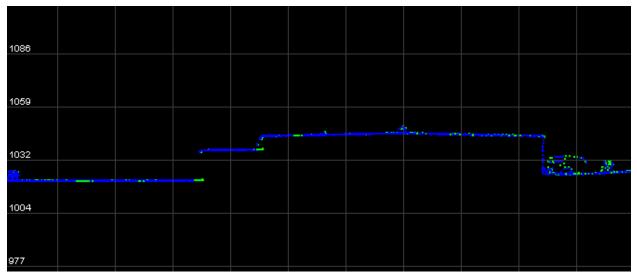



Figure 7– Horizontal Alignment. Two separate flight lines differentiated by color (Blue/Green) are shown in this profile. There is no visible offset between these two flight lines. No horizontal alignment issues were identified.

## **Point Density and Spatial Distribution**

The required Aggregate Nominal Point Spacing (ANPS) for this project is no greater than 0.71 meters, which equates to an Aggregate Nominal Point Density (ANPD) of 2 points per square meter or greater. Density calculations were performed using first return data only located in the geometrically usable center portion (typically ~90%) of each swath. By utilizing statistics, the project area was determined to have an ANPS of 0.59 meters or an ANPD of 2.86 points per square square meter which satisfies the project requirements.

The spatial distribution of points must be uniform and free of clustering. This specification is tested by creating a grid with cell sizes equal to the design NPS\*2. QTM scripting is then used to calculate the number of first return points of each swath within each grid cell. At least 90% of the cells must contain 1 LiDAR point, excluding acceptable void areas such as water or low NIR reflectivity features, i.e. some asphalt and roof composition materials. This project passes spatial distribution requirements, as shown in the image below.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 18 of 71

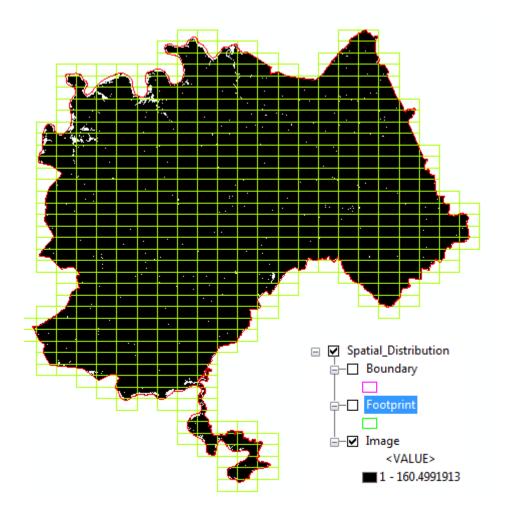



Figure 8– Spatial Distribution. The 2\*NPS tile grid is shown in green and all tiles containing at least one LiDAR point are colored black.

#### LIDAR QUANTITATIVE REVIEW

Dewberry quantitatively tested the dataset by testing the vertical accuracy of the LiDAR. The vertical accuracy is tested by comparing the discreet measurement of the survey checkpoints to that of the interpolated value within the three closest LiDAR points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the LiDAR data is actually tested. However there is an increased level of confidence with LiDAR data due to the relative accuracy. This relative accuracy in turn is based on how well one LiDAR point "fits" in comparison to the next contiguous LiDAR measurement, and is verified as part of the initial processing. If the relative accuracy of a dataset is within specifications and the dataset passes vertical accuracy requirements at the location of survey checkpoints, the vertical accuracy results can be applied to the whole dataset with high confidence due to the passing relative accuracy.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 19 of 71

Dewberry also tests the horizontal accuracy of LiDAR datasets when checkpoints are photoidentifiable in the intensity imagery. Photo-identifiable checkpoints in intensity imagery typically include checkpoints located at the ends of paint stripes on concrete or asphalt surfaces or checkpoints located at 90 degree corners of different reflectivity, e.g. a sidewalk corner adjoining a grass surface. The XY coordinates of checkpoints, as defined in the intensity imagery, are compared to surveyed XY coordinates for each photo-identifiable checkpoint. These differences are used to compute the tested horizontal accuracy of the LiDAR. As not all projects contain photo-identifiable checkpoints, the horizontal accuracy of the LiDAR cannot always be tested.

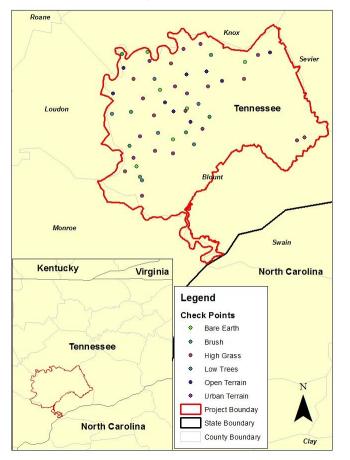
## SURVEY VERTICAL ACCURACY CHECKPOINTS

For the vertical accuracy assessment, fifty (50) check points were surveyed for the project and are located within bare earth/open terrain, brush, high grass, urban terrain, and low trees land cover categories. Please see appendix A to view The Atlantic Group's survey report which details and validates how the survey was completed for this project.

Checkpoints were evenly distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

| Point ID    | NAD 83(2011)Ten      | NAVD88 (Geoid 12A) |                |
|-------------|----------------------|--------------------|----------------|
|             | Easting X (ft)       | Northing Y (ft)    | Elevation (ft) |
| BARE01      | 2547542.33           | 530375.14          | 996.70         |
| BARE02      | 2539192.56           | 555474.00          | 863.93         |
| BARE03      | 2556010.57           | 497937.09          | 1038.76        |
| BARE04      | 2603377.97           | 548719.39          | 1009.55        |
| BARE05      | 2532017.39 480072.43 |                    | 991.15         |
| BARE06      | 2565288.53 518326.95 |                    | 1030.69        |
| <b>OT01</b> | 2564931.75           | 540411.76          | 940.56         |
| OT02        | 2516417.14           | 528143.43          | 963.53         |
| ОТоз        | 2556292.82           | 516139.20          | 946.46         |
| ОТо4        | 2567317.12           | 509461.75          | 1030.74        |
| ОТо5        | 2550670.16           | 522053.63          | 962.09         |
| ОТоб        | 2619745.92           | 555142.39          | 998.21         |
| ОТо7        | 2578027.26           | 542532.97          | 877.22         |
| ОТо8        | 2523310.37           | 544761.69          | 862.71         |
| ОТо9        | 2587996.64           | 536253.36          | 984.87         |
| UB01        | 2562725.52           | 557314.53          | 916.70         |
| UB02        | 2565037.37           | 528083.85          | 877.68         |
| UB03        | 2540432.86           | 549327.48          | 868.77         |
| UB04        | 2536091.35           | 524892.60          | 956.24         |
| UB05        | 2534177.52           | 499804.96          | 936.90         |
| UB06        | 2564155.96           | 516669.08          | 1033.44        |
| UB07        | 2575265.08           | 504562.73          | 1074.98        |

All checkpoints surveyed for vertical accuracy testing purposes are listed in the following table.


Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 20 of 71

| UB08 | 2611786.41 | 553411.68 | 1025.02 |
|------|------------|-----------|---------|
| UB09 | 2574033.86 | 560460.38 | 934.66  |
| UB10 | 2557340.35 | 532541.88 | 907.97  |
| UB11 | 2530024.58 | 485693.66 | 995.05  |
| UB12 | 2535536.38 | 460570.72 | 848.47  |
| UB13 | 2544036.57 | 490397.12 | 965.75  |
| UB14 | 2555822.49 | 488465.97 | 1032.60 |
| UB15 | 2637431.92 | 496995.08 | 1080.59 |
| HG01 | 2554726.88 | 547801.87 | 869.79  |
| HG02 | 2530043.16 | 537457.54 | 876.13  |
| HG03 | 2543544.03 | 513505.29 | 1113.22 |
| HG04 | 2642545.15 | 499179.51 | 1074.45 |
| HG05 | 2602644.39 | 537673.57 | 929.40  |
| HG06 | 2578959.41 | 532707.79 | 986.80  |
| HG07 | 2524378.77 | 476909.60 | 935.80  |
| BR01 | 2580852.25 | 553425.93 | 991.60  |
| BR02 | 2522462.05 | 554063.91 | 823.35  |
| BR03 | 2528431.30 | 515836.08 | 877.22  |
| BR04 | 2527165.62 | 493686.95 | 889.41  |
| BR05 | 2564504.34 | 502416.32 | 1050.97 |
| BR06 | 2579882.70 | 512496.54 | 1025.92 |
| BR07 | 2534235.37 | 473080.88 | 927.25  |
| LT01 | 2543658.25 | 537694.23 | 862.12  |
| LT02 | 2515725.58 | 514650.59 | 835.09  |
| LT03 | 2545918.07 | 501977.01 | 974.64  |
| LT04 | 2569884.39 | 494626.94 | 1025.81 |
| LT05 | 2572596.73 | 521043.82 | 991.20  |
| LT06 | 2535590.47 | 470737.15 | 917.05  |

Table 4: Blount County TN surveyed accuracy checkpoints

The figure below shows the location of the QA/QC checkpoints used to test the positional accuracy of the dataset.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 21 of 71



Blount County TN Check Points



#### VERTICAL ACCURACY TEST PROCEDURES

**NVA** (Non-vegetated Vertical Accuracy) is determined with check points located only in nonvegetated terrain, including open terrain (grass, dirt, sand, and/or rocks) and urban areas, where there is a very high probability that the LiDAR sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The NVA determines how well the calibrated LiDAR sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSEz) of the checkpoints x 1.9600. For the Blount County, TN project, vertical accuracy must be 0.64 ft (19.6 cm) or less based on an RMSEz of 0.33 ft (10 cm) x 1.9600.

**VVA** (Vegetated Vertical Accuracy) is determined with all checkpoints in vegetated land cover categories, including tall grass, weeds, crops, brush and low trees, and fully forested areas, where there is a possibility that the LiDAR sensor and post-processing may yield elevation errors that

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 22 of 71

do not follow a normal error distribution. VVA at the 95% confidence level equals the 95th percentile error for all checkpoints in all vegetated land cover categories combined. The Blount County TN, LiDAR Project VVA standard is 0.96 ft (29.4 cm) based on the 95th percentile. The VVA is accompanied by a listing of the 5% outliers that are larger than the 95th percentile used to compute the VVA; these are always the largest outliers that may depart from a normal error distribution. Here, Accuracyz differs from VVA because Accuracyz assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas VVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

The relevant testing criteria are summarized in Table 5.

| Quantitative Criteria                                                                                             | Measure of Acceptability                                |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Non-Vegetated Vertical Accuracy (NVA) in open terrain and urban land cover categories using ${ m RMSE_z}$ *1.9600 | 0.64 ft (based on RMSEz (0.33 ft) *<br>1.9600)          |
| Vegetated Vertical Accuracy (VVA) in all vegetated land cover categories combined at the 95% confidence level     | 0.96 ft (based on combined 95 <sup>th</sup> percentile) |

Table 5 – Acceptance Criteria

The primary QA/QC vertical accuracy testing steps used by Dewberry are summarized as follows:

- 1. The Atlantic Group's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications.
- 2. Next, Dewberry interpolated the bare-earth LiDAR DTM to provide the z-value for every checkpoint.
- 3. Dewberry then computed the associated z-value differences between the interpolated z-value from the LiDAR data and the ground truth survey checkpoints and computed NVA, VVA, and other statistics.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 23 of 71

# VERTICAL ACCURACY RESULTS

The table below summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the fully classified LiDAR LAS files.

| Land Cover<br>Category | # of Points | Accuracy (RMSE <sub>z</sub> x | VVA – Vegetated<br>Vertical Accuracy<br>(95th Percentile)<br>Spec=0.96 ft |
|------------------------|-------------|-------------------------------|---------------------------------------------------------------------------|
| NVA                    | 30.00       | 0.55                          |                                                                           |
| VVA                    | 20.00       |                               | 0.63                                                                      |

Table 6 – Tested NVA and VVA

This LiDAR dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 0.33 ft (10 cm) RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be  $RMSE_z = 0.28$  ft (8.53 cm), equating to +/- 0.55 ft (16.76 cm) at 95% confidence level. Actual VVA accuracy was found to be +/- 0.63 ft (19.2 cm) at the 95th percentile.

The figure below illustrates the magnitude of the differences between the QA/QC checkpoints and LiDAR data. This shows that the majority of LiDAR elevations were within +/- 0.4 ft of the checkpoints elevations, but there were some outliers where LiDAR and checkpoint elevations differed by up to -0.72 ft.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 24 of 71



Figure 10 – Magnitude of elevation discrepancies per land cover category in feet

| _ 11 11 1 at 11                |                          |                                       |
|--------------------------------|--------------------------|---------------------------------------|
| Table 7 lists the 5% outliers  | that are larger than the | VVA 05 <sup>th</sup> percentile       |
| ruble / libes the 3/6 outliers | that are farger than the | , , , , , , , , , , , , , , , , , , , |

| Point ID | NAD 83(2011)Tennessee State Plane<br>FIPS 4100 |                 | NAVD88        | LiDAR Z | Delta Z | AbsDeltaZ |
|----------|------------------------------------------------|-----------------|---------------|---------|---------|-----------|
|          | Easting X (ft)                                 | Northing Y (ft) | Survey Z (ft) | (ft)    | Dena Z  | ADSDERAZ  |
| LT02     | 2515725.58                                     | 514650.59       | 835.09        | 834.38  | -0.72   | 0.72      |

Table 7 – 5% Outliers

Table 8 provides overall descriptive statistics.

| 100 %<br>of<br>Totals          | # of<br>Points | RMSEz<br>(ft)<br>NVA<br>Spec=0.33<br>ft | Mean<br>(ft) | Median<br>(ft) | Skew  | Std<br>Dev<br>(ft) | Kurtosis | Min<br>(ft) | Max<br>(ft) |
|--------------------------------|----------------|-----------------------------------------|--------------|----------------|-------|--------------------|----------|-------------|-------------|
| Open<br>Terrain                | 15             | 0.21                                    | -0.11        | -0.13          | 0.71  | 0.12               | -0.29    | -0.49       | 0.35        |
| Terrain                        | 15             | 0.21                                    | -0.11        | -0.13          | 0./1  | 0.12               | -0.29    | -0.43       | 0.35        |
| Urban                          | 15             | 0.33                                    | -0.14        | -0.25          | 0.75  | 0.31               | -0.34    | -0.54       | 0.44        |
| NVA                            | 30.00          | 0.28                                    | -0.12        | -0.15          | 0.65  | 0.25               | 0.11     | -0.54       | 0.44        |
| Tall<br>Weeds<br>and<br>Crops  | 7              | N/A                                     | -0.04        | -0.10          | -0.48 | 0.23               | -0.19    | -0.42       | 0.23        |
| Brush<br>Lands<br>and<br>Trees | 13             | N/A                                     | 0.00         | 0.02           | -0.20 | 0.40               | -0.52    | -0.72       | 0.63        |
| VVA                            | 20.00          | N/A                                     | -0.01        | -0.02          | -0.14 | 0.34               | -0.10    | -0.72       | 0.63        |

 Table 8 – Overall Descriptive Statistics

The figure below illustrates a histogram of the associated elevation discrepancies between the QA/QC checkpoints and elevations interpolated from the LiDAR triangulated irregular network (TIN). The frequency shows the number of discrepancies within each band of elevation differences. Although the discrepancies vary between a low of -0.72 feet and a high of +0.63 feet, the histogram shows that the majority of the discrepancies are skewed on the negative side. The vast majority of points are within the ranges of -0.375 feet to +0.375 feet.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 26 of 71

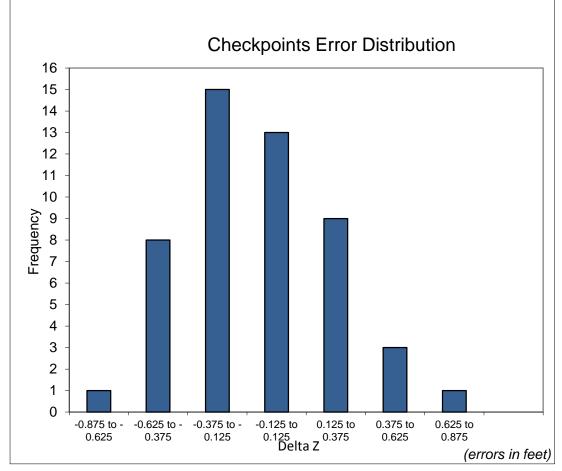



Figure 11 – Histogram of Elevation Discrepancies with errors in feet

#### Based on the vertical accuracy testing conducted by Dewberry, the LiDAR dataset for the USGS Blount County TN LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

## HORIZONTAL ACCURACY TEST PROCEDURES

Horizontal accuracy testing requires well-defined checkpoints that can be identified in the dataset. Elevation datasets, including LiDAR datasets, do not always contain well-defined checkpoints suitable for horizontal accuracy assessment. However, the ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) recommends at least half of the NVA vertical check points should be located at the ends of paint stripes or other point features visible on the LiDAR intensity image, allowing them to double as horizontal check points.

Dewberry reviews all NVA checkpoints to determine which, if any, of these checkpoints are located on photo-identifiable features in the intensity imagery. This subset of checkpoints are then used for horizontal accuracy testing.

The primary QA/QC horizontal accuracy testing steps used by Dewberry are summarized as follows:

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 27 of 71

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications and tried to locate half of the NVA checkpoints on features photo-identifiable in the intensity imagery.
- 2. Next, Dewberry identified the well-defined features in the intensity imagery.
- 3. Dewberry then computed the associated xy-value differences between the coordinates of the well-defined feature in the LiDAR intensity imagery and the ground truth survey checkpoints.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. Horizontal accuracy was assessed using NSSDA methodology where horizontal accuracy is calculated at the 95% confidence level. This report provides the results of the horizontal accuracy testing.

## HORIZONTAL ACCURACY RESULTS

No checkpoints were photo-identifiable in the intensity imagery; horizontal accuracy could not be tested on this dataset.

#### LIDAR COMPLETENESS REVIEW

Dewberry received 526 LiDAR tiles for the project area. The LiDAR was delivered in LAS format 1.4, point data format 6 is used, and all data have intensity values. The LAS tiles are named appropriately according to the State of Tennessee's naming convention and have correct extents (7000 ft x 4000 ft).

All spatial projection information was correct and is as follows:

- □ Horizontal Datum: NAD83 (2011)
- □ Vertical Datum: NAVD88, Geoid 12A
- □ Projection: State Plane Tennessee (FIPS 4100)
- □ Horizontal and Vertical Units: U.S. Survey Feet

Each record includes the following fields (among others):

- $\Box$  X, Y, Z coordinates
- □ Intensity value
- □ Return number
- □ Number of returns
- □ Classification flags
- □ Scanner channel
- □ Scan direction flag
- □ Edge of flight line
- □ Scan angle
- □ User data
- □ Point source ID
- □ Classification
- $\Box$  GPS time

The LiDAR data has been classified to contain the following classes:

Required Classes

- □ Class 1 (Unclassified)
- □ Class 2 (Bare Earth)

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 28 of 71

- □ Class 7 (Low Points)
- □ Class 9 (Water)
- □ Class 10 (Ignored Ground)
- □ Class 17 (Bridges)
- □ Class 18 (High Noise)

Both withheld and overlap flags have been used correctly.

#### LIDAR QUALITATIVE REVIEW

The goal of Dewberry's qualitative review is to assess the continuity and the level of cleanliness of the bare earth product. Each LiDAR tile is expected to meet the following acceptance criteria:

- □ The point density is homogenous and sufficient to meet the user's needs;
- □ The ground point have been correctly classified (no man-made structures or vegetation remains, no gaps except over water bodies);
- □ The ground surface model exhibits a correct definition (no aggressive classification, no over-smoothing, no inconsistency in the post-processing);
- □ No obvious anomalies due to sensor malfunction or systematic processing artifacts are present (data voids, spikes, divots, ridges between flight lines or tiles, cornrows, etc);
- $\Box$  Residual artifacts < 5%

Dewberry analysts performed a visual inspection of 100% of the bare earth data digital terrain model (DTM) at a macro level. The DTMs are built by first creating a fishnet grid of the LiDAR mass points with a grid distance equal to or better than the final DEM deliverables. Then a triangulated irregular network is built based on this gridded DTM and displayed as a 3D surface. A shaded relief effect was applied which enhances 3D rendering.

Quick Terrain Modeler, the software used for visualization allows the user to navigate, zoom and rotate models and to display elevation information with an adaptive color coding in order to better identify anomalies. Models can also be viewed by point density, in which areas meeting the specified point density threshold are displayed green and areas not meeting the point density threshold are displayed red. This can help to identify void areas and areas that are misclassified. As the surface model is created from ground only points, sparse or red areas are expected over buildings, water, and dense vegetation where there is poor LiDAR penetration. The table below shows a breakdown of the calls made during the first review of the project data.

| Issue                        | Number of Occurrences | Delivery 2 |
|------------------------------|-----------------------|------------|
| Aggressive Misclassification | 6                     | 0          |
| Artifacts                    | 2                     | 0          |
| Total                        | 8                     | 0          |

Table 9 – Breakdown of LiDAR qualitative edit calls.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 29 of 71

#### **Aggressive Misclassification**

Aggressive misclassification calls in this document imply that LiDAR points are unclassified in the delivered dataset when they should be classified to ground. This call indicates areas where some class 1 points could be reclassified to class 2, ground, to improve detail in the surface model and to more correctly model surface features. There were six (6) instances of aggressive misclassification identified in this project area. An example of aggressive misclassification edit calls is found below.



Figure 12– Tile 2570413NE, first delivery. The majority of the points are classified as unclassified but valid unclassified and overlap points should be reclassified to ground to improve the definition of the bare-earth surface. The image is a bird's eye view of the DEM.

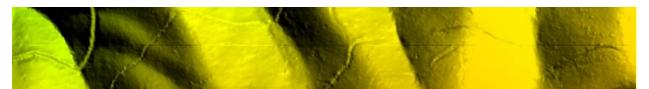



Figure 11 – Tile 2570413NE, second delivery. The majority of the points have been reclassified to ground to improve the definition of the bare-earth surface. The image is a bird's eye view of the DEM.

#### Artifacts

Artifacts are features that are left in the ground model that should be removed. There were two (2) artifacts identified in the project area and include vegetation, bridges and structures. These should be removed in order to improve the bare-earth surface model and classed to their appropriate class. Examples of the artifact edit calls can be found below.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 30 of 71

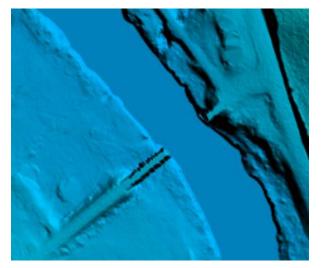



Figure 14 – Tile 2570549SE, first delivery. The structure can be seen protruding from the ground and should be reclassified to the specified bridge deck class (class 17).

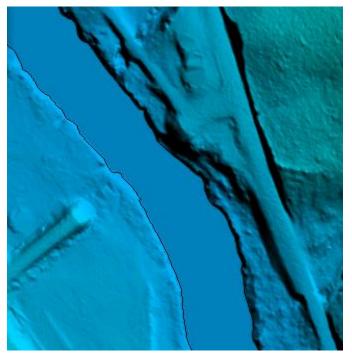



Figure 12 – Tile 2570549SE, second delivery. Bare-earth DEM colored by elevation is shown. The feature has been reclassified to the specified bridge deck class (class 17).

#### LIDAR RECOMMENDATION

Dewberry recommends the LiDAR be accepted. All previous issues have been correctly addressed.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 31 of 71

# **Derivative LiDAR Products**

USGS required several derivative LiDAR products to be created. Each type of derived product is described below.

#### **1-FT CONTOURS**

One-foot contours have been created for the full project area. The contour attributes include labeling as either Index or Intermediate and an elevation value. The contours are also 3D, storing the elevation value within its internal geometry. Some smoothing has been applied to the contours to enhance their aesthetic quality. Due to the large number of contours present and their file size, the contours have been tiled to the project tiles. Keeping all contours in one large contour file rendered the contours un-usable. The contour tiles are all located within one file GDB and are named according to the final project tile grid. The final version of contours has not yet been delivered and verified for correct topological behavior.

# **Breakline Analysis**

A qualitative/quantitative review was completed on the project area breaklines. The comprehensive review consisted of a visual review of the breaklines for completeness in compilation and horizontal placement as well as proper feature coding. This visual analysis was followed by several automated tests for hydro-flattening and topology using ESRI Data Reviewer tools and proprietary tools developed by Dewberry.

## **BREAKLINE DATA OVERVIEW**

The Breakline qualitative review starts with an overview. First, the ESRI geodatabase is reviewed in ArcCatalog for correct spatial projections, data organization, and to ensure all necessary feature classes are present and are properly populated.

The breaklines were delivered in a geodatabase, containing two separate feature classes. The delivered geodatabase contained the correct feature classes, shown below:

- □ Blount\_Ponds\_Lakes
- □ Blount\_Rivers\_Streams

The coordinate system of the delivered breaklines is correct and is as defined below:

- □ Horizontal Datum: NAD83 (2011)
- □ Vertical Datum: NAVD88
- □ Projection: Tennessee State Plane (FIPS 4100)
- □ Horizontal Units: US Survey Feet
- □ Vertical Units: US Survey Feet

#### **BREAKLINE QUALITATIVE REVIEW**

The breakline qualitative review includes reviewing data for completeness, validating the horizontal placement of breaklines, and verifying the coding and attribution of breaklines.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 32 of 71

The breaklines were reviewed against intensity imagery Dewberry creates for its QC process. A macro review was performed on 100% of the data in an ESRI environment to validate data collection consistency and to validate all necessary features were collected. A breakdown of the edit calls made during the review can be seen in the table below.

| Issue                             | Number of Occurrences | Delivery 2 |  |  |
|-----------------------------------|-----------------------|------------|--|--|
| Break in Continuity               | 2                     | 0          |  |  |
| General Call - Clip<br>Breaklines | 1                     | 0          |  |  |
| Total                             | 3                     | 0          |  |  |

Table 10 – Breakdown of breakline qualitative edit calls

#### **Break in Continuity**

Two (2) issues were identified where hydrographic breaklines were stopped or closed, but should have continued or connected through a feature. An example is shown below



Figure 16 – Tile 2598517NE, first delivery. Full point cloud intensity, left, displays where the breaklines are stopped and started again mid-stream. The Bing imagery, middle, shows a spillway that inhibits the water but does not fully retain. The right image shows the effect on the DEM.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 33 of 71

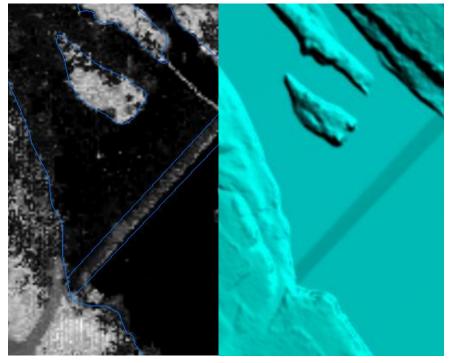



Figure 17- Tile 2598517NE, second delivery. Full point cloud intensity, left, displays where the breaklines have been connected enforcing the elevation difference. The right image shows the effect on the DEM.

# **Clipped Breaklines**

One (1) general call was made to clip the breaklines to the boundary. The breaklines were clipped to the boundary creating a "finished" look. An example is shown below.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 34 of 71

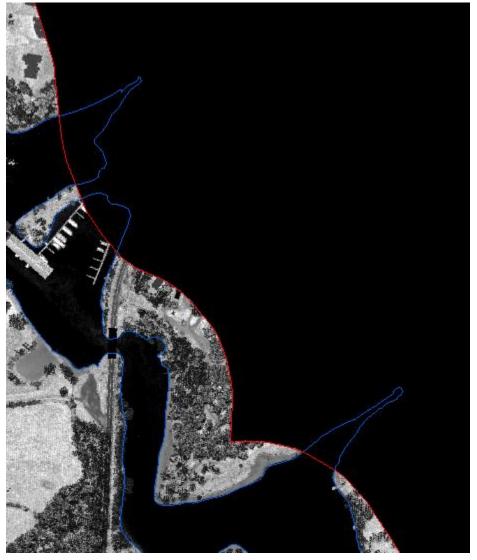



Figure 38 – Tile 2570565SE, first delivery. The breaklines (blue) extend past the project boundary (red) and should be clipped to the boundary.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 35 of 71

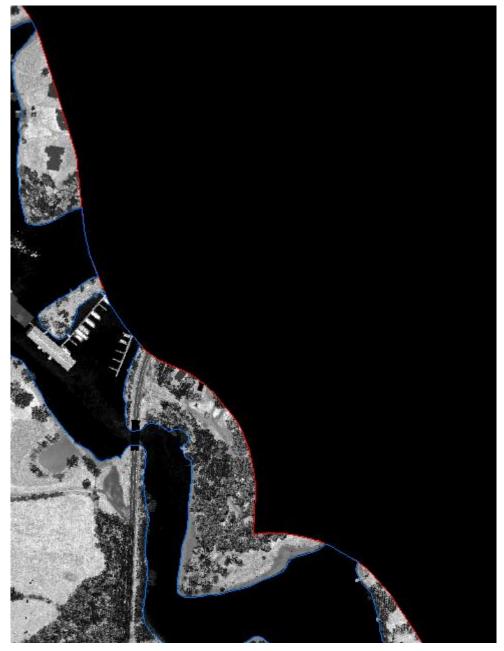



Figure 49 – Tile 2570565SE, second delivery. The breaklines (blue) have been clipped to the project boundary (red).

## **BREAKLINE QUANTITATIVE REVIEW**

The Quantitative Vertical Analysis compares the breakline vertices against the bare-earth LiDAR data. Dewberry begins this process by converting all breakline vertices to points. At the same time an ESRI Terrain is created from the LiDAR using ground and water points. The LiDAR elevation, extracted from the terrain, is recorded for every breakline vertex. An analysis of the

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 36 of 71

differences in elevation between the breakline vertices and LiDAR is conducted to determine the vertical accuracy of the breakline collection.

Dewberry found no issues in this portion of the review.

#### **BREAKLINE RECOMMENDATION**

Dewberry recommends accepting the breaklines; all identified issues have been resolved.

# Hydro-flattened Digital Elevation Model Analysis

Dewberry received 526 hydro-flattened bare earth DEMs as part of the deliverables for the project area. Dewberry used proprietary scripts and tools to ensure all DEMs have the correct formatting, cell size, projection, and extents. Dewberry used ESRI ArcMap and Global Mapper software to review all DEMs for completeness and qualitative analysis.

#### **OVERVIEW**

Dewberry ran proprietary tools on all delivered DEMs to verify formatting, cell size, extents, and projection information.

All DEMs were correctly formatted:

- □ DEM type: IMG
- □ Cell Size: 2.5 foot
- $\Box$  Extents: 7,000 ft x 4,000 ft tiles

The coordinate system of the delivered DEMs is correct and is as defined below:

- □ Horizontal Datum: NAD83 (2011)
- □ Projection: Tennessee State Plane (FIPS 4100)
- □ Horizontal and Vertical Units: US Survey Feet

#### **DEM QUANTITATIVE REVIEW**

The same checkpoints used to test the vertical accuracy of the LiDAR data were also used to test the vertical accuracy of the DEMs. Table 11 outlines the calculated  $RMSE_z$  and associated statistics, in feet, while **Error! Reference source not found.**12 outlines vertical accuracy as omputed by the different methods, in feet.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 37 of 71

| 100 % of<br>Totals       | # of<br>Points | RMSEz (ft)<br>NVA<br>Spec=0.33<br>ft | Mean (ft) | Median<br>(ft) | Skew  | Std<br>Dev<br>(ft) | Kurtosis | Min<br>(ft) | Max<br>(ft) |
|--------------------------|----------------|--------------------------------------|-----------|----------------|-------|--------------------|----------|-------------|-------------|
| Open                     |                |                                      |           |                |       |                    |          |             |             |
| Terrain                  | 15             | 0.22                                 | -0.10     | -0.10          | 0.72  | 0.20               | 0.76     | -0.41       | 0.37        |
| Urban                    | 15             | 0.33                                 | -0.14     | -0.24          | 0.86  | 031                | -0.22    | -0.52       | 0.45        |
| NVA                      | 30.00          | 0.28                                 | -0.12     | -0.14          | 0.71  | 0.26               | 0.00     | -0.52       | 0.45        |
| Tall Weeds<br>and Crops  | 7              | N/A                                  | -0.03     | -0.06          | -0.80 | 0.22               | 0.38     | -0.43       | 0.22        |
| Brush Lands<br>and Trees | 13             | N/A                                  | 0.05      | 0.13           | -0.42 | 0.43               | -0.68    | -0.76       | 0.65        |
| VVA                      | 20.00          | N/A                                  | 0.02      | 0.10           | -0.28 | 0.37               | -0.22    | -0.76       | 0.65        |

Table 11 - The table shows the calculated RMSEz values, in feet, as well as associated statistics of the errors for the Blount County, TN DEM dataset.

| Land Cover Category | # of Points | NVA – Non-vegetated<br>Vertical Accuracy<br>(RMSEz x 1.9600)<br>Spec=0.64 ft | VVA – Vegetated<br>Vertical Accuracy<br>(95th Percentile)<br>Spec=0.96 ft |
|---------------------|-------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| NVA                 | 30.00       | 0.55                                                                         |                                                                           |
| VVA                 | 20.00       |                                                                              | 0.65                                                                      |

Table 12 - The table shows the calculated NVA and VVA, in feet, at the 95% confidence level for Blount County DEMs.

#### Table 13 lists the 5% outliers that are larger than the 95<sup>th</sup> percentile, or 0.65 feet.

| Point ID |                | NAD83 (2011) Tennessee State Plane<br>(FIPS 4100) |               | LiDAR Z    | Delta Z | AbsDeltaZ |  |
|----------|----------------|---------------------------------------------------|---------------|------------|---------|-----------|--|
| Fount ID | Easting X (ft) | Northing Y (ft)                                   | Survey Z (ft) | (ft) Delta |         |           |  |
| LT02     | 2515725.58     | 514650.59                                         | 835.09        | 834.33     | -0.76   | 0.76      |  |

Table 13 - 5% Outliers

The Blount County, Tennessee DEMs pass vertical accuracy specifications.

#### **QUALITATIVE REVIEW**

Dewberry performed a visual analysis on 100% of the delivered DEMs. The DEMs were reviewed in Global Mapper or ESRI ArcMap software. The DEMs were reviewed with hillshades, which allow the viewer to see the DEMs as if in 3D. This helps with the identification of issues and anomalies. The DEM is required to be free of artifacts, gaps, and artificial smoothing. A breakdown of the edit calls made during the review can be seen in the table below. Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 38 of 71

| Issue          | Number of Occurrences | Delivery 2 |
|----------------|-----------------------|------------|
| Water Artifact | 1                     | 0          |
| Total          | 1                     | 0          |

Table 14 – Breakdown of DEM qualitative edit calls

### Water Artifacts

One (1) water artifact example was marked in the DEMs and has been addressed.

|              |                                                    |                    | 10          |        |
|--------------|----------------------------------------------------|--------------------|-------------|--------|
|              |                                                    | A = A              |             | 100    |
|              |                                                    | 1644               |             | 1 1    |
|              |                                                    | 1-1991             |             |        |
| Path Profile | e/Line of Sight                                    | 22020              | X           |        |
| File Options | Calculate                                          |                    |             |        |
| From Pos: 2  | 2610380.08, 522500.87                              | To Pos: 2610309.10 | , 522485.75 | 00     |
| 270.35 m -   |                                                    |                    |             |        |
| 270.34 m     |                                                    |                    |             |        |
| 270.33 m     |                                                    |                    |             |        |
| 270.32 m     |                                                    |                    |             |        |
|              |                                                    |                    |             | 14     |
|              | 2.5 m 5.0 m 7.5 m                                  | 12.5 m             | 22.12 m     | 11     |
| Line of Sig  | ht Cut-and-Fill Volumes                            | Help               | <u></u> OK  |        |
|              | CALL COLOR AND | and the second     |             | Sec. 1 |

Figure 20 - DEM tile 259851NE, first delivery. Water Artifact found in the DEM.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 39 of 71

|                |                      | 1118               | 10            |   |
|----------------|----------------------|--------------------|---------------|---|
| A.             |                      |                    |               | 1 |
| Path Profile/I | ine of Sight         | A LEGAL CONT       | X             | 7 |
| File Options   | Calculate            |                    |               | X |
| From Pos: 26   | 10379.04, 522507.40  | To Pos: 2610308.1  | 36, 522486.78 |   |
| 2.5 m          | 5.0 m 7.5 m 10.0 m   | 12.5 m 15.0 m 17.5 | m 22.44 m     |   |
| Line of Sight. | Cut-and-Fill Volumes | Help               | 1 ок          |   |

Figure 21 - DEM tile 2598517NE, second delivery. Water Artifact has been removed from the DEM.

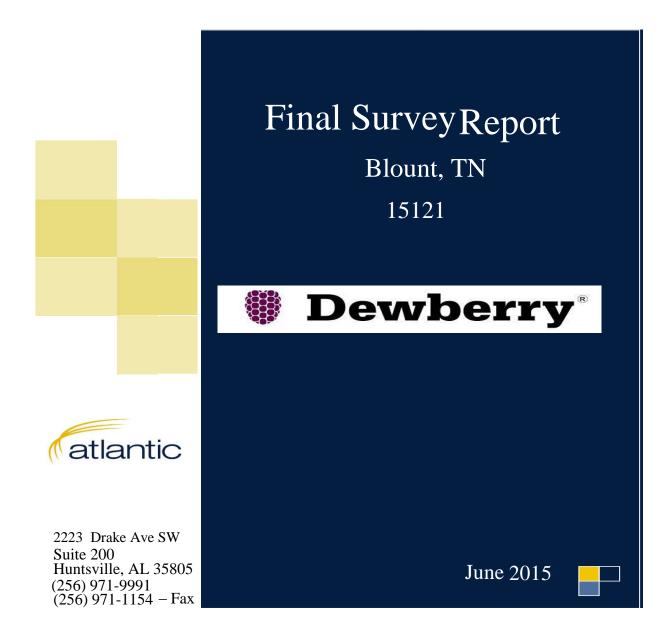
#### **DEM RECOMMENDATION**

It is Dewberry's recommendation that the DEMs be accepted. All issues have been addressed appropriately.

#### Metadata

Atlantic delivered 14 metadata files, in XML format, for the classified LAS, breaklines, DEMs, Raw Flight Lines, and project level metadata. Dewberry reviewed the metadata files for correct formatting and for sufficient content. All metadata files meet FGDC standards and were deemed error free by the MetaParser (MP) tool developed by the United States Geological Survey. All of Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 40 of 71

the fields that are discarded or ignored by the USGS MetaParser were expected from the new LiDAR tags.


After reviewing the delivered metadata files there were several fields that needed a few adjustments, which Dewberry performed.

#### **METADATA RECOMMENDATION**

Dewberry recommends accepting all metadata.

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 41 of 71

# **Appendix A: Survey Report**



Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 42 of 71

# Table of Contents

#### Section 1: Narrative

| 2                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1 Introduction       2         1.2 Applicable Standards       2         Section 2: Ground Control Geodetic Network Survey                                                                                      |
|                                                                                                                                                                                                                  |
| 2.1 Ground Control Points.       2         2.2 Ground Control Station Collection       3         2.3 Ground Control Data Processing and Analysis       4         2.3.1 Ground Control Network Processing       4 |
| 2.4 Network Survey Final Coordinates                                                                                                                                                                             |
| 2.4.1 State Plane Coordinates                                                                                                                                                                                    |
| 3.1 Ground Cover Classification Check Point Collection                                                                                                                                                           |
| 3.2.1 Ground Cover Classification Check Points                                                                                                                                                                   |

Blount County TN LiDAR TO# G15PD00210 October 13, 2015 Page 43 of 71

# Section 1: Narrative

#### **1.1 Introduction**

A survey was performed to support the acquisition of Light Detection and Ranging (LiDAR) data for the Dewberry, Blount, TN area of interest.

#### **1.2 Applicable Standards**

This Geodetic Control GPS Survey was conducted to support LiDAR data in accordance with the current USGS guidelines.

# Section 2: Ground Control Geodetic Network Survey

#### **2.1 Ground Control Points**

A GPS control network was performed for the purpose of establishing three-dimensional coordinates on each of the base station locations. The control network included a combination of a National Geodetic Survey (NGS) Control Monument *D 295, GPS 34 V2 92, and LHT 682*) and Atlantic Temporary Control Points (*CP02, CP03, CP04, CP05, CP06, CP07, CP08, CP09, CP10, CP11, CP12, CP13, CP14, CP15, CP16, CP17, CP18, CP19, CP20, and SETPOINT*).

A graphical representation of all the ground control points is provided in figure 1:

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 44 of 71

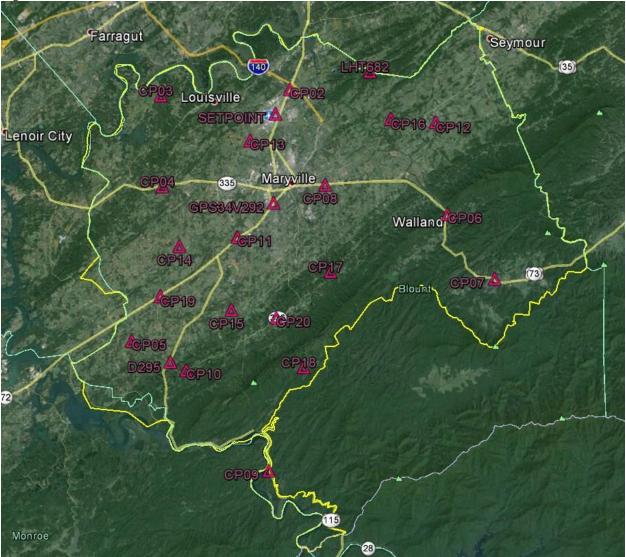



Figure 1: Ground Control Geodetic Network Points

#### **2.2 Ground Control Station Collection**

GPS observations at all ground control points in the network were made with Leica System 500 dual-frequency GPS receivers with a Leica AT502 antenna and a Topcon HiPER V with a Topcon TPSHIPERV antenna between March 2015 and May 2015. Both GPS receivers were configured to log data at 1 Hz, and at a 10 degree mask. Session lengths were based upon the distance between points and were set for a minimum of one hour per every 10 km.

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 45 of 71

## **2.3 Ground Control Data Processing and Analysis**

Data collected during each GPS session was processed using GrafNet 8.50.4320 with their respective GPS antenna type, and antenna height reading. A network was processed in order to establish coordinates and height values for all points. The RMS values for the latitude, longitude and ellipsoid heights for all results were reviewed to ensure that they are within acceptable limits. Two adjustments were made during each network's development. Each adjustment reports baseline RMSE and residual values at the control points.

#### 2.3.1 GROUND CONTROL NETWORK PROCESSING

The network development involved performing a minimally constrained network adjustment, holding NGS monuments (GPS 34 V2 94, LHT 682 and d 295) as a horizontal and vertical control point. This minimally constrained adjustment allowed for blunders and errors to appear within the network. These blunders were analyzed and the baselines were rejected if they had high residuals against other redundant baselines.

Twenty three (23) control points within the network were then fully constrained for a final network adjustment, holding NGS monuments (GPS 34 V2 94, LHT 682 and d 295) as a horizontal and vertical control point. Geoid12A was utilized during GPS processing. In all, sixty (60) baselines were kept in the fully constrained adjustment after the final network analyses. Final network control values were then assigned to Atlantic Temporary Control Points (CP02, CP03, CP04, CP05, CP06, CP07, CP08, CP09, CP10, CP11, CP12, CP13, CP14, CP15, CP16, CP17, CP18, CP19, CP20, and SETPOINT). A tabulated summary of the final coordinates resulting from the network survey are listed in section 2.4.1

## **2.4 Network Survey Final Coordinates**

After analyzing all fully constrained final network adjustments, a tabulated summary of the final coordinates were established for all ground control points. These summaries are listed below.

#### 2.4.1 STATE PLANE COORDINATES

| NAD83 (2011), State Plane Tennessee, NAVD88, Geoid12A, U.S. Survey Feet. |              |               |                |  |  |
|--------------------------------------------------------------------------|--------------|---------------|----------------|--|--|
| Ground Control Points                                                    |              |               |                |  |  |
| Point ID                                                                 | Easting (ft) | Northing (ft) | Elevation (ft) |  |  |
| CP02                                                                     | 2569395      | 551637.8      | 964.432        |  |  |
| CP03                                                                     | 2531378      | 549101.3      | 818.192        |  |  |
| CP04                                                                     | 2532423      | 522438.5      | 889.614        |  |  |
| CP05                                                                     | 2524416      | 476995.9      | 938.73         |  |  |
| CP06                                                                     | 2616548      | 516012.1      | 932.815        |  |  |
| CP07                                                                     | 2630808      | 497405.5      | 1028.514       |  |  |

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 46 of 71

| CP08      | 2580370      | 523890.3      | 1048.216       |
|-----------|--------------|---------------|----------------|
| CP09      | 2565529      | 439865        | 892.138        |
| CP10      | 2540614      | 468746        | 978.621        |
| CP11      | 2554917      | 508009.5      | 1035.623       |
| Point ID  | Easting (ft) | Northing (ft) | Elevation (ft) |
| CP12      | 2612511      | 542933        | 1038.73        |
| CP13      | 2557989      | 536402.1      | 928.463        |
| CP14      | 2537834      | 505017.5      | 949.461        |
| CP15      | 2553561      | 486702.4      | 979.52         |
| CP16      | 2599276      | 543585        | 899.822        |
| CP17      | 2582488      | 498521.8      | 1052.72        |
| CP18      | 2575184      | 470420.9      | 1270.154       |
| CP19      | 2532524      | 490262.5      | 872.368        |
| CP20      | 2566808      | 484660        | 1012.064       |
| D295      | 2535919      | 471039.7      | 904.862        |
| GPS34V292 | 2565289      | 518326.9      | 1030.834       |
| LHT682    | 2592822      | 557256.1      | 1074.078       |
| SETPOINT  | 2565307      | 544380.5      | 953.493        |

# Section 3: Ground Cover Classification Survey

## **3.1 Ground Cover Classification Check Point Collection**

GPS observations were conducted at each ground control point (except OT04, HG07 and LT06) in order to conduct a Virtual Reference Station (VRS) survey. GPS observations at each VRS ground control point were made with a Topcon GRS1 GPSreceiver configured to log data at 1 Hz, and at 10 degrees mask.

GPS static observations for OT04, HG07 and LT06 were conducted with a with Leica System 500 dual-frequency GPS receivers with a Leica AT502 antenna configured to log data at 1 Hz, and at a 10 degree mask, for a minimum duration of twenty (20) minutes.

All check points collected represent differing types of ground cover observed during the course of both surveys and were conducted between March 2015 and May 2015.

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 47 of 71

The purpose of this survey was to collect ground check points for use during the processing of the LiDAR data to ensure that the highest possible accuracy was achieved.

A graphical representation of all the Ground Cover Classification Check Points is provided in figure 2:

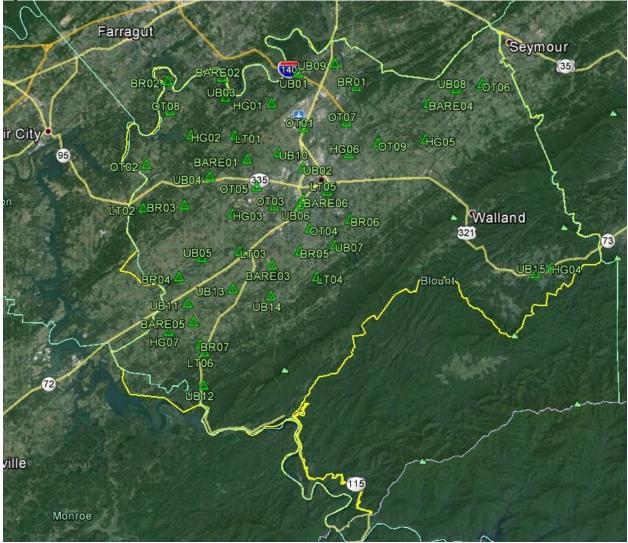



Figure 2: Ground Cover Classification Check Points

#### 3.2 Check Point Data Processing and Analysis

Data collected for OT04, HG07 and LT06 were uploaded to the National Geodetic Survey's (NGS) On-Line Positioning User Service (OPUS) server with their respective GPS antenna type, and antenna height reading. The resulting solution for each observation is referenced to NAD-83 (North American Datum). The RMS values for the latitude, longitude and ellipsoid heights for each result were reviewed to ensure that they are within acceptable limits. The Ellipsoidal elevations supplied by NGS were transformed into Geoid12A orthometric heights.

A tabulated summary of the final coordinates resulting from the Ground Cover Classification Survey are listed in sections 3.2.1

## 3.2.1 GROUND COVER CLASSIFICATION CHECK POINTS

#### NAD83 (2011), State Plane Tennessee, NAVD88, Geoid12A, U.S. Survey Feet.

| NAD85 (2011), Sta | LiDAR Check Points |               |                   |               |  |  |
|-------------------|--------------------|---------------|-------------------|---------------|--|--|
| Point ID          | Easting (ft)       | Northing (ft) | Elevation<br>(ft) | Description   |  |  |
| BARE01            | 2547542            | 530375.1      | 996.702           | Bare Earth    |  |  |
| BARE02            | 2539193            | 555474        | 863.925           | Bare Earth    |  |  |
| BARE03            | 2556011            | 497937.1      | 1038.762          | Bare Earth    |  |  |
| BARE04            | 2603378            | 548719.4      | 1009.545          | Bare Earth    |  |  |
| BARE05            | 2532017            | 480072.4      | 991.154           | Bare Earth    |  |  |
| BARE06            | 2565289            | 518326.9      | 1030.693          | Bare Earth    |  |  |
| OT01              | 2564932            | 540411.8      | 940.564           | Open Terrain  |  |  |
| OT02              | 2516417            | 528143.4      | 963.534           | Open Terrain  |  |  |
| ОТ03              | 2556293            | 516139.2      | 946.459           | Open Terrain  |  |  |
| OT04              | 2567317            | 509461.8      | 1030.736          | Open Terrain  |  |  |
| OT05              | 2550670            | 522053.6      | 962.092           | Open Terrain  |  |  |
| OT06              | 2619746            | 555142.4      | 998.212           | Open Terrain  |  |  |
| OT07              | 2578027            | 542533        | 877.223           | Open Terrain  |  |  |
| OT08              | 2523310            | 544761.7      | 862.709           | Open Terrain  |  |  |
| ОТ09              | 2587997            | 536253.4      | 984.866           | Open Terrain  |  |  |
| UB01              | 2562726            | 557314.5      | 916.699           | Urban Terrain |  |  |
| UB02              | 2565037            | 528083.9      | 877.681           | Urban Terrain |  |  |
| UB03              | 2540433            | 549327.5      | 868.77            | Urban Terrain |  |  |
| UB04              | 2536091            | 524892.6      | 956.24            | Urban Terrain |  |  |
| UB05              | 2534178            | 499805        | 936.903           | Urban Terrain |  |  |
| UB06              | 2564156            | 516669.1      | 1033.435          | Urban Terrain |  |  |

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 49 of 71

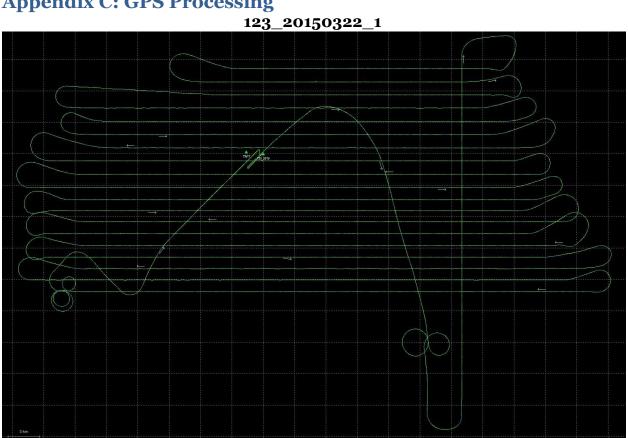
| UB07     | 2575265      | 504562.7      | 1074.977          | Urban Terrain |
|----------|--------------|---------------|-------------------|---------------|
| UB08     | 2611786      | 553411.7      | 1025.018          | Urban Terrain |
| UB09     | 2574034      | 560460.4      | 934.663           | Urban Terrain |
| UB10     | 2557340      | 532541.9      | 907.972           | Urban Terrain |
| UB11     | 2530025      | 485693.7      | 995.05            | Urban Terrain |
| UB12     | 2535536      | 460570.7      | 848.465           | Urban Terrain |
| UB13     | 2544037      | 490397.1      | 965.75            | Urban Terrain |
| Point ID | Easting (ft) | Northing (ft) | Elevation<br>(ft) | Description   |
| UB14     | 2555822      | 488466        | 1032.595          | Urban Terrain |
| UB15     | 2637432      | 496995.1      | 1080.588          | Urban Terrain |
| BR01     | 2580852      | 553425.9      | 991.595           | Brush         |
| BR02     | 2522462      | 554063.9      | 823.351           | Brush         |
| BR03     | 2528431      | 515836.1      | 877.219           | Brush         |
| BR04     | 2527166      | 493686.9      | 889.405           | Brush         |
| BR05     | 2564504      | 502416.3      | 1050.966          | Brush         |
| BR06     | 2579883      | 512496.5      | 1025.921          | Brush         |
| BR07     | 2534235      | 473080.9      | 927.251           | Brush         |
| HG01     | 2554727      | 547801.9      | 869.786           | High Grass    |
| HG02     | 2530043      | 537457.5      | 876.134           | High Grass    |
| HG03     | 2543544      | 513505.3      | 1113.221          | High Grass    |
| HG04     | 2642545      | 499179.5      | 1074.449          | High Grass    |
| HG05     | 2602644      | 537673.6      | 929.399           | High Grass    |
| HG06     | 2578959      | 532707.8      | 986.804           | High Grass    |
| HG07     | 2524379      | 476909.6      | 935.802           | High Grass    |
| LT01     | 2543658      | 537694.2      | 862.116           | Low Trees     |
| LT02     | 2515726      | 514650.6      | 835.094           | Low Trees     |
| LT03     | 2545918      | 501977        | 974.636           | Low Trees     |
| LT04     | 2569884      | 494626.9      | 1025.811          | Low Trees     |
|          |              |               |                   |               |

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 50 of 71

| LT05 | 2572597 | 521043.8 | 991.203 | Low Trees |
|------|---------|----------|---------|-----------|
| LT06 | 2535590 | 470737.2 | 917.052 | Low Trees |

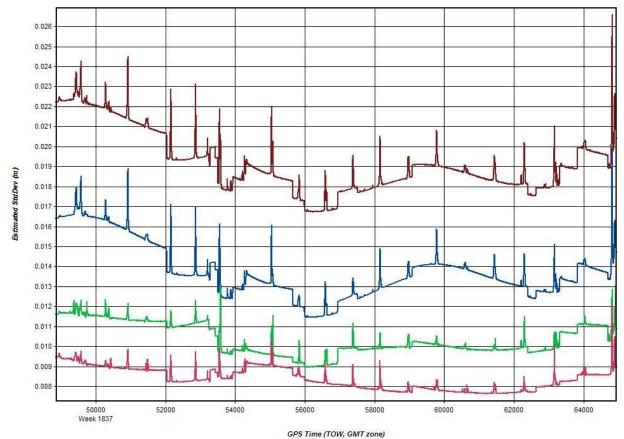
# **Appendix B: Complete List of Delivered Tiles**

| inppendin Di C |           |           |           |           |
|----------------|-----------|-----------|-----------|-----------|
| 2500453NE      | 2514485SW | 2528453NW | 2528533SE | 2542501NE |
| 2500453SE      | 2514493NE | 2528453SE | 2528533SW | 2542501NW |
| 2500461NE      | 2514493NW | 2528453SW | 2528541NE | 2542501SE |
| 2500461NW      | 2514493SE | 2528461NE | 2528541NW | 2542501SW |
| 2500461SE      | 2514493SW | 2528461NW | 2528541SE | 2542509NE |
| 2500469NE      | 2514501NE | 2528461SE | 2528541SW | 2542509NW |
| 2500469SE      | 2514501NW | 2528461SW | 2528549NE | 2542509SE |
| 2500469SW      | 2514501SE | 2528469NE | 2528549NW | 2542509SW |
| 2500485NE      | 2514501SW | 2528469NW | 2528549SE | 2542517NE |
| 2500493NE      | 2514509NE | 2528469SE | 2528549SW | 2542517NW |
| 2500493SE      | 2514509NW | 2528469SW | 2528557SE | 2542517SE |
| 2500501NE      | 2514509SE | 2528477NE | 2528557SW | 2542517SW |
| 2500501SE      | 2514509SW | 2528477NW | 2542437NE | 2542525NE |
| 2500509NE      | 2514517NE | 2528477SE | 2542445NE | 2542525NW |
| 2500509SE      | 2514517NW | 2528477SW | 2542445NW | 2542525SE |
| 2500517NE      | 2514517SE | 2528485NE | 2542445SE | 2542525SW |
| 2500517SE      | 2514517SW | 2528485NW | 2542445SW | 2542533NE |
| 2500525NE      | 2514525NE | 2528485SE | 2542453NE | 2542533NW |
| 2500525SE      | 2514525NW | 2528485SW | 2542453NW | 2542533SE |
| 2500533NE      | 2514525SE | 2528493NE | 2542453SE | 2542533SW |
| 2500533SE      | 2514525SW | 2528493NW | 2542453SW | 2542541NE |
| 2514445NE      | 2514533NE | 2528493SE | 2542461NE | 2542541NW |
| 2514453NE      | 2514533NW | 2528493SW | 2542461NW | 2542541SE |
| 2514453NW      | 2514533SE | 2528501NE | 2542461SE | 2542541SW |
| 2514453SE      | 2514533SW | 2528501NW | 2542461SW | 2542549NE |
| 2514453SW      | 2514541NE | 2528501SE | 2542469NE | 2542549NW |
| 2514461NE      | 2514541NW | 2528501SW | 2542469NW | 2542549SE |
| 2514461NW      | 2514541SE | 2528509NE | 2542469SE | 2542549SW |
| 2514461SE      | 2514541SW | 2528509NW | 2542469SW | 2542557NE |
| 2514461SW      | 2514549NE | 2528509SE | 2542477NE | 2542557SE |
| 2514469NE      | 2514549NW | 2528509SW | 2542477NW | 2542557SW |
| 2514469NW      | 2514549SE | 2528517NE | 2542477SE | 2542565SE |
| 2514469SE      | 2514549SW | 2528517NW | 2542477SW | 2556421NE |
| 2514469SW      | 2514557SE | 2528517SE | 2542485NE | 2556429NE |
| 2514477NE      | 2514557SW | 2528517SW | 2542485NW | 2556429NW |
| 2514477NW      | 2528437NE | 2528525NE | 2542485SE | 2556429SE |
| 2514477SE      | 2528445NE | 2528525NW | 2542485SW | 2556429SW |
| 2514477SW      | 2528445NW | 2528525SE | 2542493NE | 2556437NE |
| 2514485NE      | 2528445SE | 2528525SW | 2542493NW | 2556437SE |
| 2514485NW      | 2528445SW | 2528533NE | 2542493SE | 2556437SW |
| 2514485SE      | 2528453NE | 2528533NW | 2542493SW | 2556445NE |
|                |           |           |           |           |

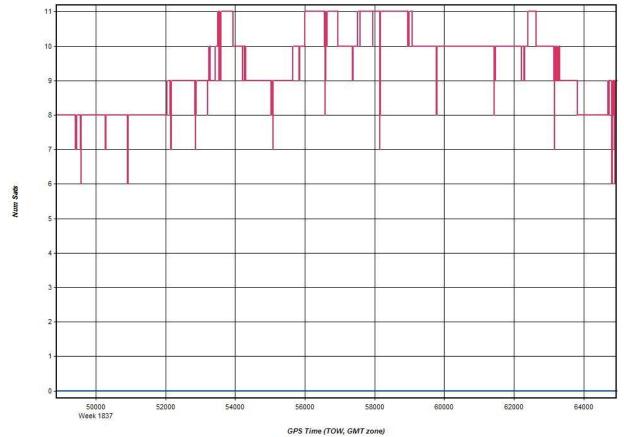

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 52 of 71

| 2556445NW | 2556525SW | 2570477SE | 2570565SE | 2584549NE |
|-----------|-----------|-----------|-----------|-----------|
| 2556445SE | 2556533NE | 2570477SW | 2570565SW | 2584549NW |
| 2556445SW | 2556533NW | 2570485NE | 2584413NW | 2584549SE |
| 2556453NE | 2556533SE | 2570485NW | 2584421NW | 2584549SW |
| 2556453NW | 2556533SW | 2570485SE | 2584421SW | 2584557NW |
| 2556453SE | 2556541NE | 2570485SW | 2584429SW | 2584557SE |
| 2556453SW | 2556541NW | 2570493NE | 2584469NW | 2584557SW |
| 2556461NE | 2556541SE | 2570493NW | 2584477NE | 2598485NE |
| 2556461NW | 2556541SW | 2570493SE | 2584477NW | 2598485NW |
| 2556461SE | 2556549NE | 2570493SW | 2584477SW | 2598493NE |
| 2556461SW | 2556549NW | 2570501NE | 2584485NE | 2598493NW |
| 2556469NE | 2556549SE | 2570501NW | 2584485NW | 2598493SE |
| 2556469NW | 2556549SW | 2570501SE | 2584485SE | 2598493SW |
| 2556469SE | 2556557NE | 2570501SW | 2584485SW | 2598501NE |
| 2556469SW | 2556557NW | 2570509NE | 2584493NE | 2598501NW |
| 2556477NE | 2556557SE | 2570509NW | 2584493NW | 2598501SE |
| 2556477NW | 2556557SW | 2570509SE | 2584493SE | 2598501SW |
| 2556477SE | 2556565NE | 2570509SW | 2584493SW | 2598509NE |
| 2556477SW | 2556565NW | 2570517NE | 2584501NE | 2598509NW |
| 2556485NE | 2556565SE | 2570517NW | 2584501NW | 2598509SE |
| 2556485NW | 2556565SW | 2570517SE | 2584501SE | 2598509SW |
| 2556485SE | 2570413NE | 2570517SW | 2584501SW | 2598517NE |
| 2556485SW | 2570413NW | 2570525NE | 2584509NE | 2598517NW |
| 2556493NE | 2570413SE | 2570525NW | 2584509NW | 2598517SE |
| 2556493NW | 2570413SW | 2570525SE | 2584509SE | 2598517SW |
| 2556493SE | 2570421NE | 2570525SW | 2584509SW | 2598525NE |
| 2556493SW | 2570421NW | 2570533NE | 2584517NE | 2598525NW |
| 2556501NE | 2570421SE | 2570533NW | 2584517NW | 2598525SE |
| 2556501NW | 2570421SW | 2570533SE | 2584517SE | 2598525SW |
| 2556501SE | 2570429NE | 2570533SW | 2584517SW | 2598533NE |
| 2556501SW | 2570429NW | 2570541NE | 2584525NE | 2598533NW |
| 2556509NE | 2570429SE | 2570541NW | 2584525NW | 2598533SE |
| 2556509NW | 2570429SW | 2570541SE | 2584525SE | 2598533SW |
| 2556509SE | 2570461NE | 2570541SW | 2584525SW | 2598541NE |
| 2556509SW | 2570461NW | 2570549NE | 2584533NE | 2598541NW |
| 2556517NE | 2570461SW | 2570549NW | 2584533NW | 2598541SE |
| 2556517NW | 2570469NE | 2570549SE | 2584533SE | 2598541SW |
| 2556517SE | 2570469NW | 2570549SW | 2584533SW | 2598549NE |
| 2556517SW | 2570469SE | 2570557NE | 2584541NE | 2598549NW |
| 2556525NE | 2570469SW | 2570557NW | 2584541NW | 2598549SE |
| 2556525NW | 2570477NE | 2570557SE | 2584541SE | 2598549SW |
| 2556525SE | 2570477NW | 2570557SW | 2584541SW | 2598557NE |
|           |           |           |           |           |

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 53 of 71

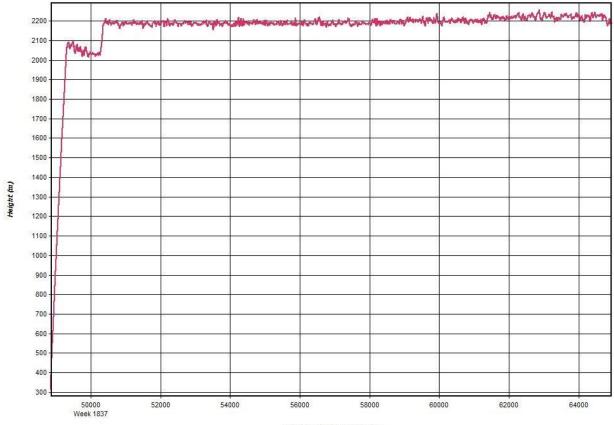

| 2598557SE | 2612525NE | 2612565SW | 2626517NW | 2640493NW |
|-----------|-----------|-----------|-----------|-----------|
| 2612477NE | 2612525NW | 2626469NW | 2626517SE | 2640493SE |
| 2612477SE | 2612525SE | 2626477NE | 2626517SW | 2640493SW |
| 2612485NE | 2612525SW | 2626477NW | 2626525NE | 2640501NE |
| 2612485NW | 2612533NE | 2626477SE | 2626525NW | 2640501NW |
| 2612485SE | 2612533NW | 2626477SW | 2626525SE | 2640501SE |
| 2612485SW | 2612533SE | 2626485NE | 2626525SW | 2640501SW |
| 2612493NE | 2612533SW | 2626485NW | 2626533NE | 2640509NE |
| 2612493NW | 2612541NE | 2626485SE | 2626533NW | 2640509NW |
| 2612493SE | 2612541NW | 2626485SW | 2626533SE | 2640509SE |
| 2612493SW | 2612541SE | 2626493NE | 2626533SW | 2640509SW |
| 2612501NE | 2612541SW | 2626493NW | 2626541NE | 2640517NW |
| 2612501NW | 2612549NE | 2626493SE | 2626541NW | 2640517SW |
| 2612501SE | 2612549NW | 2626493SW | 2626541SE | 2640525NW |
| 2612501SW | 2612549SE | 2626501NE | 2626541SW | 2640525SW |
| 2612509NE | 2612549SW | 2626501NW | 2626549NW | 2654493NW |
| 2612509NW | 2612557NE | 2626501SE | 2626549SW | 2654501NW |
| 2612509SE | 2612557NW | 2626501SW | 2626557NW | 2654501SW |
| 2612509SW | 2612557SE | 2626509NE | 2626557SW | 2654509SW |
| 2612517NE | 2612557SW | 2626509NW | 2640485NE |           |
| 2612517NW | 2612565NE | 2626509SE | 2640485NW |           |
| 2612517SE | 2612565NW | 2626509SW | 2640485SW |           |
| 2612517SW | 2612565SE | 2626517NE | 2640493NE |           |
|           |           |           |           |           |

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 54 of 71




# **Appendix C: GPS Processing**

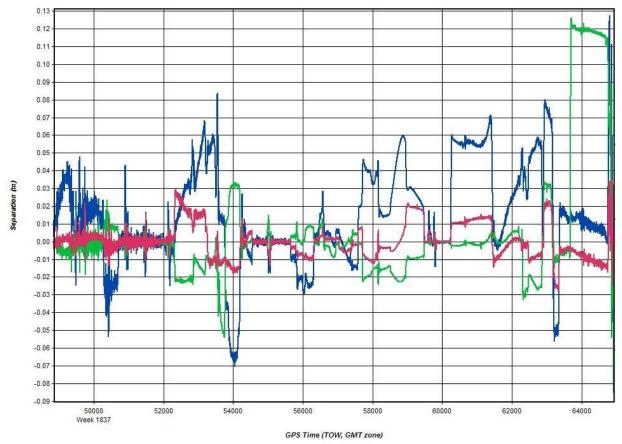
Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 55 of 71



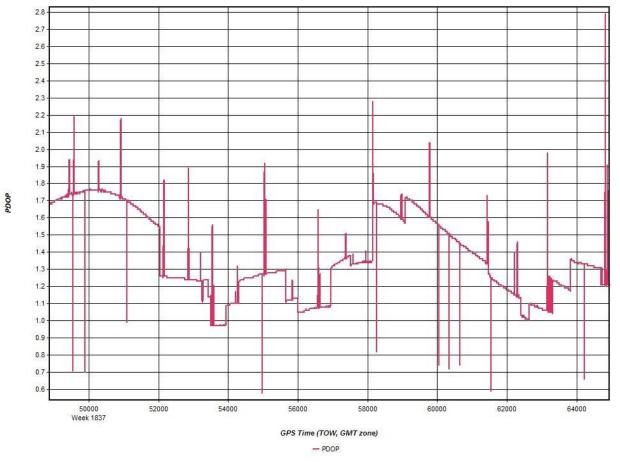

- East - North - Height - Trace



- Num Sats - GPS - GLONASS

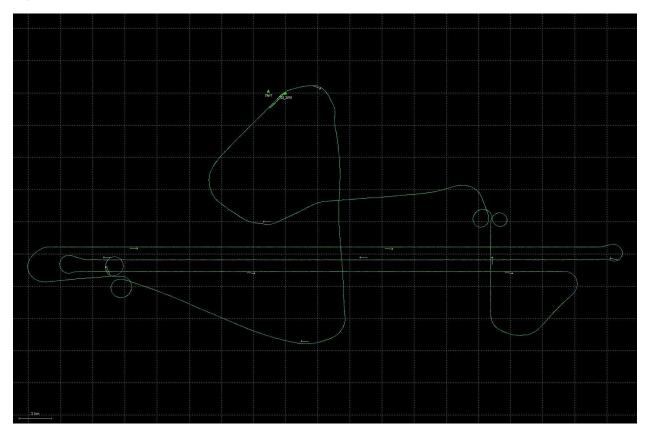

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 57 of 71




GPS Time (TOW, GMT zone)

- Height

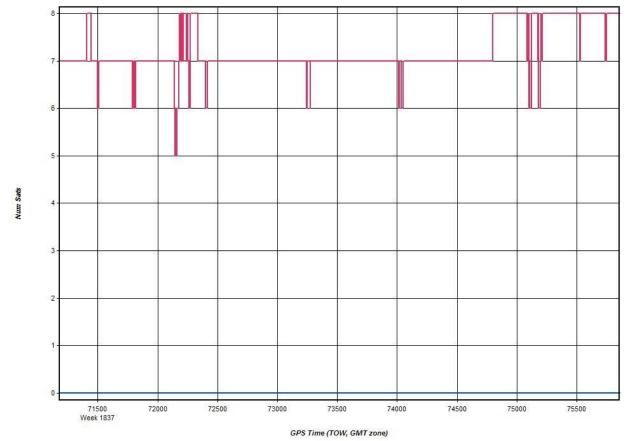
Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 58 of 71





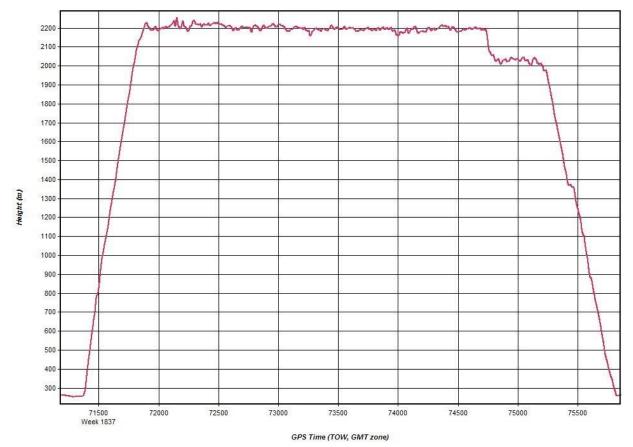
- East - North - Up




123\_20150322\_2

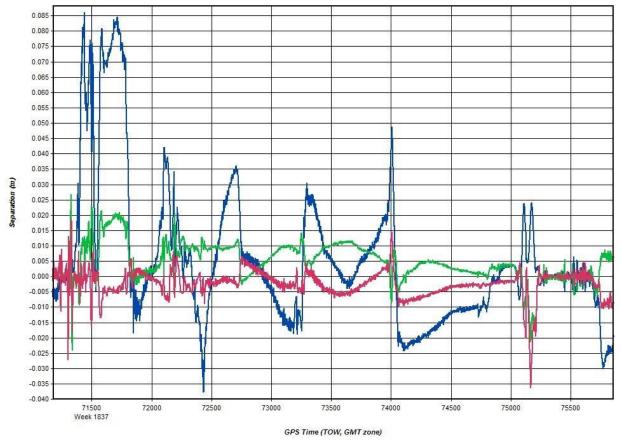
Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 60 of 71



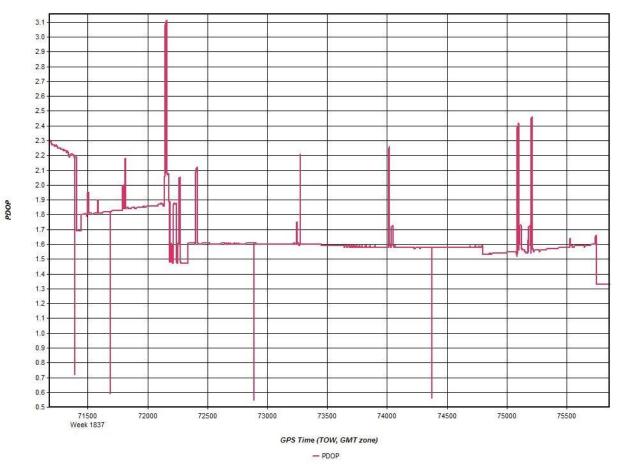



- East - North - Height - Trace



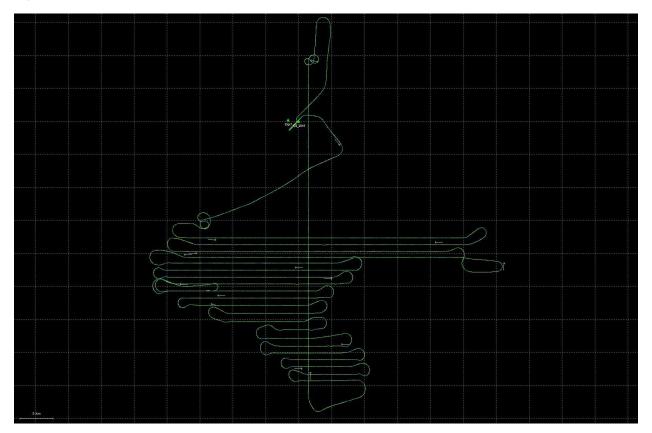

- Num Sats - GPS - GLONASS

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 63 of 71

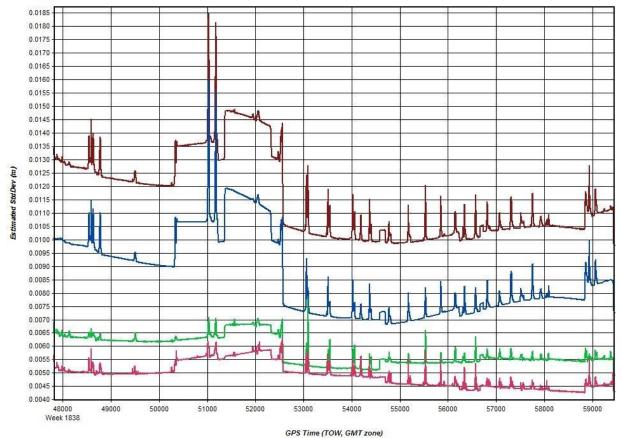



- Height

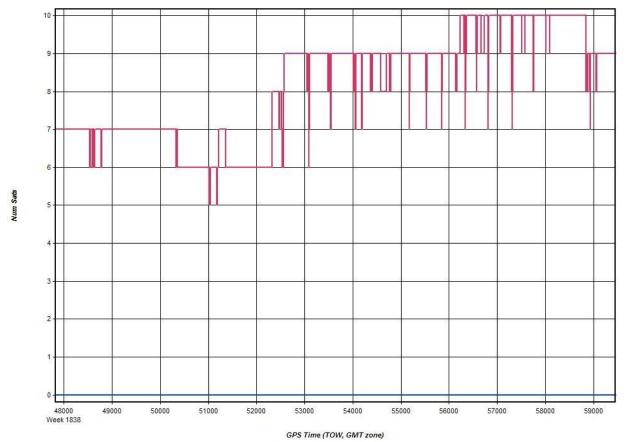
Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 64 of 71




- East - North - Up

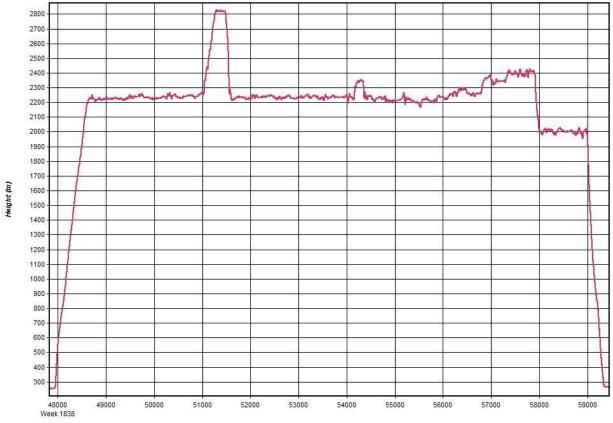



123\_20150329\_1


Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 66 of 71



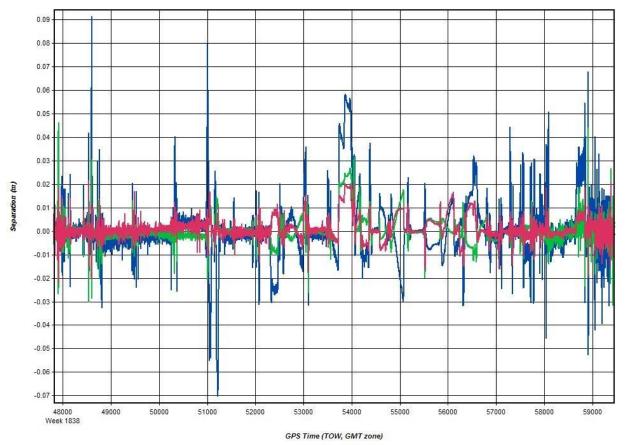
Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 67 of 71



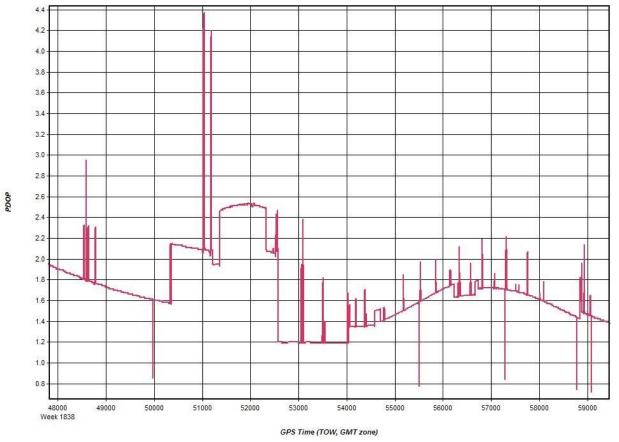

- East - North - Height - Trace



- Num Sats - GPS - GLONASS


Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 69 of 71




GPS Time (TOW, GMT zone)

— Height

Blount County TN LiDAR TO# G15PD00210 September 4, 2015 Page 70 of 71



- East - North - Up



