# **Texas Desert Mountains Topographic Lidar Project**

Lot 6 - Block 1 Report

March 12, 2020

# Prepared for:

# United States Geological Survey, National Geospatial Technical Operations Center



Prepared by:

Optimal GEO, Inc.



CONTRACT: G17PC00007

TASK ORDER: 140G0219F0017

# Contents

# Contents

| Project Report                                       | 1  |
|------------------------------------------------------|----|
| Prepared by                                          |    |
| Introduction                                         |    |
| Project Team                                         | _  |
| Coordinate Reference System                          | •  |
| Lidar Vertical Accuracy                              | 3  |
| Project Deliverables                                 | _  |
| Lidar Acquisition                                    | ·  |
| Lidar System Parameters                              | 5  |
| Acquisition Status Report and Flight Lines           | 5  |
| Lidar Ground Control                                 | 6  |
| Airborne GPS Kinematic and Flight Logs               | 6  |
| Generation and Calibration of Laser Points           | 7  |
| Boresight and Relative Accuracy                      | 7  |
| Lidar Processing & Quantitative Assessment           | 8  |
| Initial Processing                                   | 8  |
| Final Swath Vertical Accuracy Assessment             | 8  |
| Inter-Swath Relative Accuracy                        | 9  |
| Intra-Swath Relative Accuracy                        | 10 |
| Horizontal Alignment                                 | 11 |
| Point Density and Spatial Distribution               | 11 |
| Data Classification and Editing                      | 14 |
| Lidar Qualitative Assessment                         | 15 |
| Formatting                                           | 16 |
| Lidar Positional Accuracy                            | 17 |
| Background                                           | 17 |
| Survey Vertical Accuracy Checkpoints                 | 17 |
| Vertical Accuracy Test Procedures                    | 21 |
| Vertical Accuracy Results                            | 22 |
| Breakline Production & Qualitative Assessment Report | 23 |
| Breakline Production Methodology                     | 23 |
| Breakline Qualitative Assessment                     | 23 |
| Breakline Data Dictionary                            | 23 |
| Horizontal and Vertical Datum                        | 23 |
| Coordinate System and Projection                     | 23 |
| Inland Streams and Rivers                            | 23 |
| Inland Ponds and Lakes                               |    |

| DEM Production & Qualitative Assessment                 | 26 |
|---------------------------------------------------------|----|
| DEM Production Methodology                              | 26 |
| DEM Qualitative Assessment                              |    |
| DEM Vertical Accuracy Results                           |    |
| Appendix A: Flightlogs, IMU, and GPS Processing Reports | •  |

## Introduction

Precision Aerial Reconnaissance (PAR) was tasked by the United States Geological Survey to acquire and process QL2 topographic LiDAR data for 4,528 square miles in Texas, including the partial counties of: El Paso and Hudspeth. These LiDAR data will be used to produce a high-resolution bare earth Digital Elevation Model of the entire project area. This report describes the data acquisition, ground survey, data processing, quality control, and data validation activities related to producing the final deliverables for this project.

The LiDAR data were processed in accordance with this task order's Statement of Work, as well as the USGS' NGP Lidar Base Specification version 1.3 (February 2018).

This contract has been novated from PAR to Optimal GEO, Inc. Under this task order, Optimal GEO assumed full responsibilities of the data handling, from acquisition to delivery.

## **Project Team**

Optimal GEO, Inc., serving as the prime contractor of this task order, was responsible for managing all project related activities. Optimal GEO was directly responsible for the topographic lidar post acquisition QA/QC, initial automated classification, manual editing of the lidar data and breakline generation and performing QA/QC on all final deliverables. All ground survey activities required to collect ground control and accuracy checkpoints were performed by Flora Bama Geospatial Solutions, LLC. The data acquisition and calibration were performed by Quantum Spatial.

## Coordinate Reference System

The lidar data and derived products were delivered in the following reference system.

Horizontal Datum: North American Datum 1983, 2011 adjustment (NAD83 (2011))

Vertical Datum: North American Vertical Datum of 1988, (NAVD88)

Coordinate System: Universal Transverse Mercator (UTM) Zone 13 North

Units: Horizontal units are in meters to 2 decimal places; Vertical units are in meters to 2

decimal places.

**Geoid Model**: Geoid12B (used to convert ellipsoid heights to orthometric heights)

## Lidar Vertical Accuracy

The tested RMSEz of the classified lidar data for checkpoints in non-vegetated terrain is 5.9 cm, within the 10 cm specification. The NVA of the classified lidar data computed using RMSEz x 1.96 is 11.6 cm, within the 19.6 cm specification.

The tested VVA of the classified lidar data computed using the 95<sup>th</sup> percentile is equal to 23.1 cm, compared to the 30 cm specification.

## **Project Deliverables**

The deliverables for the project are as follows:

- 1. Classified Point Cloud Data (Tiled)
- 2. Bare Earth Surface (Raster DEM GeoTIFF, 32-bit floating-point format)
- 3. Intensity Images (8-bit gray scale, tiled, GeoTIFF format)
- 4. Breakline Data (ESRI GDB Feature Class Format)
- 5. Independent Survey Checkpoint Data (Report, Photos, & Points)
- 6. Calibration Points
- 7. Metadata
- 8. Project Report (Acquisition, Processing, QC)
- 9. Project Extents

## **Lidar Acquisition**

Quantum Spatial planned 158 passes for the TX Desert Mountains project area containing cross ties for the purposes of quality control. To reduce any margin for error in the flight plan, Quantum Spatial followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, includes the following criteria:

- A digital flight line layout using Teledyne Optech Mission Management flight design software for direct integration into the aircraft flight navigation system.
- Planned flight lines; flight line numbers; and coverage area.
- Lidar coverage extended by a predetermined margin (100m) beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.
- Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally, Quantum Spatial filed their flight plans as required by local Air Traffic Control (ATC) prior to each mission.

Quantum Spatial monitored weather and atmospheric conditions and conducted lidar missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. lidar systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. Quantum Spatial accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection to position our sensor to maximize successful data acquisition.

Within 72-hours prior to the planned day(s) of acquisition, Quantum Spatial closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis.

The lidar survey was conducted between September 11, 2019 and October 20, 2019.

## Lidar System Parameters

Quantum Spatial operated a Cessna 310 (twin-piston) (Tail # N7516Q) outfitted with an Optech Galaxy Prime LiDAR system during the collection of the study area.

Table 1 lists Quantum Spatial's system parameters for lidar acquisition on this project.

| Item                                                                                                   | Parameter           |
|--------------------------------------------------------------------------------------------------------|---------------------|
| System                                                                                                 | Optech Galaxy Prime |
| Altitude (AGL meters)                                                                                  | 2825                |
| Approx. Flight Speed (knots)                                                                           | 170                 |
| Scanner Pulse Rate (kHz)                                                                               | 500                 |
| Scan Frequency                                                                                         | 69                  |
| Pulse Duration of the Scanner (nanoseconds)                                                            | 3                   |
| Pulse Width of the Scanner (m)                                                                         | 0.71                |
| Swath width (m)                                                                                        | 1945                |
| Central Wavelength of the Sensor Laser (nanometers)                                                    | 1064                |
| Did the Sensor Operate with Multiple Pulses in The Air? (yes/no)                                       | Yes                 |
| Beam Divergence (milliradians)                                                                         | 0.25                |
| Nominal Swath Width on the Ground (m)                                                                  | 1945                |
| Swath Overlap (%)                                                                                      | 30                  |
| Total Sensor Scan Angle (degree)                                                                       | 38                  |
| Nominal Pulse Spacing (single swath), (m)                                                              | 0.71                |
| Nominal Pulse Density (single swath) (ppsm), (m)                                                       | 2.94                |
| Aggregate NPS (m) (if ANPS was designed to be met through single coverage, ANPS and NPS will be equal) | 0.71                |
| Aggregate NPD (m) (if ANPD was designed to be met through single coverage, ANPD and NPD will be equal) | 2.94                |
| Maximum Number of Returns per Pulse                                                                    | 8                   |

Table 1. Quantum Spatial's lidar system parameters.

## Acquisition Status Report and Flight Lines

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. The Acquisition Manager contacted air traffic control and coordinated flight pattern requirements. Lidar acquisition began immediately upon notification that control base stations were in place. During flight operations, the flight crew monitored weather and atmospheric conditions. Lidar missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of PDOPs, and performed the first Q/C review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines (Figure 1) impacted by unfavorable conditions were marked as invalid and re-flown immediately or at an optimal time.

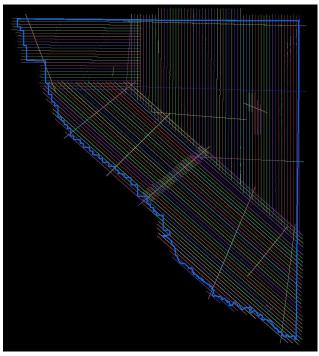



Figure 1. Trajectories as flown.

## Lidar Ground Control

One LiDAR acquisition base station (Table 2) was used to control the lidar acquisition for the TX Desert Mountains project area. The Trimble R10 GNSS receiver and a Trimble R7 GNSS receiver were both used during the survey collection, logging at 2 Hertz affixed to a 2-meter range, pole served as base stations during acquisition. The coordinates of all used base station positions are provided in Table 2.

|            | NAD83 (       | NAD83 (2011) UTM 15 |                    |                                        |
|------------|---------------|---------------------|--------------------|----------------------------------------|
| Name       | Easting X (m) | Northing Y (m)      | Ellipsoidal Ht (m) | Orthometric Ht<br>(NAVD88 Geoid12B, m) |
| LIDAR BASE | 369917.999    | 3518745.270         | 1179.004           | 1204.176                               |

Table 2. Listing of NGS monuments used for ground control of the lidar data.

## Airborne GPS Kinematic and Flightlogs

Applanix + POSPac Mobile Mapping Suite software was used for post-processing of airborne GPS and inertial data (IMU), which is critical to the positioning and orientation of the LiDAR sensor during all flights. POSPac combines aircraft raw trajectory data with stationary GPS base station data yielding a "Smoothed Best Estimate Trajectory (SBET) necessary for additional post processing software to develop the resulting geo-referenced point cloud from the LiDAR missions.

During the sensor trajectory processing (combining GPS & IMU data sets) certain statistical graphs and tables are generated within the Applanix POSPac processing environment which are commonly used as indicators of processing stability and accuracy. This data for analysis include: Max horizontal / vertical GPS variance, separation plot, altitude plot, PDOP plot, base station baseline length, processing mode, number of satellite vehicles, and mission trajectory.

Flight logs, GPS, and IMU processing reports are included in the Acquisition report: Appendix A.

## Generation and Calibration of Laser Points

The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete.

Point clouds were then created using Optech LMS software. The generated point cloud is the mathematical three-dimensional composite of all returns from all laser pulses as determined from the aerial mission. Laser point data are imported into GeoCue, a distributive processing software, which allows for a more manageable file size to be created in a LAS tile format.

On a project level, a supplementary coverage check is carried out to ensure no data voids unreported by Field Operations are present.

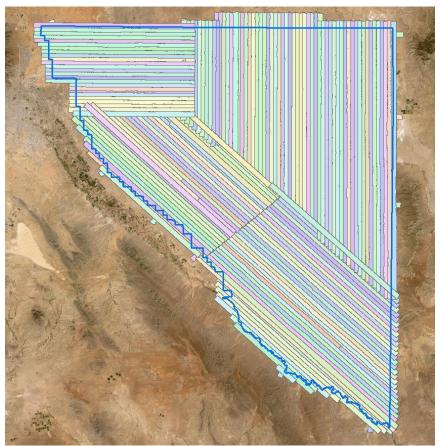



Figure 2. Lidar Swath output showing complete coverage.

## Boresight and Relative Accuracy

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the lidar unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement. An example of this review is illustrated in Figure 3.

For this project the specifications used are as follows:

Relative accuracy  $\leq 6$  cm maximum differences for smooth surface repeatability and  $\leq 8$  cm RMSDz between adjacent and overlapping swaths.




Figure 3. Profile view showing correct roll and pitch adjustments.

## Lidar Processing & Quantitative Assessment

## **Initial Processing**

Optimal GEO performed several validations on the dataset prior to starting full-scale production on the project. These validations include vertical accuracy of the swath data, inter-swath (between swath) relative accuracy validation, intra-swath (within a single swath) relative accuracy validation, verification of horizontal alignment between swaths, and confirmation of point density and spatial distribution. This initial assessment allows Optimal GEO to determine if the data are suitable for full-scale production. Addressing issues at this stage allows the data to be corrected while imposing the least disruption possible on the overall production workflow and overall schedule.

## Final Swath Vertical Accuracy Assessment

Optimal GEO tested the vertical accuracy of the non-vegetated terrain swath data prior to additional processing. Vertical accuracy of the swath data was tested using seventy-five (75) non-vegetated (open terrain and urban) independent survey check points. The vertical accuracy is tested by comparing survey checkpoints in non-vegetated terrain to a triangulated irregular network (TIN) that is created from the raw swath points. Only checkpoints in non-vegetated terrain can be tested against raw swath data because the data has not undergone classification techniques to remove vegetation, buildings, and other artifacts from the ground surface. Checkpoints are always compared to interpolated surfaces from the lidar point cloud because it is unlikely that a survey checkpoint will be located at the location of a discrete lidar point. Optimal GEO utilized MicroStation/TerraScan software to test the classified lidar vertical accuracy, and ESRI's ArcMap to test the DEM vertical accuracy so that two different software programs are used to validate the vertical accuracy for each project. Project specifications require a NVA of 19.6 cm based on the RMSE $_z$  (10 cm) x 1.96.

The dataset for the TX Desert Mountains Lidar QL2 Project satisfies these criteria. This raw lidar swath data set was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSE $_z$  Vertical Accuracy Class. Actual NVA accuracy tested to be RMSE $_z$  = 6.1 cm, equating to  $\pm$  11.9 cm at 95% confidence level. Table 3 shows all calculated statistics for the raw swath data.

Table 3: NVA at 95% Confidence Level Raw Calibrated Data.

| # of Points | RMSE  | RMSEz @ 95% CI | Mean (m) | Median (m) | Skew (m) | Std Dev (m) | Min (m) | Max (m) |
|-------------|-------|----------------|----------|------------|----------|-------------|---------|---------|
| 75          | 0.061 | 0.119          | -0.014   | -0.007     | -0.411   | 0.059       | -0.163  | 0.097   |

## Inter-Swath Relative Accuracy

Optimal GEO verified inter-swath or between swath relative accuracy of the dataset by creating Delta-Z (DZ) orthomosaics. According to the SOW, USGS Lidar Base Specifications v1.3, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet inter-swath relative accuracy of 8 cm RMSDz or less with maximum differences less than 16 cm. These measurements are to be taken in non-vegetated and flat open terrain using single or only returns from all classes.

Measurements are calculated in the DZ orthos on 1-meter pixels or cell sizes. Areas in the dataset where overlapping flight lines are within 8 cm of each other within each pixel are colored white, areas in the dataset where overlapping flight lines have elevation differences in each pixel between 8 cm to 16 cm are colored red or blue dependent on which line is above or below the overlapping line, and as the DZ values approach 16 cm and greater, the intensity of that color increases. Pixels that do not contain points from overlapping flight lines are colored white as well. Areas of vegetation and steep slopes (slopes with 16 cm or more of valid elevation change across 1 linear meter) are expected to appear yellow or red in the DZ orthos. If the project area is heavily vegetated, Optimal GEO may also create DZ Orthos from the initial ground classification only, while keeping all other parameters consistent. This allows Optimal GEO to review the ground classification relative accuracy beneath vegetation and to ensure flight line ridges or other issues do not exist in the final classified data.

Flat, open areas are expected to be white in the DZ orthos. Large or continuous sections of blue or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the utility of the data, especially when these blue/red sections follow the flight lines and not the terrain or areas of vegetation. The DZ orthos for the TX Desert Mountain QL2 Lidar Project are shown in Figure 4; this project meets inter-swath relative accuracy specifications.

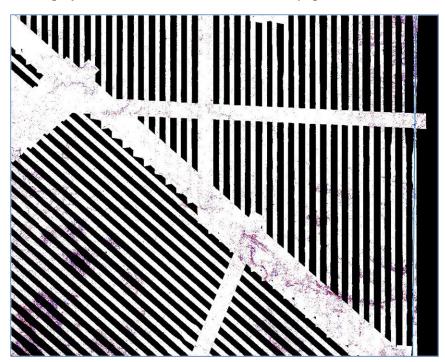



Figure 4. Delta-Z orthoimage raster generated to test inter-swath relative accuracy. Areas in the dataset where overlapping flight lines are within 8 cm of each other within each pixel are colored white, areas in the dataset where overlapping flight lines have elevation differences in each pixel between 8 cm to 16 cm are colored red or blue dependent on which line is above or below the overlapping line, and as the DZ values approach 16 cm and greater, the intensity of that color increases. The bright red or blue areas in this image are attributed to vegetation or steep slopes.

## Intra-Swath Relative Accuracy

Optimal GEO verifies the intra-swath or within swath relative accuracy by LAStools scripting and visual reviews. QTM scripting is used to calculate the maximum difference of all points within each 1-meter pixel/cell size of each swath. Optimal GEO analysts then identify planar surfaces acceptable for repeatability testing and analysts review the results in those areas. According to the SOW, USGS Lidar Base Specifications v1.3, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet intra-swath relative accuracy of 6 cm maximum difference or less. Figure 5 shows examples of the intra-swath relative accuracy of the TX Desert Mountain QL2 lidar data; this project meets intra-swath relative accuracy specifications.

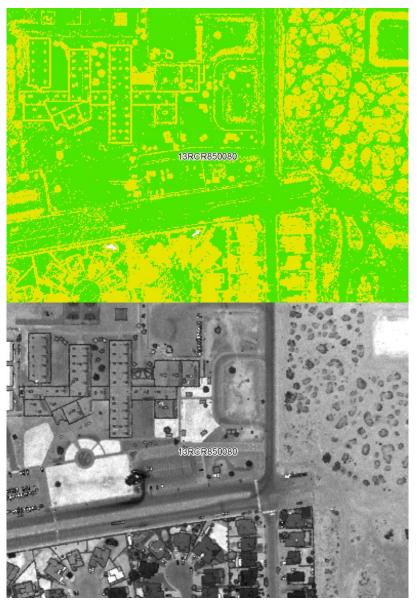



Figure 5. Intra-swath relative accuracy. The top image shows a close up of the project area; flat, open areas are colored green as they are within 6 cm whereas sloped terrain is colored yellow because it exceeds 6 cm maximum difference, as expected, due to actual slope/terrain change. The bottom image is a close-up of a flat area. Except for vegetated areas and around buildings (shown as yellow speckling/mottling as the elevation/height difference in vegetated areas will exceed 6 cm), this open flat area is acceptable for repeatability testing. Intra-swath relative accuracy passes specifications.

## Horizontal Alignment

To ensure horizontal alignment between adjacent or overlapping flight lines, Optimal GEO uses LAStools scripting and visual reviews. LAStools scripting is used to create files similar to DZ orthos for each swath but this process highlights planar surfaces, such as roof tops. Horizontal shifts or misalignments between swaths on roof tops and other elevated planar surfaces are highlighted. Visual reviews of these features, including additional profile verifications, are used to confirm the results of this process. Figure 6 shows an example of the horizontal alignment between swaths for the TX Desert Mountain lidar data.



Figure 6. Profile of a lidar point cloud cross section of a buildings. Points are colorized by flight line number.

## Point Density and Spatial Distribution

The required Aggregate Nominal Point Spacing (ANPS) for this project is no greater than 0.71 meters, which equates to an Aggregate Nominal Point Density (ANPD) of 2 points per square meter or greater. Density calculations were performed using first return data only located in the geometrically usable center portion (typically ~90%) of each swath. By utilizing statistics, the project area was determined to have an ANPS less than 0.71 meters or an ANPD greater than 2 points per square meter which satisfies the project requirements.

The spatial distribution of points must be uniform and free of clustering. This specification is tested by creating a grid with cell sizes equal to the design NPS\*2. LAStools scripting is then used to calculate the number of first return points of each swath within each grid cell. At least 90% of the cells must contain 1 lidar point, excluding acceptable void areas such as water or low NIR reflectivity features, i.e. some asphalt and roof composition materials.

To perform this test, Optimal GEO generated a Spatial Distribution raster grid from first return lidar points. This grid was generated for all tiles that intersect the project area. Optimal GEO did not identify any tiles where less than 90% of the cells did not contain at least one lidar point excluding acceptable void areas. Figure 7 below illustrates spatial distribution below.

Optimal GEO did identifyvoids in the lidar data that were larger than USGS' tolerance for acceptable data voids as defined in the task order. According to the USGS Lidar Base Specification, data voids are gaps in point cloud coverage greater or equal to (4\*ANPS)² measured using only first returns within a single swath. The voids were identified using a density raster. Each void identified was assessed against the latest imagery in Google Earth. The types of voids found in the dataset occurred from naturally occurring dark surfaces present on piles of tires in the desert, on a football field with black paint that absorbed the laser, on dark tarpaulin sheets that outlined retention ponds, and finally a tall rock formation on a cliff that obscured underlying data. An example of these voids are shown on the pages following in Figures 8, 9, 10, and 11 respectively.

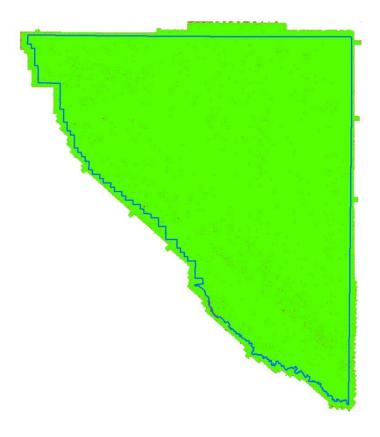



Figure 7. Spatial distribution raster generated from first return lidar pulses of the lidar data. Green pixels are areas with a count of 1 point or greater. Red pixels contain no data. The red areas are attributed to small ponds or variations in aircraft pitch that occurred during the acquisition.

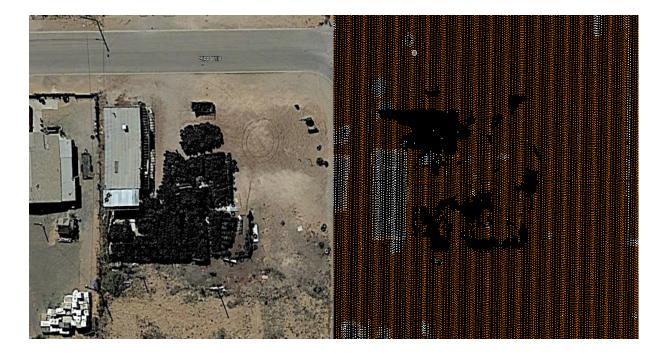



Figure 8. Tire pile voids. The laser was absorbed due to the material and color of the piles.



Figure 9. Shows a football field painted black that absorbed the laser returns.

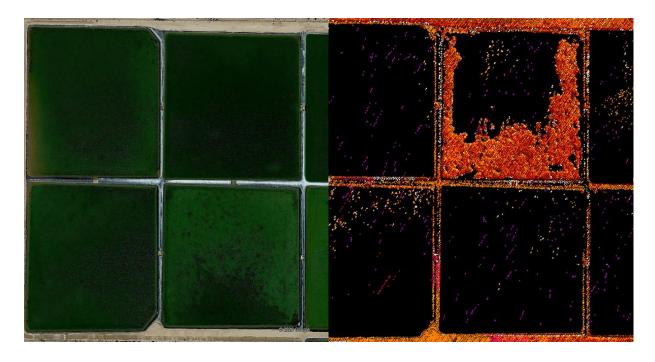



Figure 10. Voids around retention ponds due to laser absorption on the dark surfaces.

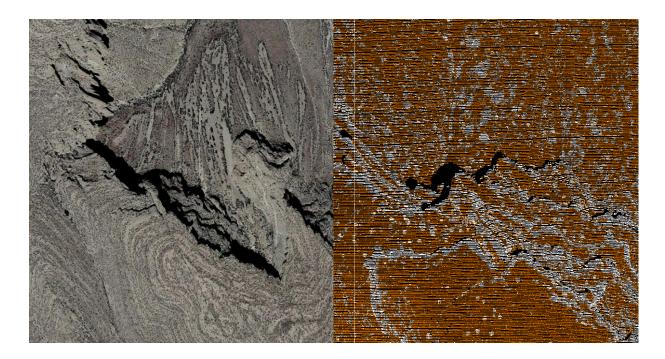



Figure 11. Steep rock formations obscuring underlying ground.

## Data Classification and Editing

Once the calibration, absolute swath vertical accuracy, and relative accuracy of the data was confirmed, Optimal GEO utilized a variety of software suites for data processing. The data was processed using TerraScan software. The initial step is the setup of the TerraScan project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the TerraScan project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classifies any obvious low outliers in the dataset to class 7 and high outliers in the dataset to class 18. Points along flight line edges that are geometrically unusable are identified as withheld and classified to a separate class so that they will not be used in the initial ground algorithm. After points that could negatively affect the ground are removed from class 1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model.

This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated, and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model.

Each tile was then imported into TerraScan and a surface model was created to examine the ground classification. Optimal GEO analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present. Optimal GEO analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. During this water classification routine, points that are within 1x NPS or less of the hydrographic features are moved to class 20, an ignored ground due to breakline proximity. Overage points are then identified and used in TerraScan to set the overlap bit for the overage points and the withheld bit is set on the withheld points previously identified before the ground classification routine was performed.

The lidar tiles were classified to the following classification schema:

- Class 1 = Unclassified, used for all other features that do not fit into the Classes 2, 7, 9, 17, 18, 20, 21, or 22, including vegetation, buildings, etc.
- Class 2 = Bare-Earth Ground
- Class 7 = Low Noise
- Class 9 = Water, points located within collected breaklines
- Class 17 = Bridge Decks
- Class 18 = High Noise
- Class 20 = Ignored Ground due to breakline proximity
- Class 21 = Snow
- Class 22 = Temporal Exclusion

After manual classification, the LAS tiles were peer reviewed and then underwent a final QA/QC. After the final QA/QC and corrections, all headers, appropriate point data records, and variable length records, including spatial reference information, are updated in TerraScan software and then verified using proprietary Optimal GEO tools.

## Lidar Qualitative Assessment

Optimal GEO's qualitative assessment utilizes a combination of statistical analysis and interpretative methodology or visualization to assess the quality of the data for a bare-earth digital terrain model (DTM). This includes creating pseudo image products such as lidar orthos produced from the intensity returns, Triangular Irregular Network (TIN)'s, Digital Elevation Models (DEM) and 3-dimensional models as well as reviewing the actual point cloud data. This process looks for anomalies in the data, areas where manmade structures or vegetation points may not have been classified properly to produce a bare-earth model, and other classification errors. This report will present representative examples where the lidar and post processing had issues as well as examples of where the lidar performed well.

## Formatting

After the final QA/QC is performed and all corrections have been applied to the dataset, all lidar files are updated to the final format requirements and the final formatting, header information, point data records, and variable length records are verified using Optimal GEO's proprietary tools. Table 4 lists some of the main lidar header fields that are updated and verified.

| Classified Lidar Formatting    |                                                                                                                                                                                                                    |                                                  |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| Parameter                      | Requirement                                                                                                                                                                                                        | Pass/Fail                                        |  |  |
| LAS Version                    | 1.4                                                                                                                                                                                                                | Pass                                             |  |  |
| Point Data Format              | Format 6                                                                                                                                                                                                           | Pass                                             |  |  |
| Coordinate<br>Reference System | NAD83 (2011) Universal Transverse Mercator<br>(UTM) Zone 13 North, meters and NAVD88 (Geoid<br>12B), meters in WKT Format                                                                                          | Pass                                             |  |  |
| Global Encoder Bit             | Should be set to 17 for Adjusted GPS Time                                                                                                                                                                          | Pass                                             |  |  |
| Time Stamp                     | Adjusted GPS Time (unique timestamps)                                                                                                                                                                              | Pass                                             |  |  |
| System ID                      | Should be set to the processing system/software and is set to TerraScan                                                                                                                                            | Pass                                             |  |  |
| Multiple Returns               | The sensor shall be able to collect multiple returns per pulse and the return numbers are recorded                                                                                                                 | Pass                                             |  |  |
| Intensity                      | 16-bit intensity values are recorded for each pulse                                                                                                                                                                | Pass                                             |  |  |
| Classification                 | Required Classes include: Class 1: Unclassified Class 2: Ground Class 7: Low Noise Class 9: Water Class 17: Bridge Decks Class 18: High Noise Class 20: Ignored Ground Class 21: Snow Class 22: Temporal Exclusion | Pass, class<br>21 and 22<br>were not<br>utilized |  |  |

| Overlap and<br>Withheld Points | Overlap (Overage) and Withheld points are set to the<br>Overlap and Withheld bits  | Pass |
|--------------------------------|------------------------------------------------------------------------------------|------|
| Scan Angle                     | Recorded for each pulse                                                            | Pass |
| XYZ Coordinates                | Unique Easting, Northing, and Elevation<br>coordinates are recorded for each pulse | Pass |

**Table 4. Classified Lidar Formatting.** 

## Lidar Positional Accuracy

## Background

Optimal GEO quantitatively tested the dataset by testing the vertical accuracy of the lidar. The vertical accuracy is tested by comparing the discreet measurement of the survey checkpoints to that of the interpolated value within the three closest lidar points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the lidar data is actually tested. However, there is an increased level of confidence with lidar data due to the relative accuracy. This relative accuracy in turn is based on how well one lidar point "fits" in comparison to the next contiguous lidar measurement and is verified as part of the initial processing. If the relative accuracy of a dataset is within specifications and the dataset passes vertical accuracy requirements at the location of survey checkpoints, the vertical accuracy results can be applied to the whole dataset with high confidence due to the passing relative accuracy. Typically, ESRI ArcMap is used to test the swath lidar vertical accuracy, TerraScan software to test the classified lidar vertical accuracy, and ESRI ArcMap to test the DEM vertical accuracy so that two different software programs are used to validate the vertical accuracy for each project.

## Survey Vertical Accuracy Checkpoints

For the final vertical accuracy assessment, one hundred and twenty-six (126) check points were surveyed for the project and are located within bare earth/open terrain, grass/weeds/crops, and forested/fully grown land cover categories. Please see the included survey report found in the survey folder of the deliverables structure which details and validates how the survey was completed for this project.

Checkpoints were evenly distributed throughout the project area to cover as many flight lines as possible using the "dispersed method" of placement.

Table 5 lists the location of the QA/QC checkpoints used to test the positional accuracy of the dataset.

Table 5. Ground Surveyed Vertical Accuracy Check Points.

|          | NAD83(2011),  | Elevation (m;  |                 |
|----------|---------------|----------------|-----------------|
| Point ID | Easting X (m) | Northing Y (m) | NAVD88 Geoid12B |
| 2001     | 373424.403    | 3538502.435    | 1220.471        |
| 2002     | 386325.645    | 3536880.481    | 1241.721        |
| 2003     | 397571.072    | 3532933.492    | 1317.310        |
| 2004     | 404091.700    | 3533675.913    | 1430.560        |
| 2005     | 414105.663    | 3539748.565    | 1632.319        |
| 2006     | 427465.152    | 3534550.813    | 1522.262        |
| 2007     | 436169.150    | 3534711.982    | 1463.927        |
| 2008     | 443285.714    | 3533962.512    | 1511.284        |
| 2009     | 453404.395    | 3531687.848    | 1390.539        |
| 2010     | 469455.918    | 3532831.980    | 1256.690        |
| 2011     | 477674.988    | 3533686.404    | 1153.174        |
| 2012     | 485892.786    | 3533680.376    | 1111.583        |
| 2013     | 495891.465    | 3531959.700    | 1106.787        |
| 2014     | 494133.898    | 3528944.272    | 1102.775        |
| 2015     | 485925.689    | 3528575.019    | 1109.287        |
| 2016     | 477676.646    | 3526864.401    | 1155.493        |
| 2017     | 467969.378    | 3526804.729    | 1252.766        |

Table 5. Ground Surveyed Vertical Accuracy Check Points continued.

| 2018 | 454446.478 | 3521744.881 | 1333.447 |
|------|------------|-------------|----------|
| 2019 | 454477.925 | 3518974.102 | 1342.681 |
| 2020 | 436091.218 | 3526018.698 | 1425.921 |
| 2021 | 426001.312 | 3523729.484 | 1604.260 |
| 2022 | 411718.635 | 3525705.572 | 1593.904 |
| 2023 | 408116.228 | 3523248.992 | 1579.717 |
| 2025 | 383447.103 | 3527968.913 | 1230.276 |
| 2027 | 386427.783 | 3517091.704 | 1227.772 |
| 2028 | 396050.580 | 3516157.437 | 1248.163 |
| 2029 | 404043.279 | 3515280.394 | 1337.859 |
| 2030 | 415869.110 | 3515931.500 | 1561.343 |
| 2031 | 425171.619 | 3519075.458 | 1582.984 |
| 2032 | 440801.262 | 3512032.122 | 1390.730 |
| 2033 | 447569.909 | 3515019.384 | 1339.253 |
| 2034 | 457668.174 | 3515623.058 | 1322.177 |
| 2035 | 467882.497 | 3516265.111 | 1241.913 |
| 2036 | 478195.828 | 3512394.939 | 1228.169 |
| 2037 | 489191.351 | 3512182.942 | 1140.428 |
| 2038 | 492727.320 | 3517960.819 | 1112.799 |
| 2039 | 497037.550 | 3504594.907 | 1106.870 |
| 2040 | 500844.716 | 3497010.149 | 1104.343 |
| 2041 | 484581.510 | 3498455.209 | 1270.296 |
| 2042 | 477493.766 | 3491875.212 | 1298.606 |
| 2043 | 481684.320 | 3502148.621 | 1227.829 |
| 2044 | 472655.279 | 3503994.231 | 1249.592 |
| 2045 | 464812.607 | 3501981.541 | 1298.379 |
| 2046 | 456681.910 | 3507391.191 | 1325.698 |
| 2047 | 445863.309 | 3506609.589 | 1372.040 |
| 2048 | 435823.597 | 3505301.740 | 1450.069 |
| 2049 | 426857.524 | 3506626.139 | 1516.135 |
| 2050 | 417077.993 | 3502444.531 | 1348.390 |
| 2051 | 405222.142 | 3506254.092 | 1256.438 |
| 2052 | 397668.060 | 3505620.416 | 1236.379 |
| 2053 | 387601.590 | 3506494.882 | 1230.091 |
| 2054 | 396036.185 | 3497576.106 | 1236.359 |
| 2055 | 405221.068 | 3497251.466 | 1232.873 |
| 2056 | 415220.709 | 3495094.821 | 1282.236 |
| 2057 | 425002.214 | 3497524.443 | 1416.699 |
| 2058 | 449336.319 | 3497930.582 | 1383.742 |
| 2059 | 458706.948 | 3492540.100 | 1332.149 |
| 2060 | 468139.348 | 3494040.595 | 1276.769 |

Table 5. Ground Surveyed Vertical Accuracy Check Points continued.

| 2062 | 483920.321 | 3484833.404 | 1348.675 |
|------|------------|-------------|----------|
| 2063 | 477583.131 | 3482934.703 | 1356.885 |
| 2064 | 465188.636 | 3484571.013 | 1323.097 |
| 2065 | 453420.037 | 3483504.384 | 1441.667 |
| 2066 | 445422.043 | 3485855.003 | 1452.239 |
| 2067 | 436371.003 | 3484187.317 | 1544.909 |
| 2068 | 424030.108 | 3482911.930 | 1294.945 |
| 2069 | 414650.284 | 3488240.919 | 1239.266 |
| 2071 | 398012.845 | 3485499.719 | 1195.698 |
| 2072 | 409918.460 | 3477544.807 | 1187.994 |
| 2073 | 415336.544 | 3474855.911 | 1177.611 |
| 2075 | 434320.959 | 3474453.098 | 1305.956 |
| 2076 | 447830.313 | 3474709.542 | 1499.949 |
| 2077 | 458689.601 | 3475712.936 | 1399.514 |
| 2079 | 477955.490 | 3474378.704 | 1377.488 |
| 2080 | 490464.643 | 3476887.242 | 1448.273 |
| 2121 | 440003.713 | 3494021.712 | 1511.978 |
| 3001 | 373395.413 | 3538462.006 | 1221.140 |
| 3002 | 389813.601 | 3534461.838 | 1240.848 |
| 3003 | 400295.948 | 3531997.159 | 1355.918 |
| 3004 | 414318.751 | 3540102.751 | 1622.740 |
| 3006 | 439772.825 | 3532269.809 | 1465.585 |
| 3007 | 448453.185 | 3533789.807 | 1457.024 |
| 3008 | 467790.001 | 3532320.588 | 1245.032 |
| 3009 | 478595.839 | 3533696.941 | 1145.667 |
| 3010 | 492259.795 | 3531970.773 | 1107.357 |
| 3011 | 499406.471 | 3532003.053 | 1110.658 |
| 3012 | 496694.465 | 3525928.366 | 1105.577 |
| 3013 | 498000.927 | 3506500.927 | 1102.823 |
| 3014 | 488749.505 | 3519771.276 | 1113.362 |
| 3015 | 480919.795 | 3525210.603 | 1130.748 |
| 3016 | 464560.339 | 3519750.963 | 1264.290 |
| 3017 | 457037.086 | 3515757.641 | 1318.047 |
| 3018 | 438928.746 | 3519967.768 | 1417.283 |
| 3019 | 427540.184 | 3523042.272 | 1561.731 |
| 3020 | 413245.566 | 3521646.646 | 1562.362 |
| 3021 | 399302.448 | 3519160.567 | 1273.842 |
| 3022 | 392855.639 | 3521517.719 | 1243.045 |
| 3023 | 377485.044 | 3524641.057 | 1213.305 |
| 3024 | 388783.037 | 3506292.471 | 1225.043 |
| 3025 | 405205.754 | 3506143.476 | 1255.668 |

Table 5. Ground Surveyed Vertical Accuracy Check Points continued.

| 3026       417410.576       3503610.296       1358.758         3027       422884.014       3508998.222       1445.772         3028       440828.157       3512380.789       1382.356         3029       454431.617       3508292.679       1331.027         3031       479454.602       3512384.717       1226.846         3032       493737.431       3511550.377       1118.247         3033       497875.346       3498035.564       1114.779         3034       484761.275       3496651.450       1295.249         3035       476104.501       3495722.072       1267.235         3036       464832.565       3497082.824       1279.338         3037       453958.115       3499020.667       1342.611         3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       <                                                            |      |            |             |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-------------|----------|
| 3028         440828.157         3512380.789         1382.356           3029         454431.617         3508292.679         1331.027           3031         479454.602         3512384.717         1226.846           3032         493737.431         3511550.377         1118.247           3033         497875.346         3498035.564         1114.779           3034         484761.275         3496651.450         1295.249           3035         476104.501         3495722.072         1267.235           3036         464832.565         3497082.824         1279.338           3037         453958.115         3499020.667         1342.611           3038         434576.605         3499011.044         1505.535           3039         426406.821         3502720.757         1450.542           3040         413662.440         3493834.136         1265.848           3041         407751.513         3497316.817         1244.162           3042         391237.732         3498306.610         1212.459           3044         419982.409         3486339.628         1267.510           3045         429024.678         3482263.255         1313.284           3046         438617.984 | 3026 | 417410.576 | 3503610.296 | 1358.758 |
| 3029       454431.617       3508292.679       1331.027         3031       479454.602       3512384.717       1226.846         3032       493737.431       3511550.377       1118.247         3033       497875.346       3498035.564       1114.779         3034       484761.275       3496651.450       1295.249         3035       476104.501       3495722.072       1267.235         3036       464832.565       3497082.824       1279.338         3037       453958.115       3499020.667       1342.611         3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       <                                                            | 3027 | 422884.014 | 3508998.222 | 1445.772 |
| 3031       479454.602       3512384.717       1226.846         3032       493737.431       3511550.377       1118.247         3033       497875.346       3498035.564       1114.779         3034       484761.275       3496651.450       1295.249         3035       476104.501       3495722.072       1267.235         3036       464832.565       3497082.824       1279.338         3037       453958.115       3499020.667       1342.611         3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3050       484249.996       <                                                            | 3028 | 440828.157 | 3512380.789 | 1382.356 |
| 3032       493737.431       3511550.377       1118.247         3033       497875.346       3498035.564       1114.779         3034       484761.275       3496651.450       1295.249         3035       476104.501       3495722.072       1267.235         3036       464832.565       3497082.824       1279.338         3037       453958.115       3499020.667       1342.611         3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       <                                                            | 3029 | 454431.617 | 3508292.679 | 1331.027 |
| 3033       497875.346       3498035.564       1114.779         3034       484761.275       3496651.450       1295.249         3035       476104.501       3495722.072       1267.235         3036       464832.565       3497082.824       1279.338         3037       453958.115       3499020.667       1342.611         3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       <                                                            | 3031 | 479454.602 | 3512384.717 | 1226.846 |
| 3034       484761.275       3496651.450       1295.249         3035       476104.501       3495722.072       1267.235         3036       464832.565       3497082.824       1279.338         3037       453958.115       3499020.667       1342.611         3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                  | 3032 | 493737.431 | 3511550.377 | 1118.247 |
| 3035       476104.501       3495722.072       1267.235         3036       464832.565       3497082.824       1279.338         3037       453958.115       3499020.667       1342.611         3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                                                                                 | 3033 | 497875.346 | 3498035.564 | 1114.779 |
| 3036       464832.565       3497082.824       1279.338         3037       453958.115       3499020.667       1342.611         3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                                                                                                                                                | 3034 | 484761.275 | 3496651.450 | 1295.249 |
| 3037       453958.115       3499020.667       1342.611         3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                                                                                                                                                                                                               | 3035 | 476104.501 | 3495722.072 | 1267.235 |
| 3038       434576.605       3499011.044       1505.535         3039       426406.821       3502720.757       1450.542         3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                                                                                                                                                                                                                                                                              | 3036 | 464832.565 | 3497082.824 | 1279.338 |
| 3039     426406.821     3502720.757     1450.542       3040     413662.440     3493834.136     1265.848       3041     407751.513     3497316.817     1244.162       3042     391237.732     3498306.610     1212.459       3044     419982.409     3486339.628     1267.510       3045     429024.678     3482263.255     1313.284       3046     438617.984     3486711.044     1528.001       3047     454011.080     3485974.900     1455.253       3048     466687.397     3480378.207     1329.228       3049     474629.957     3488595.799     1314.159       3050     484249.996     3485625.566     1351.512       3052     498036.594     3473527.253     1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3037 | 453958.115 | 3499020.667 | 1342.611 |
| 3040       413662.440       3493834.136       1265.848         3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3038 | 434576.605 | 3499011.044 | 1505.535 |
| 3041       407751.513       3497316.817       1244.162         3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3039 | 426406.821 | 3502720.757 | 1450.542 |
| 3042       391237.732       3498306.610       1212.459         3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3040 | 413662.440 | 3493834.136 | 1265.848 |
| 3044       419982.409       3486339.628       1267.510         3045       429024.678       3482263.255       1313.284         3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3041 | 407751.513 | 3497316.817 | 1244.162 |
| 3045     429024.678     3482263.255     1313.284       3046     438617.984     3486711.044     1528.001       3047     454011.080     3485974.900     1455.253       3048     466687.397     3480378.207     1329.228       3049     474629.957     3488595.799     1314.159       3050     484249.996     3485625.566     1351.512       3052     498036.594     3473527.253     1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3042 | 391237.732 | 3498306.610 | 1212.459 |
| 3046       438617.984       3486711.044       1528.001         3047       454011.080       3485974.900       1455.253         3048       466687.397       3480378.207       1329.228         3049       474629.957       3488595.799       1314.159         3050       484249.996       3485625.566       1351.512         3052       498036.594       3473527.253       1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3044 | 419982.409 | 3486339.628 | 1267.510 |
| 3047     454011.080     3485974.900     1455.253       3048     466687.397     3480378.207     1329.228       3049     474629.957     3488595.799     1314.159       3050     484249.996     3485625.566     1351.512       3052     498036.594     3473527.253     1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3045 | 429024.678 | 3482263.255 | 1313.284 |
| 3048     466687.397     3480378.207     1329.228       3049     474629.957     3488595.799     1314.159       3050     484249.996     3485625.566     1351.512       3052     498036.594     3473527.253     1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3046 | 438617.984 | 3486711.044 | 1528.001 |
| 3049     474629.957     3488595.799     1314.159       3050     484249.996     3485625.566     1351.512       3052     498036.594     3473527.253     1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3047 | 454011.080 | 3485974.900 | 1455.253 |
| 3050     484249.996     3485625.566     1351.512       3052     498036.594     3473527.253     1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3048 | 466687.397 | 3480378.207 | 1329.228 |
| 3052 498036.594 3473527.253 1607.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3049 | 474629.957 | 3488595.799 | 1314.159 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3050 | 484249.996 | 3485625.566 | 1351.512 |
| 3057 436060.493 3474508.612 1320.909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3052 | 498036.594 | 3473527.253 | 1607.783 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3057 | 436060.493 | 3474508.612 | 1320.909 |
| 3058 429565.225 3474739.899 1264.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3058 | 429565.225 | 3474739.899 | 1264.242 |
| 3059 416527.331 3474810.666 1177.864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3059 | 416527.331 | 3474810.666 | 1177.864 |

## Vertical Accuracy Test Procedures

## Non-vegetated Vertical Accuracy

NVA (Non-vegetated Vertical Accuracy) is determined with check points located only in non-vegetated terrain, including open terrain (grass, dirt, sand, and/or rocks) and urban areas, where there is a very high probability that the lidar sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The NVA determines how well the calibrated lidar sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSEz) of the checkpoints x 1.9600. For the TX Desert Mountain Lidar Project, vertical accuracy must be 19.6 cm or less based on an RMSEz of 10 cm x 1.9600.

## Vegetated Vertical Accuracy

VVA (Vegetated Vertical Accuracy) is determined with all checkpoints in vegetated land cover categories, including tall grass, weeds, crops, brush and low trees, and fully forested areas, where there is a possibility that the lidar sensor and post-processing may yield elevation errors that do not follow a normal error distribution. VVA at the 95% confidence level equals the 95<sup>th</sup> percentile error for all checkpoints in all vegetated land cover categories combined. Desert Mountain's QL2 lidar project VVA standard is 30 cm based on the 95<sup>th</sup> percentile. Here, Accuracy<sub>z</sub> differs from VVA because Accuracy<sub>z</sub> assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas VVA assumes lidar errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid. The relevant testing criteria are summarized in Table 6.

| Quantitative Criteria                                                                                               | Measure of Acceptability                            |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Non-Vegetated Vertical Accuracy (NVA) in open terrain and urban land cover categories using RMSE $_{\rm z}$ *1.9600 | 19.6 cm (based on RMSE $_{\rm z}$ (10 cm) * 1.9600) |
| Vegetated Vertical Accuracy (VVA) in all vegetated land cover categories combined at the 95% confidence level       | 30 cm (based on 95 <sup>th</sup> percentile)        |

**Table 6. Acceptance Criteria** 

The primary QA/QC vertical accuracy testing steps used by Optimal GEO are summarized as follows:

- 1. The ground team surveyed QA/QC vertical checkpoints in accordance with the project's specifications.
- 2. Next, Optimal GEO interpolated the bare-earth lidar DTM to provide the z-value for everycheckpoint.
- 3. Optimal GEO then computed the associated z-value differences between the interpolated z-value from the lidar data and the ground truth survey checkpoints and computed NVA, VVA, and other statistics.
- 4. The data were analyzed by Optimal GEO to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

## Vertical Accuracy Results

Table 7 summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the fully classified lidar LAS files.

| Land Cover Category | # of Points | NVA — Non-vegetated<br>Vertical Accuracy<br>(RMSE₂ x 1.9600)<br>Spec=19.6 cm | VVA — Vegetated Vertical<br>Accuracy (95th Percentile)<br>Spec=29.4 cm NVA |
|---------------------|-------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| NVA                 | 75          | 11.6 cm                                                                      |                                                                            |
| VVA                 | 51          |                                                                              | 23.1 cm                                                                    |

Table 7. Tested NVA and VVA

This lidar dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be RMSEz = 5.9 cm, equating to  $\pm$  11.6 cm at 95% confidence level. Actual VVA accuracy was found to be  $\pm$  23.1 cm at the 95th Percentile.

Table 8 provides overall descriptive statistics.

| 100 % of<br>Totals | # of<br>Points | RMSEz (m)<br>@95% CL | Mean<br>(m) | Median<br>(m) | Skew   | Std<br>Dev<br>(m) | Min<br>(m) | Max<br>(m) |
|--------------------|----------------|----------------------|-------------|---------------|--------|-------------------|------------|------------|
| NVA                | 75             | 0.116                | -0.013      | -0.007        | -0.305 | 0.058             | -0.141     | 0.097      |
| VVA                | 51             | N/A                  | 0.041       | 0.037         | 0.205  | 0.100             | -0.257     | 0.315      |

**Table 8. Overall Descriptive Statistics** 

Based on the vertical accuracy testing conducted by Optimal GEO, the lidar dataset for the TX Desert Mountains QL2 Lidar Project satisfies the project's pre-defined vertical accuracy criteria.

# Breakline Production & Qualitative Assessment Report

## **Breakline Production Methodology**

Optimal GEO digitized the project's hydrographic breaklines from the lidar utilizing the TIN and intensity for visualization and placement. This technique enables Optimal GEO to produce accurate 3D hydrographic breaklines for features that are consistent with the lidar data at the time of airborne survey. All drainage breaklines are monotonically enforced to show downhill flow. Water bodies are at a constant elevation where the water body has been captured at the lowest elevation. Bridge deck breaklines are compiled directly from the project's DEMs. Bridge Breaklines are used where necessary to enforce the terrain beneath bridge decks and to prevent bridge saddles in the bare earth DEMs. All features were compiled in accordance with the project's Data Dictionary.

## Breakline Qualitative Assessment

Completeness and horizontal placement are verified through visual reviews against lidar intensity imagery. Automated checks are applied on all breakline features to validate topology, including the 3D connectivity of features, enforced monotonicity on linear hydrographic breaklines, and flatness on water bodies. After all corrections and edits to the breakline features, the breaklines are imported into the final GDB and verified for correct formatting.

## Breakline Data Dictionary

The following data dictionary was used for this project.

## Horizontal and Vertical Datum

The horizontal datum shall be North American Datum of 1983, 2011 adjustment (NAD83 2011), Units in Meters. The vertical datum shall be referenced to the North American Vertical Datum of 1988, Units in Meters. Geoid12B shall be used to convert ellipsoidal heights to orthometric heights.

## Coordinate System and Projection

All data shall be projected to Universal Transverse Mercator (UTM) Zone 13 North, Horizontal Units in Meters and Vertical Units in Meters.

## Inland Streams and Rivers

Feature Class: BREAKLINES Feature Type: Polygon Contains Z Values: Yes

**XY Resolution:** Accept Default Setting

XY Tolerance: 0.003

Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting

Z Tolerance: 0.001

### Description

This polygon feature class will depict linear hydrographic features with a width greater than 100 feet.

## Table Definition

| able Dejiiiitioii |           |                         |                  |        |           |       |        |                           |
|-------------------|-----------|-------------------------|------------------|--------|-----------|-------|--------|---------------------------|
| Field Name        | Data Type | Allow<br>Null<br>Values | Default<br>Value | Domain | Precision | Scale | Length | Responsibility            |
| OBJECTID          | Object ID |                         |                  |        |           |       |        | Assigned by Software      |
| SHAPE             | Geometry  |                         |                  |        |           |       |        | Assigned by Software      |
| SHAPE_LENGTH      | Double    | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |
| SHAPE_AREA        | Double    | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |

## Feature Definition

| Description           | Definition                                                                                                                                                                                                                                       | Capture Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Streams and<br>Rivers | Linear hydrographic features such as streams, rivers, canals, etc. with an average width greater than 100 feet. In the case of embankments, if the feature forms a natural dual line channel, then capture it consistent with the capture rules. | Capture features showing dual line (one on each side of the feature). Average width shall be greater than 100 feet to show as a double line. Each vertex placed should maintain vertical integrity. Generally, both banks shall be collected to show consistent downhill flow. There are exceptions to this rule where a small branch or offshoot of the stream or river is present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       | Other natural or manmade embankments will not qualify for this project.                                                                                                                                                                          | The banks of the stream must be captured at the same elevation to ensure flatness of the water feature. If the elevation of the banks appears to be different see the task manager or PM for further guidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                                                                                                                                                                                                                                  | Breaklines must be captured at or just below the elevations of<br>the immediately surrounding terrain. Under no circumstances<br>should a feature be elevated above the surrounding lidar<br>points. Acceptable variance in the negative direction will be<br>defined for each project individually.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                                                                                                                                                                                                                                  | These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water. |
|                       |                                                                                                                                                                                                                                                  | Every effort should be made to avoid breaking a stream or river into segments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                                                                                                                                                                                                                                  | Dual line features shall break at road crossings (culverts). In areas where a bridge is present the dual line feature shall continue through the bridge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                                  | Islands: The double line stream shall be captured around an island if the island is greater than 1 acre. In this case a segmented polygon shall be used around the island in order to allow for the island feature to remain as a "hole" in the feature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## Inland Ponds and Lakes

Feature Class: BREAKLINES
Feature Type: Polygon
Contains Z Values: Yes
XY Resolution: Accept Default Setting

XY Tolerance: 0.003

**Contains M Values:** No **Annotation Subclass:** None **Z Resolution:** Accept Default Setting

Z Tolerance: 0.001

Description
This polygon feature class will depict closed water body features that are at a constant elevation.

# Table Definition

| Field Name   | Data Type | Allow<br>Null<br>Values | Default<br>Value | Domain | Precision | Scale | Length | Responsibility            |
|--------------|-----------|-------------------------|------------------|--------|-----------|-------|--------|---------------------------|
| OBJECTID     | Object ID |                         |                  |        |           |       |        | Assigned by<br>Software   |
| SHAPE        | Geometry  |                         |                  |        |           |       |        | Assigned by<br>Software   |
| SHAPE_LENGTH | Double    | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |
| SHAPE_AREA   | Double    | Yes                     |                  |        | 0         | 0     |        | Calculated by<br>Software |

## Feature Definition

| Description        | Definition                                                                                                                                                                                                                                                                                                                                                                                                                    | Capture Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ponds and<br>Lakes | Land/Water boundaries of constant elevation water bodies such as lakes, reservoirs, ponds, etc. Features shall be defined as closed polygons and contain an elevation value that reflects the best estimate of the water elevation at the time of data capture. Water body features will be captured for features 2 acres in size or greater. "Donuts" will exist where there are islands within a closed water body feature. | Water bodies shall be captured as closed polygons with the water feature to the right. The compiler shall take care to ensure that the z-value remains consistent for all vertices placed on the water body.  Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding lidar points. Acceptable variance in the negative direction will be defined for each project individually.  An Island within a Closed Water Body Feature that is 1 acre in size or greater will also have a "donut polygon" compiled.  These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water. |

# **DEM Production & Qualitative Assessment**

## **DEM Production Methodology**

Optimal GEO generates a project wide DEM using ESRI ArcGIS software. Once the DEM is created, it is reviewed in ArcGIS for any issues requiring corrections, including remaining lidar misclassifications, erroneous breakline elevations, poor hydro-flattening or hydro-enforcement, and processing artifacts. After corrections are applied, the DEM is then split into individual tiles in accordance with the project tiling scheme. The tiles are verified for final formatting and then loaded into Global Mapper to ensure no missing or corrupt tiles and to ensure seamlessness across tile boundaries.

## **DEM Qualitative Assessment**

Optimal GEO performed a comprehensive qualitative assessment of the bare earth DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. This process was performed in ArcGIS software with the use of a tool set Optimal GEO has developed to verify that the raster extents match those of the tile grid and contain the correct projection information. The DEM data was reviewed at a scale of 1:5000 to review for artifacts caused by the DEM generation process and to review the hydroflattened features. To perform this review Optimal GEO creates hillshade models and overlays a partially transparent colorized elevation model to review for these issues. All corrections are completed using Optimal GEO's proprietary correction workflow. Upon completion of the corrections, the DEM data is

loaded into Global Mapper for its second review and to verify corrections. Once the DEMs are tiled out, the final tiles are again loaded into Global Mapper to ensure coverage, extents, and that the final tiles are seamless.

## **DEM Vertical Accuracy Results**

One hundred and twenty-six (126) checkpoints that were used to test the vertical accuracy of the lidar were used to validate the vertical accuracy of the final DEM products. Accuracy results may vary between the source lidar and final DEM deliverable. DEMs are created by averaging several lidar points within each pixel which may result in slightly different elevation values at each survey checkpoint when compared to the source LAS, which does not average several lidar points together but may interpolate (linearly) between three points to derive an elevation value. The vertical accuracy of the DEM is tested by extracting the elevation of the pixel that contains the x/y coordinates of the checkpoint and comparing these DEM elevations to the surveyed elevations. Optimal GEO typically uses TerraScan software to test the swath lidar vertical accuracy, to test the classified lidar vertical accuracy, and ESRI ArcMap to test the DEM vertical accuracy so that two different software programs are used to validate the vertical accuracy for each project.

Table 10 summarizes the tested vertical accuracy results from a comparison of the surveyed checkpoints to the elevation values present within the final DEM dataset.

| Land Cover Category | # of Points | NVA — Non-vegetated<br>Vertical Accuracy (RMSEzx<br>1.9600) Spec=19.6 cm | VVA — Vegetated<br>Vertical Accuracy (95th<br>Percentile) Spec=30 cm |
|---------------------|-------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|
| NVA                 | 75          | 13.3 cm                                                                  |                                                                      |
| VVA                 | 51          |                                                                          | 22.5 cm                                                              |

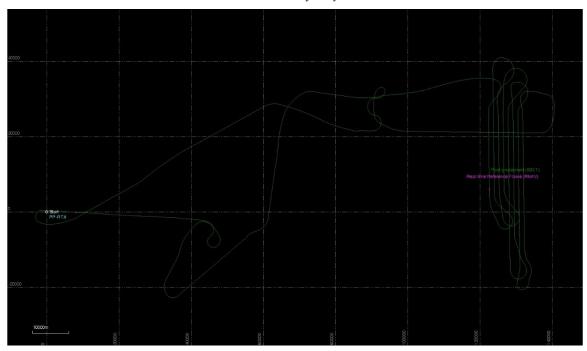
Table 10. DEM tested NVA and VVA

This DEM dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be RMSE $_z$  =6.8 cm, equating to +/- 13.3 cm at 95% confidence level. Actual VVA accuracy was found to be +/- 22.5 cm at the 95th percentile.

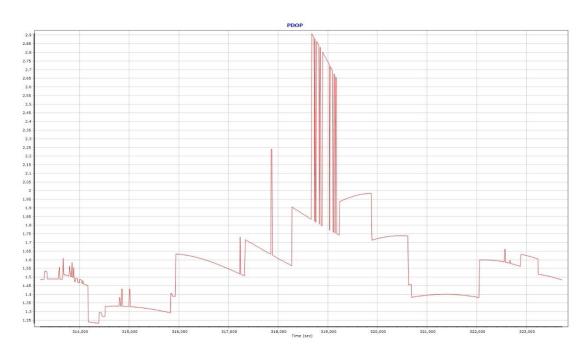
Table 11 provides overall descriptive statistics.

| 100 % of<br>Totals | # of<br>Points | RMSEz (m)<br>@95% CL | Mean<br>(m) | Median<br>(m) | Skew   | Std<br>Dev<br>(m) | Min (m) | Max<br>(m) |
|--------------------|----------------|----------------------|-------------|---------------|--------|-------------------|---------|------------|
| NVA                | 75             | 0.133                | -0.017      | -0.006        | -0.962 | 0.066             | -0.271  | 0.087      |
| VVA                | 51             | N/A                  | 0.045       | 0.026         | 0.685  | 0.106             | -0.257  | 0.400      |

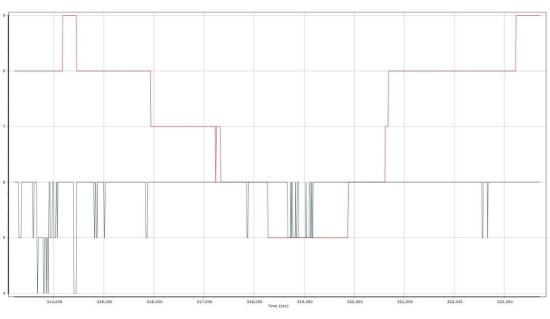
**Table 11. Overall Descriptive Statistics** 


Based on the vertical accuracy testing conducted by Optimal GEO, the DEM dataset for the TX Desert Mountains QL2 Lidar Project satisfies the project's predefined vertical accuracy criteria.

# Appendix A: Flightlogs, IMU, and GPS Processing Reports Mission 1 (20190911A)

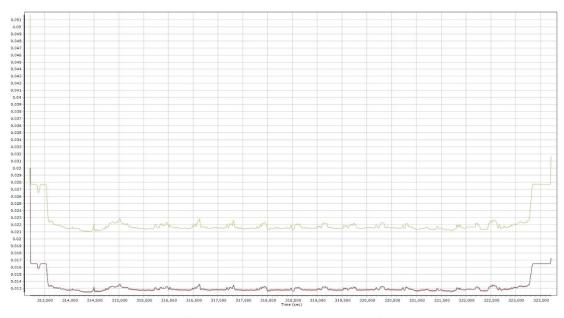

Flight Log

| Caramer | SHT.   | QSI ×        | COLUITY      | v 12es a | [erroll log d | ally to flight | Log_du           | obusion_L       | st@quest.m    | apatral.com) | Spatiat, III     | c I                           | Date:                    | 19 ×       | l.      |
|---------|--------|--------------|--------------|----------|---------------|----------------|------------------|-----------------|---------------|--------------|------------------|-------------------------------|--------------------------|------------|---------|
| Project | . 5    |              | 2018-20      | 017      | , much lo     | " Proj #       | 1: 3¢            |                 |               |              |                  |                               |                          |            |         |
|         | t: (N) | 75/1Q        | Begin Ho     | obbs:    | E             | End Hobbs:     |                  |                 |               |              | Pilot:           | Co-Pilo                       | Not: Tech: 12 09 00      |            |         |
| Dep Ap  |        |              | Dep Time     |          |               | 1000           |                  | Arr A           |               |              | rr Time (Local): | 100000                        | Ime Aloft:               |            |         |
|         |        | / N 58       |              |          | 5             |                |                  |                 |               |              | / N IFY, to      |                               | 5ta 2)                   |            |         |
|         |        |              | a 1: E9#9    |          |               |                |                  |                 | FL)           | overs: Y     | / N 187, t       | Irnes: Stal)                  | Sta2)                    |            | Storego |
| Gd Tem  | p beg  |              | c End:       |          | OAT b         | -              | ALT              | ind:            |               | Altimet      | -                | end:                          |                          | End<br>End | Pinneja |
| LIDAR   | Тура   | Print        | Serial #     | 386      | AGL.          |                | AMSL             |                 | Avg To        |              | Max<br>Gdspd     | Specing<br>PPSM               |                          | GB<br>Tes  |         |
|         | FOV    |              | Scan<br>Freq |          | MpIA          | IN             | Pulpes<br>In Air |                 | Pulso<br>Reto |              | Power            | man.                          |                          | GB GB      |         |
| Line #  | Hdg    | Start (UTC): | End (UTC)    | Gd Spd   | PDCIPFVSats   | GPS ALtitu     | ide Crab         | Turb<br>(0,-,-) |               |              | FLIGH            | T LINE NOTES - visibility, d. | ouds, smake, partial, er | tt.        |         |
| 156     | E      | 1535         | 1541         | 16/      | 103/12        | 10600          | -3               | 0               |               | e /5.+       |                  | Portiel Lien                  |                          |            |         |
| 92      | 3      | 1547         | 15514        | 154      | 2/24          | 13679          | -3               | 0               |               |              |                  |                               |                          |            |         |
| 93      | N      | 1558         | 1606         | 165      | 1/22          |                |                  |                 | 18-0          |              | -                |                               |                          |            |         |
| 94      | 5      | 1610         | 1616         | 167      | .47/22        |                |                  |                 |               | 6.5          |                  |                               |                          |            |         |
| 95      | N      | 1020         | 1627         | 165      |               | 13660          |                  |                 |               |              |                  | 1K+> 18-1)                    |                          |            |         |
| 96      | 5      | 1633         | 1636         | 165      | 13/12         | 1360           |                  |                 |               |              |                  |                               |                          |            |         |
| 97      | N      | 1641         | 1645         | 165      | 10/22         | 1361           |                  | -               | 10            |              |                  |                               |                          |            |         |
| 98      | 5      | 1652         | 1655         | 165      | 15            | 13526          | -                |                 | 0-1           |              |                  |                               |                          |            |         |
| 19      | N      | 1701         | 1705         | 169      | 1.07/23       | 1355           |                  |                 | 11-0          |              | 7.4-17           |                               |                          |            |         |
| 50      | 5      | 1728         | 1724         | 157      | 1.4/21        | 1346           | 00               | 0               | 114           | 1.17         | 19-13            |                               |                          |            |         |
|         |        |              |              |          |               |                | +                | -               | -             |              |                  |                               |                          |            |         |
|         |        |              |              |          |               |                | +                | -               |               |              |                  |                               |                          |            |         |
|         |        |              |              |          |               |                |                  | -               | -             | 1000         |                  |                               |                          |            |         |
|         |        |              |              |          |               |                |                  | -               |               |              |                  |                               |                          |            |         |
|         |        |              |              |          |               |                |                  |                 |               |              |                  |                               |                          |            |         |
|         |        |              |              |          |               |                |                  |                 |               | _            |                  |                               |                          |            |         |
|         |        |              |              |          |               |                |                  |                 |               |              |                  |                               |                          |            |         |
| -       | +      |              |              |          |               |                |                  |                 |               |              |                  |                               | Notes:                   |            |         |
|         |        |              |              |          |               | Remain:        |                  |                 | Online T      | lme:         | Mob              | Time:                         |                          |            |         |


Mission Trajectory

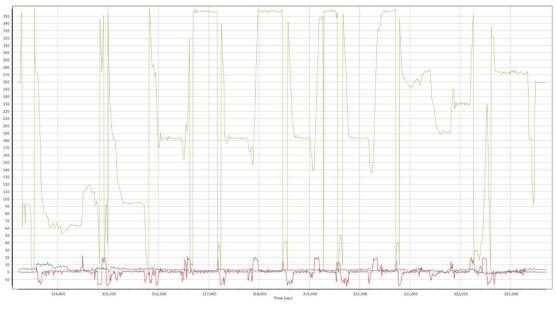







## Satellites




— Number of GPS Satellites — Number of GLONASS Satellites

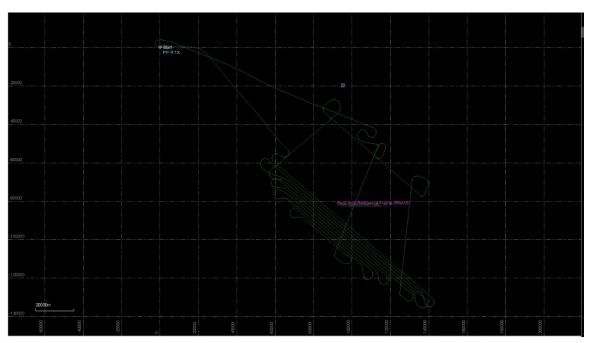




#### - North Position Error RMS (m) - East Position Error RMS (m) - Down Position Error RMS (m)

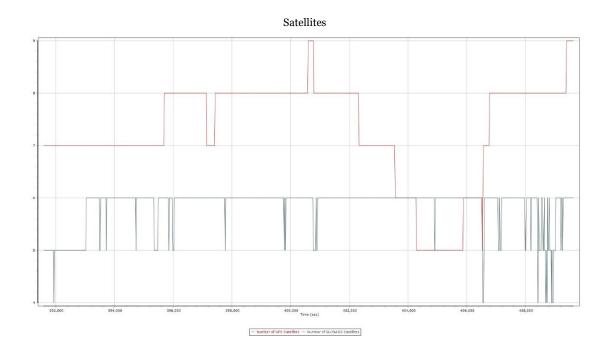
# RPH (deg)



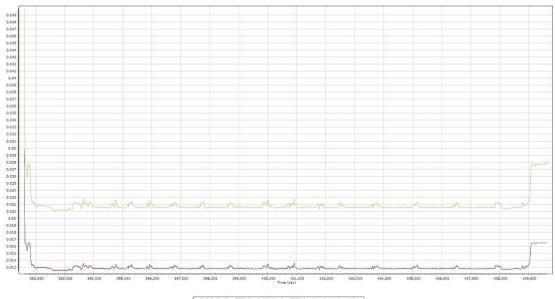

- Roll (deg) - Pitch (deg) - True Heading (deg)

# Mission 2 (20190912B)


Flight Log

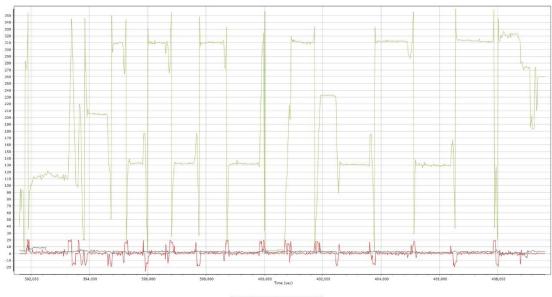

| Apt:<br>Conft:<br>Unit: | YIN                                                                                                                   | 16Q<br>N St                                                                       | Begin H Dep Tim ta 1: ta 1: Base                                                                                                  | e (Lcl):                                                                                                                                                                    | (Z):                                                                                                                                                                                                 | Proj #<br>End Hobbe                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                  | 7-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total:                                               | DII                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Apt:<br>RS:<br>Unit:    | Y/N Ø/N beg:                                                                                                          | N 51                                                                              | n 1:<br>n 1: Base                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                            | lot: Bonuc                                                                                                                                                                                                                                                                                                                                                                         | Not: Tech: Applies                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Unit:                   | OIN<br>beg:                                                                                                           | V St                                                                              | te 1: Base                                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    | Arr A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Apt:                                                 |                                                                                                                                                                                                                                                                                                                                                                            | ne (Local):                                                                                                                                                                                                                                                                                                                                                                        | (Z):                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time Aloft:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| emp                     | beg:                                                                                                                  | ,                                                                                 |                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                                                      | Sta 2:                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flyover                                              | x Y/N                                                                                                                                                                                                                                                                                                                                                                      | If Y, time                                                                                                                                                                                                                                                                                                                                                                         | s: Sta 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sta2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| emp                     | beg:                                                                                                                  | ,                                                                                 |                                                                                                                                   | Paulua                                                                                                                                                                      | . 1                                                                                                                                                                                                  | Sta 2:                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flyover                                              | s: Y/N                                                                                                                                                                                                                                                                                                                                                                     | If Y, time                                                                                                                                                                                                                                                                                                                                                                         | s: Sta1)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sta2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         | Type                                                                                                                  |                                                                                   | C End:                                                                                                                            |                                                                                                                                                                             | OATE                                                                                                                                                                                                 |                                                                                                                                                                                                                       | °o E                                                                                                                                                                                                                                                                                                                                                               | nd:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      | meter be                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                    | end:                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Seg<br>GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Storage<br>Namele                                                                                                                                                                                                                                                                                                                                                                                                |  |
| AR F                    |                                                                                                                       | ·w                                                                                | Serial #                                                                                                                          | 386                                                                                                                                                                         | Alt<br>AGL                                                                                                                                                                                           | A                                                                                                                                                                                                                     | le<br>MSL                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Avg Terr                                             | Me                                                                                                                                                                                                                                                                                                                                                                         | ĸ                                                                                                                                                                                                                                                                                                                                                                                  | Avg Pt<br>Specing                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | End<br>GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         | ·OV                                                                                                                   |                                                                                   | Scan<br>Freq                                                                                                                      | 200                                                                                                                                                                         | MpIA                                                                                                                                                                                                 | v fai P                                                                                                                                                                                                               | ulses                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ht<br>Pulso<br>Reto                                  |                                                                                                                                                                                                                                                                                                                                                                            | wer                                                                                                                                                                                                                                                                                                                                                                                | PPSM                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tot<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 100                     | la la                                                                                                                 |                                                                                   | End (UTC):                                                                                                                        | Gd Spd                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    | Turb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reto                                                 |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    | HOTEL STORY                                                                                                                                                                                                                                                                                                                                                                                                                                                     | auds smoke partial, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         |                                                                                                                       |                                                                                   |                                                                                                                                   | 163                                                                                                                                                                         | -                                                                                                                                                                                                    | GPS Attitude                                                                                                                                                                                                          | - H                                                                                                                                                                                                                                                                                                                                                                | (0,-,+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1                                                  | 10                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                    | NOTES - VEDUCY, S                                                                                                                                                                                                                                                                                                                                                                                                                                               | augs, smore, perse, en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| -                       |                                                                                                                       | 325                                                                               | 1776                                                                                                                              |                                                                                                                                                                             | 1                                                                                                                                                                                                    |                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tie line                                             | 1.344                                                                                                                                                                                                                                                                                                                                                                      | Ph Call                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         | -                                                                                                                     |                                                                                   |                                                                                                                                   |                                                                                                                                                                             | 1.07/10                                                                                                                                                                                              | 12 700                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | w 11                                                 | 71 1                                                                                                                                                                                                                                                                                                                                                                       | Local                                                                                                                                                                                                                                                                                                                                                                              | 25FW                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         |                                                                                                                       |                                                                                   |                                                                                                                                   |                                                                                                                                                                             | 1.01                                                                                                                                                                                                 | 121-                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10221015                                             | 7 000                                                                                                                                                                                                                                                                                                                                                                      | a done                                                                                                                                                                                                                                                                                                                                                                             | 1 14                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 100                     |                                                                                                                       |                                                                                   |                                                                                                                                   |                                                                                                                                                                             | 101,                                                                                                                                                                                                 | 12/40                                                                                                                                                                                                                 | -1                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| -                       |                                                                                                                       |                                                                                   | 10.00                                                                                                                             |                                                                                                                                                                             | V13/10                                                                                                                                                                                               | 13.712                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         |                                                                                                                       | 12                                                                                |                                                                                                                                   |                                                                                                                                                                             | 1.23/10                                                                                                                                                                                              | 12640                                                                                                                                                                                                                 | -1                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         |                                                                                                                       |                                                                                   | 1580                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Teline                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1                       |                                                                                                                       | 22                                                                                | 1554                                                                                                                              | 163                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         |                                                                                                                       |                                                                                   | 1547                                                                                                                              | 162                                                                                                                                                                         | To Laborate                                                                                                                                                                                          | 13605                                                                                                                                                                                                                 | -3                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tieline                                              |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 56                      | 150                                                                                                                   | 0                                                                                 | 1606                                                                                                                              | 167                                                                                                                                                                         | 95/21                                                                                                                                                                                                | 12200                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| AL                      | 100                                                                                                                   |                                                                                   | 1628                                                                                                                              | 161                                                                                                                                                                         | 195/21                                                                                                                                                                                               | 12710                                                                                                                                                                                                                 | -1                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1000                    |                                                                                                                       | 33                                                                                | 1652                                                                                                                              | 167                                                                                                                                                                         | 108/14                                                                                                                                                                                               | 17761                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Nu                      | 100                                                                                                                   | 1                                                                                 | 1717                                                                                                                              | 165                                                                                                                                                                         | 97/22                                                                                                                                                                                                | 12821                                                                                                                                                                                                                 | -2                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sturn                                                | 1718                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1                       |                                                                                                                       |                                                                                   |                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         |                                                                                                                       |                                                                                   |                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1                       |                                                                                                                       |                                                                                   |                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         | 5 A A A S A A A S A A S A A S A A A S A A S A A A S A A A S A A A S A A A A S A A A A A A A A A A A A A A A A A A A A | SE 1<br>NU 1<br>SE 1<br>NU 1<br>SE 1<br>NU 15<br>SU 16<br>SE 15<br>AV 16<br>SE 16 | SE 13-49<br>NU 1401<br>SE 1415<br>NU 1471<br>SE 1447<br>NU 1507<br>NU 1507<br>NU 1522<br>SU 1534<br>SE 1550<br>NU 1611<br>SE 1633 | 56 1344 1757<br>NU 1401 1410<br>SE 1415 1426<br>NU 1491 MM 3<br>SE 1447 503<br>NU 1507 1520<br>NU 1502 1554<br>SU 1634 1347<br>SE 1550 1606<br>NU 1611 1628<br>SE 1633 1662 | 56 1344 1757 160  NU 1401 1410 163  SE 1415 1426 167  NU 1451 1444 167  SE 1447 1503 165  NU 1507 1500 165  NU 1522 1554 163  SU 1634 1547 162  SE 1550 1606 167  NU 1611 1628 161  SE 1633 1652 160 | 56 1344 1752 160 100/19 NU 1401 1410 163 100/19 SE 1415 1426 167 100/19 NU 1431 1413 167 17/19 SE 1447 1513 165 17/19 NU 1522 1554 163 165 17/19 SE 1550 1606 162 17/19 SE 1550 1606 162 17/11 SE 1531 1632 161 167/1 | 56 1344 1752 160 100/14 12702  NU 1401 1410 163 101/20 12650  SE 1415 1426 167 101/20 12650  NU 1401 1410 163 101/20 12650  NU 1407 1507 165 17/4 1270  SE 1447 1507 165 17/4 1240  NU 1507 1500 165 49/25 1340  NU 1522 1554 1673 1672 1690  SU 1534 1547 167 19/21 13605  SE 1550 1606 167 19/21 1200  NU 1611 1628 161 101/21 1220  SE 1557 1662 167 10/41 1271 | SE   1344   1752   160   100   120   1200   1   1400   1400   163   100   120   1250   1   1400   1400   163   100   1200   1250   1   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 56 1344 1757 160 100/10 12700 -1 0 Possible  NU 1401 1410 163 101/20 1280 1 0  SE 1415 1426 167 101/20 1280 -1 0  NU 1431 14413 167 17/10 1280 -1 0  SE 1447 1503 165 17/10 1240 -1 0  NU 1522 1284 163 11/20 1240 0 0  SU 1539 1547 167 167 17/20 13605 -3 0 Teline  SE 1550 1666 167 17/21 1220 0 0  NU 1611 1626 161 101/21 1220 1 0  SE 1533 1652 163 163/11 17/11 1 0 | 56 1344 1752 160 100/10 12700 -1 0 405516/6 51300/.  NU 1401 1410 163 101/20 1260 1 0  56 1417 1523 167 107/10 1260 -1 0  66 1417 1503 165 1475 12400 -1 0  NU 1522 1554 163 1475 11400 2 0 Teline  NU 1522 1554 163 167 1475 13605 -3 0 Teline  56 1550 1606 162 1971 1270 0 0  NU 1611 1628 161 1471 1200 -1 0  56 1613 1662 167 1471 1200 -1 0  56 1613 1662 167 1471 1200 -1 0 | 56 1344 1752 160 100/19 12200 -1 0 rossible flooding alord  NU 1401 1410 163 100/20 2650 1 0  SE 1415 1426 167 100/20 1680 -1 0  NU 1431 1444 16 10 100/20 1680 -1 0  FE 1447 1507 150 167 100/20 100/20 1 0  NU 1502 1500 165 100/20 100/20 100/20  NU 1502 1504 16 3 100/20 100/20 0 0  SU 1509 1606 160 100/20 100/20 0 0  NU 1611 1628 161 100/20 0 0  SE 1500 1606 160 100/20 1200 0 0  NU 1611 1628 161 100/20 1200 0 0  SE 1500 1606 160 100/20 1200 0 0 | SE   1344   1757   160   160/14   1270   -1 0   Possible Standing along river.     NU 1401   1410   163   161/20   1250   1 0     SE   1415   1426   167   161/20   1250   -1 0     NU 1431   14143   167   17/14   1250   1 0     SE   1417   1507   155   17/14   1240   -1 0     NU 1572   1580   165   49/35   17460   2 0   Teline     NU 1572   1584   163   49/35   14040   0 0     SU 1539   1547   167   49/37   13605   -3 0   Tieline     SE   1550   1606   167   49/31   1200   0 0     NU 1611   1626   161   49/31   1220   -1 0     SE   1533   1652   160   48/4   1781   1 0     SE   1633   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1652   1 | 56 1344 1757 160 1007/14 12700 -1 0 4050 ble Clouding about 1840.  NU 1401 1410 163 101/20 1250 1 0  SE 1415 1426 167 101/20 1250 -1 0  NU 1431 1444 167 17/4 1270 1  SE 1447 1507 155 17/4 1240 -1 0  NU 1502 1500 165 49/3 13460 2 0 Teline  NU 1502 1504 163 49/3 13460 2 0 Teline  SU 1509 1500 160 49/3 13460 0 0  SU 1500 1606 1607 49/3 13605 -3 0 Teline  SE 1500 1606 1607 49/3 1200 0 0  NU 1611 1628 161 18/71 1220 1 0  SE 1500 1606 1607 49/3 1220 -1 0  SE 1500 1606 1607 49/3 1220 -1 0 | 56 1344 1757 160 100/14 12700 -1 0 Yossible Gloday alorg fire.  NU 1401 1410 163 100/20 1260 1 0  56 1417 1503 165 107/16 1240 -1 0  56 1447 1503 165 127/18 12440 -1 0  NU 1522 1554 163 11/20 1260 2 0 Tichne  NU 1522 1554 163 11/20 13605 -3 0 Tichne  58 1550 1606 167 11/2 13605 -3 0 Tichne  58 1550 1606 167 11/2 13605 -3 0 Tichne  56 1613 1662 161 11/2 1200 -1 0  56 1613 1662 163 167 17/1 120 -1 0 |  |

Mission Trajectory




## PDOP

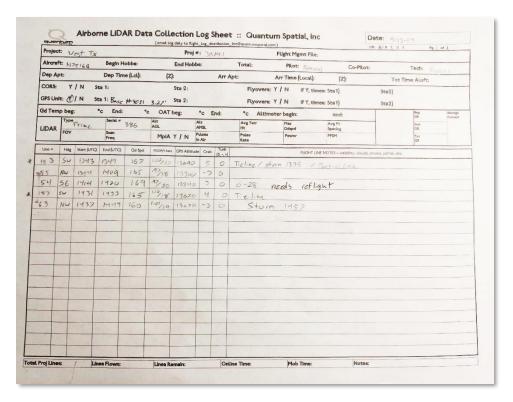




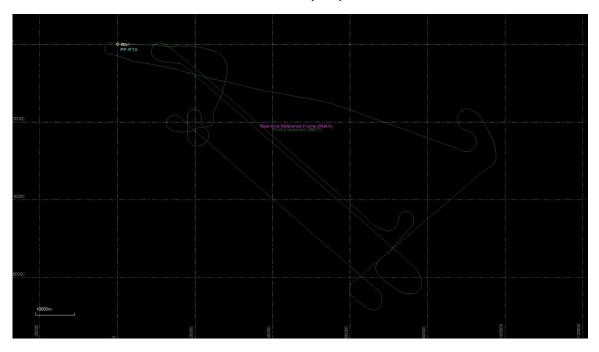






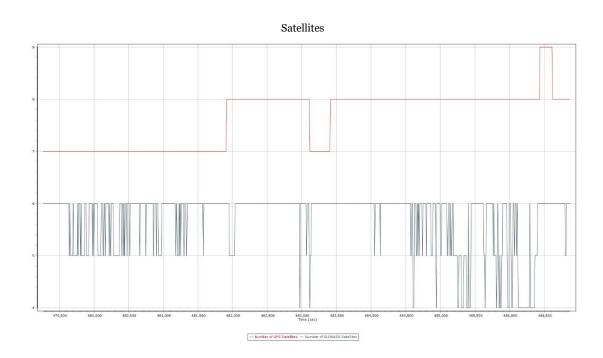


# RPH (deg)



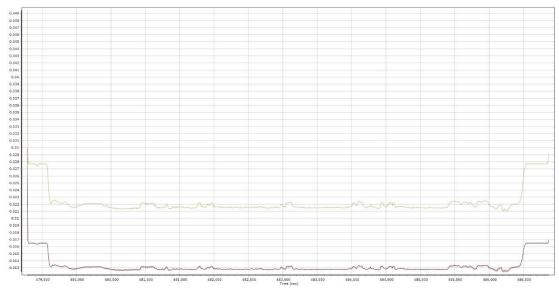

- Roll (deg) - Pitch (deg) - True Heading (deg)

## Mission 3 (20190913A)

Flight Log




Mission Trajectory



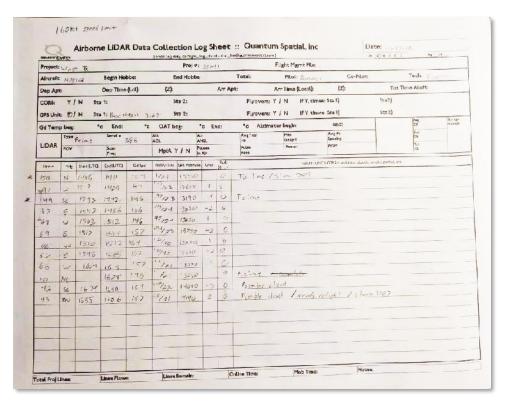




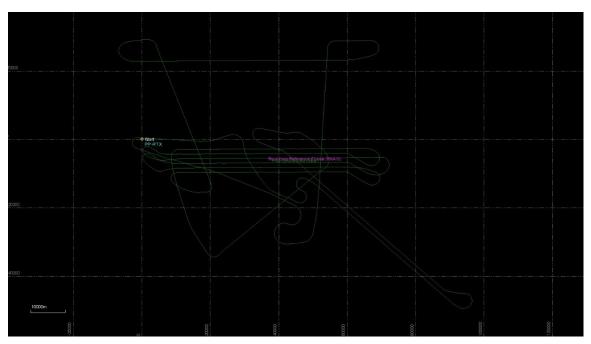


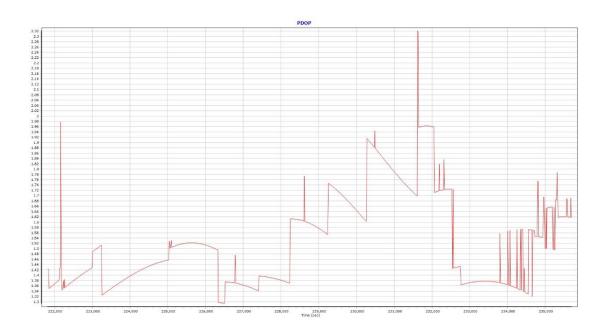

# RMS (m)

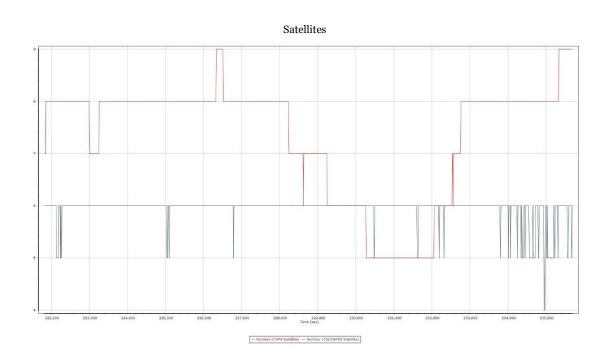



— North Position Error RMS (m) — East Position Error RMS (m) — Down Position Error RMS (m)

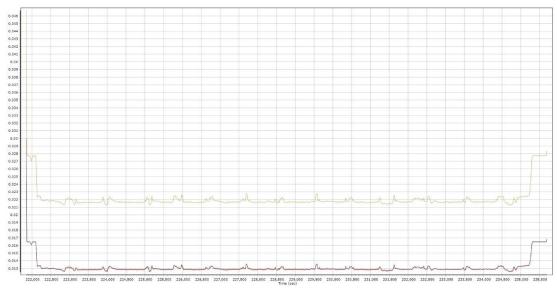
# RPH (deg)





#### Mission 4 (20190917A)

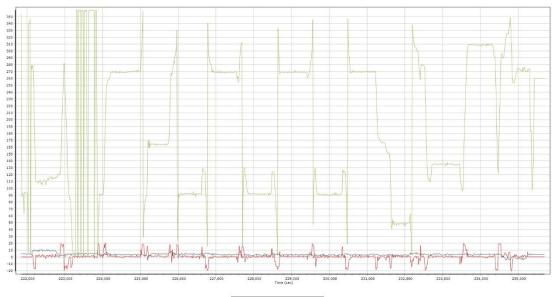

Flight Log




Mission Trajectory



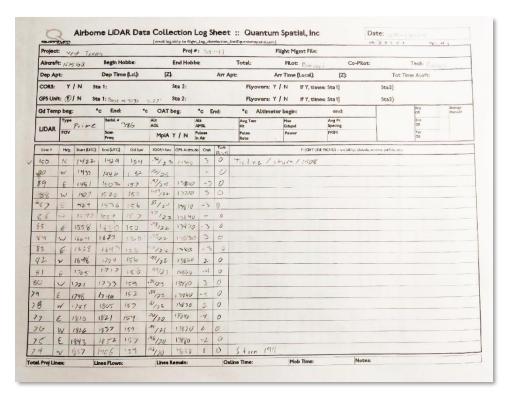




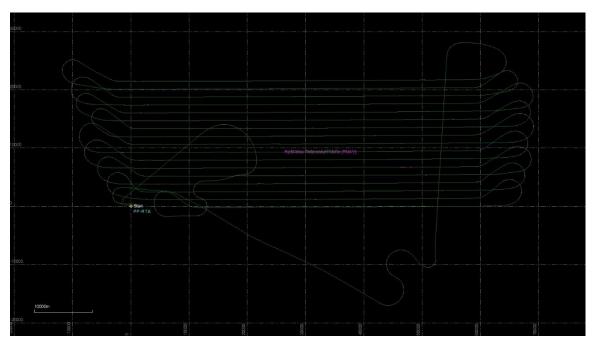


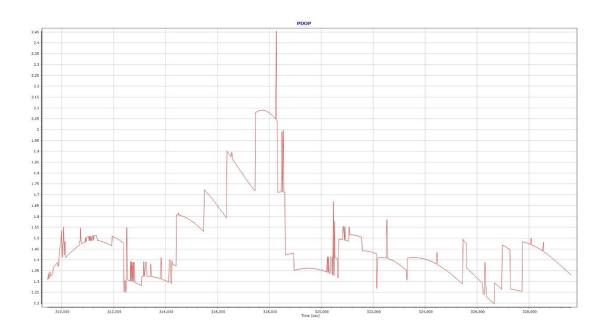


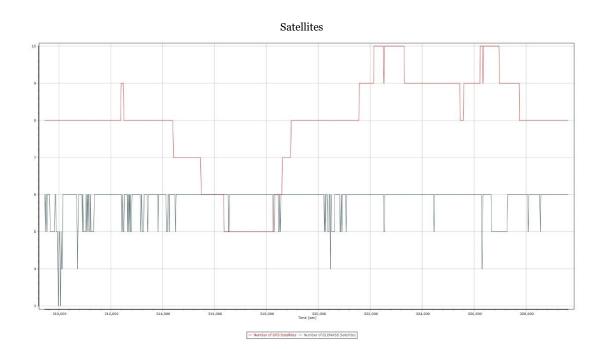

- North Position Error RMS (m) - East Position Error RMS (m) - Down Position Error RMS (m)


# RPH (deg)

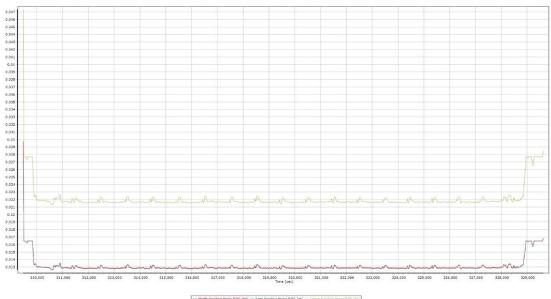



- Roll (deg) - Pitch (deg) - True Heading (deg)


#### Mission 5 (20190918A)

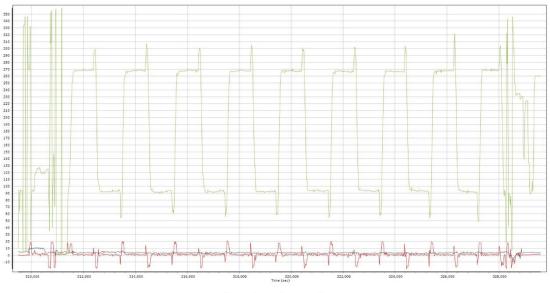

Flight Log




Mission Trajectory





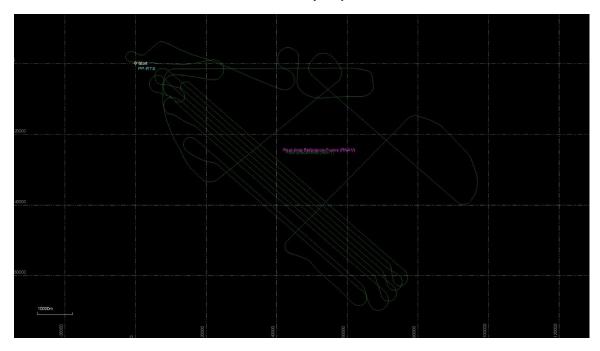


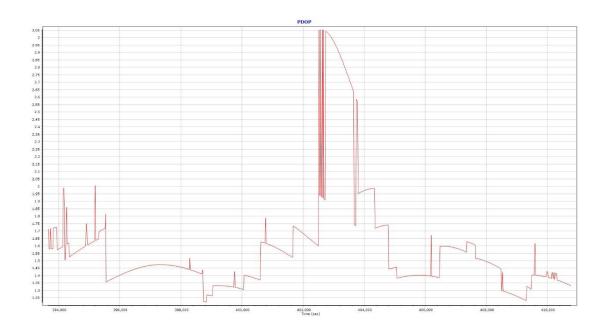


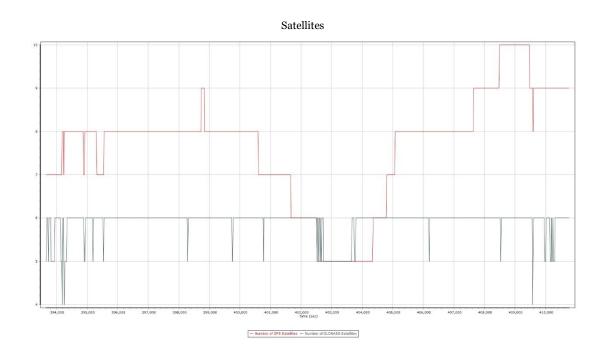



- North Position Error RMS (m) - East Position Error RMS (m) -

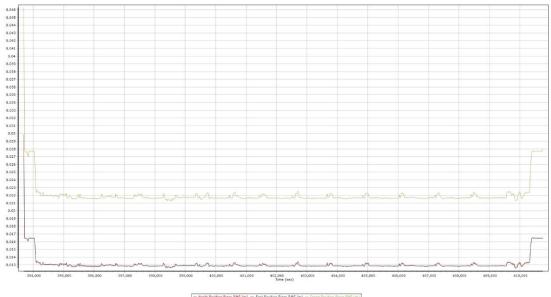
### RPH (deg)



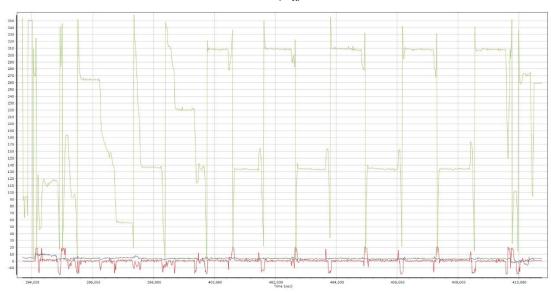


# Mission 6 (20190919A)


Flight Log

|        | The same | ret Texa    | ,            |           | -          | Proj #       | : 35            | 141   |           | Flight Mg    | mt File:    |                         |                           |              |       |
|--------|----------|-------------|--------------|-----------|------------|--------------|-----------------|-------|-----------|--------------|-------------|-------------------------|---------------------------|--------------|-------|
| -      | 78       | 7516/2      | Marine Co.   | lobbs:    |            | End Hobb     | 9:              |       | Total:    | Pllot:       | Bonve       | Co-PIL                  | ot:                       | Tech: R      | ars   |
| Dep A  | pt:      | 7,000       | Dep Tim      | ne (Lcl): | (Z):       |              |                 | Arr A | .pt:      | Arr Time (   | (Local):    | (Z):                    | Tot TI                    | me Aloft:    |       |
| CORS:  | Υ        | / N S       | ta 1:        |           |            | Sta 2:       |                 |       | Flyovers: | YIN          | If Y, times | : Sta 1)                | Sta2)                     |              |       |
| GP5 Ur | nit: 9   | / N S1      | ta 1: See    |           | 227        | Sta 2:       |                 |       | Flyovers: | Y/N          | If Y, times | : Sta1)                 | Sta2)                     |              |       |
| Gd Ter | _        | _           | °c End:      | 0         | OATE       | eg:          | °c E            | nd:   | °c Altime | eter begin:  |             | end:                    |                           | Beg          | Store |
|        | Туре     | rine        | Serial #     | 246       | Alt<br>AGL |              | ALC<br>AMSL     |       | Avg Terr  | Max<br>Gdupd |             | Avg Pt<br>Specing       |                           | End<br>GB    |       |
| LIDAR  | FOV      | riesc       | Sean<br>Freq |           | MpIA       | v 1 m 1      | Pulses<br>n Air |       | Pulse     | Power        |             | PPSM                    |                           | Tet<br>GB    |       |
| Time = | 1 1/10   | Start (UTC) |              | Gd Spd    | propletas  | GPS Altritud |                 | Turb  | race      |              | FUGHT LINE  | NOTES - visibility, dia | uds, smoke, partial, etc. |              |       |
| / T    | Hag      | 1345        | 1346         | 154       | 12/20      | 14300        | -               | 0     | stum 13   | 11 70        | when to     | rline                   |                           |              |       |
| 23     | V        |             | 1403         | 152       | 1.05/20    |              |                 | 0     | 31011 12  | 41           | 3.953       |                         |                           |              |       |
| 51     |          | 14/15       | 1421         | 15.7      | 1.15/10    | 75 470       | -6.             | 0     | Tietone   |              |             |                         |                           |              |       |
|        | 58       | 1426        | 1937         | 151       | 1.04/21    | 1994.5       | -6              | 0     |           |              |             |                         |                           |              |       |
| 752    | Su       | 4616        | 1456         | 148       | 36/22      | 15630        | 4               | 0     | Telm      |              |             |                         |                           |              |       |
| 65     | NW       | 1503        |              | 154       | 1.01/20    | 13000        | 3               | 0     |           |              |             |                         |                           |              |       |
| 64     | 56       | 1518        | 1530         |           | 121        | 13020        | -4              | 0     |           |              |             |                         |                           |              |       |
| 62     | NV       | 1535        | 1548         | 756       | 1.08/19    | 13120        | 2               | 0-    |           |              |             |                         |                           |              |       |
| 61     | se:      | 1553        | 1607         | 154       | 1.07/19    | 13160        | -3              | 0     | *         |              |             |                         |                           |              |       |
| 60     | HW       | 1512        | 1627         | 154       | 1.03/20    | 1380         | 2               | 0     |           |              |             |                         |                           |              |       |
| 59     | 5€       | 1631        | 1647         | 157       | 11/21      | 13200        | - 4             | 0     |           |              |             |                         |                           |              | -     |
| 58     | NW       | 451         | 1704         | 154       | 1000       | 13220        | 2               | 0     |           |              |             |                         |                           |              |       |
| 57     | 50       | 1711        | 1726         | 157       |            | 13220        | -3              | 0     |           |              |             |                         |                           |              |       |
| 56     | NW       | 1730        | 17-16        | 154       | 1.01/22    | 13270        | 4               | 0     | Sturn 17  | 46           |             |                         |                           |              |       |
|        |          |             |              |           |            |              |                 |       |           |              |             |                         |                           |              |       |
|        | 353      |             |              |           |            |              |                 |       |           |              | 7           | -                       |                           |              |       |
|        |          |             |              |           |            |              |                 |       |           |              |             |                         |                           |              |       |
|        | 2        |             |              |           |            |              |                 |       |           |              |             |                         |                           | La dinasa di |       |

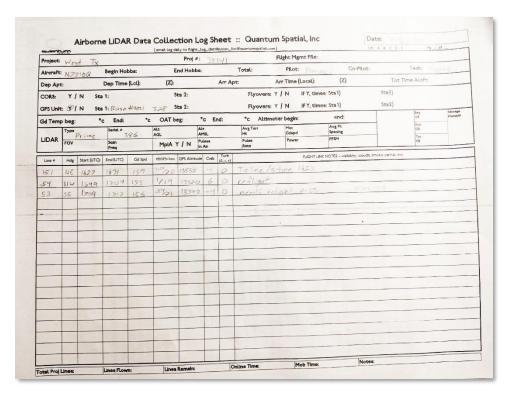

Mission Trajectory



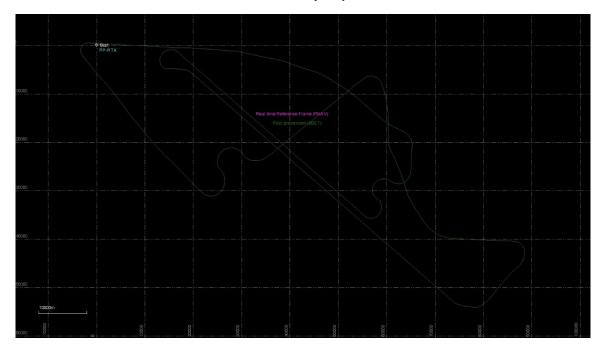


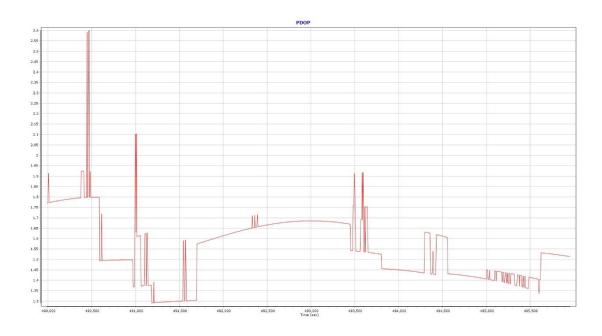


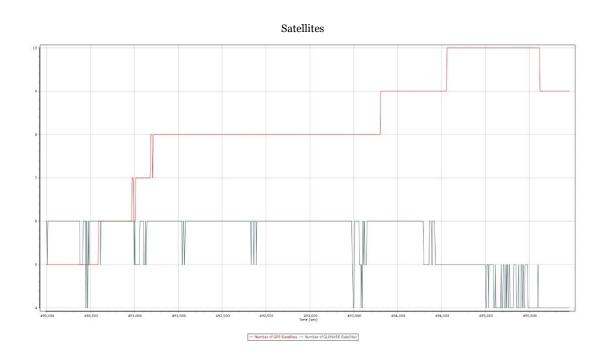


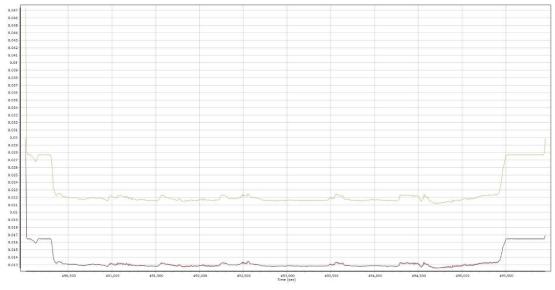

# RPH (deg)





#### Mission 7 (20190920A)

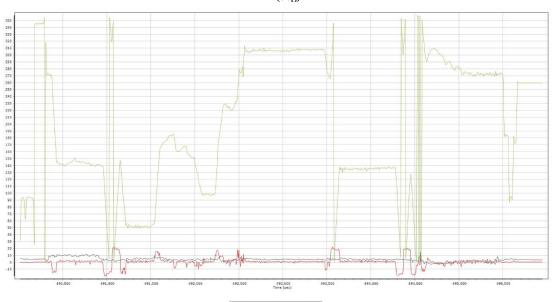

Flight Log




Mission Trajectory







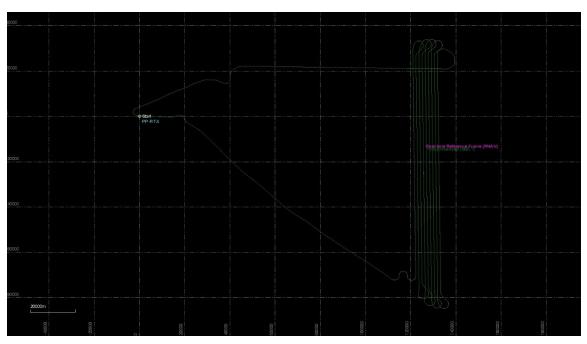


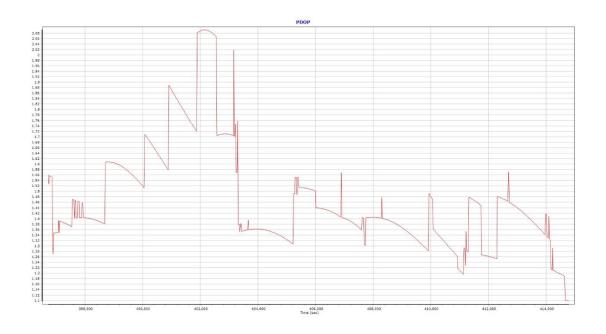


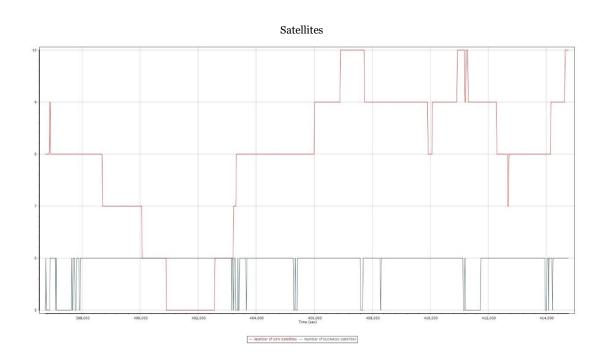

- North Position Error RMS (m) - East Position Error RMS (m) - Down Position Error RMS (m)

# RPH (deg)

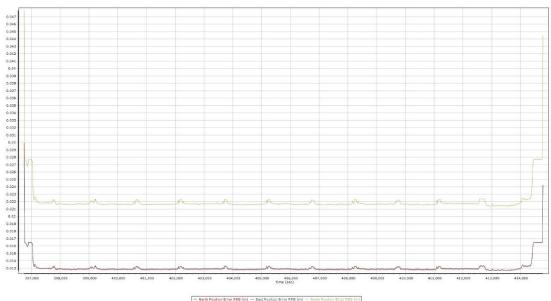



- Roll (deg) - Pitch (deg) - True Heading (deg)

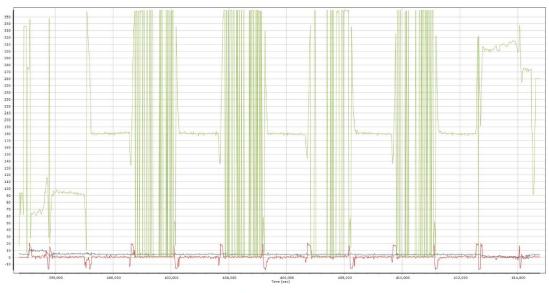

# Mission 8 (20190926B)


Flight Log

| dreup     | agray. |             |              |          | [email.log o |            |                  | tribution_Li   | st@quantu     | nspatial.com |         |             |                         | Life A B C D E             | Pg.       | _ of              |
|-----------|--------|-------------|--------------|----------|--------------|------------|------------------|----------------|---------------|--------------|---------|-------------|-------------------------|----------------------------|-----------|-------------------|
| Project:  | U- E-  | St le       | exus         |          |              | Proj       | 0.00             |                |               |              | -       | Mgmt File:  |                         |                            |           |                   |
| Aircraft: | NZ     | 516Q        | Begin Ho     |          | - 1          | nd Hob     | ba:              |                | Total:        |              | PI      | lot: Ogn    | Co-F                    | ilot: Jason                | Tech:     |                   |
| Dep Apt   | t:     |             | Dep Time     | e (Lcl): | (Z):         |            |                  | Arr Ap         | rt:           |              | Arr Tir | ne (Local): | (Z):                    | TotT                       | me Aloft: |                   |
| CORS:     | Y      | N Se        | a 1:         |          |              | Sta 2:     |                  |                | Fly           | yovers:      | Y/N     | If Y, tim   | nes: Sta1)              | Sta2)                      |           |                   |
| GPS Unit  | t: Y   | N St        | a 1:         | - 1      |              | Sta 2:     |                  |                | FU            | yovera:      | Y/N     | If Y, tim   | nes: Sta1)              | Sta2)                      |           |                   |
| Gd Tem    | p beg: |             | c End:       |          | OAT b        | eg:        | °o E             | Ind:           | °c            | Altime       | ter be  | gin:        | end:                    |                            | Beg<br>GB | Storege<br>Namoje |
| Lidar     | Туре   |             | Serial #     | 36       | ALt<br>AGL   |            | Alt<br>AMSL      |                | Avg To        | err          | Ma      | c<br>spd    | Avg Pt<br>Specing       |                            | End<br>GB |                   |
| LIDAK     | FOV    |             | Scan<br>Freq |          | MplA         | Y / N      | Pulses<br>In Air | E              | Pulse<br>Rate |              | Po      | wer         | PPSM                    |                            | Tot<br>GB |                   |
| Line #    | Hdg    | Start (UTC) | End (UTC):   | Gd Spd   | PDOP/# Sats  | GPS Altitu | ide Crab         | Turb (0, -, +) |               |              |         | FLIGHT LIN  | NE NOTES visibility, cl | ouds, smoke, partial, etc. |           |                   |
| 11        | E      | 14:32       | 14:50        | 150      | 11-06/1      | 113.5%     | 6                | 1              | -             | 100          | - 0     | 1ie         |                         |                            | 3-1       |                   |
| 91        | 5      | 14.54       | 1515         | 146      | 95/20        | 13,66      | 5                |                |               |              |         |             |                         |                            |           |                   |
| 92        | N      | 15:20       | 15:41        | 154      | .97/20       | 13,619     |                  |                |               |              |         |             |                         |                            |           |                   |
| 13        | 15     | 15:46       | 1607         | 152      | 96/21        | 13,60      | 9                |                |               |              |         |             |                         |                            |           |                   |
| 74        | N      | 16:11       | 16:32        | 148      | 199/22       | 13,58      | 3                |                |               |              |         |             |                         |                            |           |                   |
| 15        | 15     | 16:37       | 16:57        | 154      | 197/22       | 13583      |                  |                |               |              |         |             |                         |                            |           |                   |
| 6         | N      | 17:02       | 17:22        | 156      | 194/23       | 13,579     |                  |                |               |              |         |             |                         |                            |           |                   |
| 17        | 5      | 17:25       | 17:46        | 152      | 101/20       | 13,547     |                  |                | 10000         |              |         |             |                         |                            |           | 1-11              |
| 13        | N      | 17:51       | 18:11        | 156      | 191/22       | 13,533     |                  |                |               |              |         | Differen    |                         |                            |           |                   |
| 99        | 5      | 18:15       | 18:35        | 148      | 87/21        | 13,51      | +                |                |               |              |         |             |                         |                            |           |                   |
|           |        |             |              |          |              |            |                  |                |               |              |         |             |                         |                            |           |                   |
|           |        |             |              |          |              |            |                  |                |               |              |         |             |                         |                            |           |                   |
|           |        |             |              |          |              |            |                  |                |               |              |         |             |                         |                            |           |                   |
|           |        |             |              |          |              |            |                  |                |               |              |         |             |                         |                            |           |                   |
|           |        | 1           |              |          | - 4          |            |                  |                |               |              |         |             |                         |                            |           |                   |
|           |        |             |              |          |              |            |                  |                |               |              |         |             |                         |                            |           |                   |
|           |        |             |              |          |              |            |                  |                |               |              |         |             |                         |                            |           |                   |
|           |        |             |              |          |              |            |                  |                |               |              |         |             |                         |                            |           |                   |


Mission Trajectory



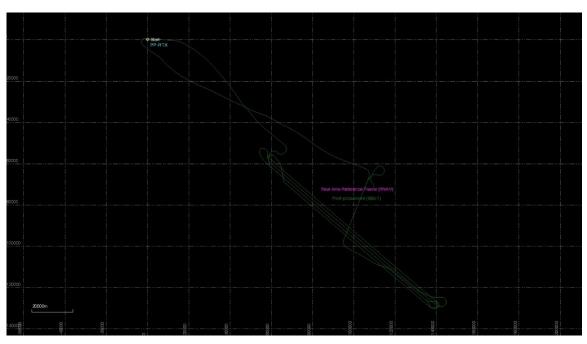


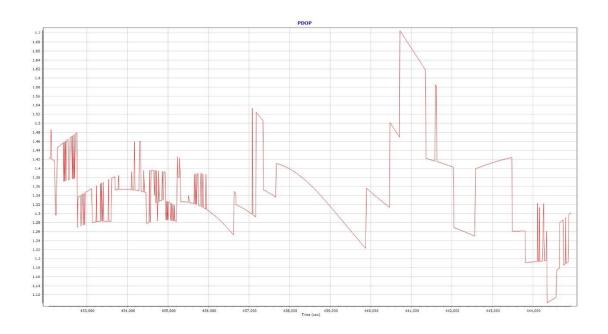


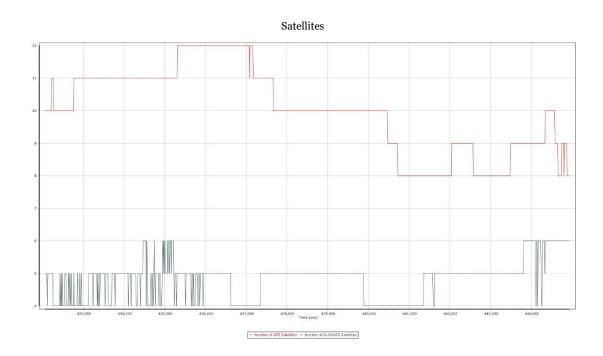




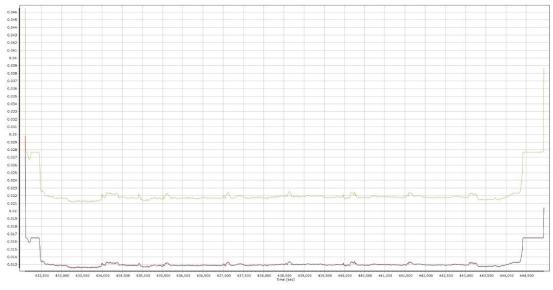

### RPH (deg)





# Mission 9 (20190926C)

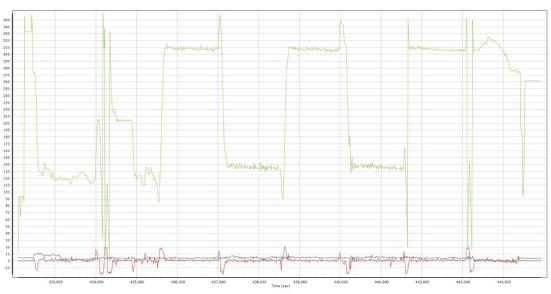

Flight Log

|           |      | Airborn      | e LiDA       | R Data   |               |              | og Sheet         |               |            |                                         | tial, Inc  |                         | Date: 9/2                   |                |        |
|-----------|------|--------------|--------------|----------|---------------|--------------|------------------|---------------|------------|-----------------------------------------|------------|-------------------------|-----------------------------|----------------|--------|
| Project:  | 1-41 | 1 T          |              |          | ( email log o | Proj #:      | log_distribution | List@quantum  | spatial.co |                                         | d Pile.    |                         | Lift: A B C D I             | Pg_            | _ of   |
| Aircraft: |      | SC IX        | B 1 - 11     |          |               |              |                  |               |            |                                         | Mgmt File: |                         | DI . T C                    | Tech:          |        |
|           | VI   | 7160         | Begin Ho     |          | 1000          | End Hobba    |                  | Total:        |            |                                         | ot: Can    |                         | PILOT: JUSIN                | U A CONTROL OF |        |
| Dep Apt   |      |              | Dep Time     | e (Lcl): | (Z):          |              | Arr A            |               |            | 100000000000000000000000000000000000000 | e (Local): | (Z):                    |                             | Ime Aloft:     |        |
| CORS:     | Υ /  |              | a 1:         |          |               | Sta 2:       |                  |               |            | Y/N                                     | if Y, time | na: Sta1)               | Sta2)                       |                |        |
| GPS Unit  | -    |              | a 1:         |          |               | 5ta 2:       |                  | Fly           | overa:     | Y/N                                     | If Y, time | ea: Sta1)               | Sta2)                       |                |        |
| Gd Temp   |      | ۰            | c End:       | °c       | OATE          |              | °c End:          |               |            | eter begi                               | 0000       | end:                    | 1                           | Beg<br>GB      | Name/e |
| LIDAR     | Type |              | Serial #     |          | AGL<br>AGL    | A            | At<br>MSL        | Avg Ter       | r          | Max<br>Gdsp                             | od         | Avg Pt<br>Specing       |                             | End<br>GB      |        |
|           | FOV  |              | Scan<br>Freq | 19       | MplA          | Y / N In     | ulaes<br>Air     | Pulse<br>Rate |            | Pow                                     | er         | PPSM                    |                             | Tet<br>GB      |        |
| Line #    | Hidg | Start (UTC). | End (UTC):   | Gd Spd   | PDOP/# Sats   | GPS Altitude | Crab Turb        |               |            |                                         | FUGHT LIN  | E NOTES – visibility, c | douds, smoke, partial, etc. |                |        |
| Tie 8     | 5    |              |              |          |               |              |                  | Torgot        | 5          | turn /                                  | restorta   | live / 1                | 10 Data                     | 11 11          |        |
| Tic 8     | 5    | 0042         | 00:49        | 148      | 100/21        | 13,520       |                  |               |            |                                         |            |                         |                             |                |        |
| 28        | NW   | 0102         | 01:23        | 157      | 1.9/23        | 12,828       |                  |               |            |                                         |            |                         |                             |                |        |
| 29        |      |              | 01:49        | 152      | 1.96/21       | 12,887       |                  | Possil        | ile        | over                                    | Speed      |                         |                             |                |        |
|           |      | 01:53        | D. S         | 146      | 98/18         | 12,828       |                  |               |            |                                         |            |                         |                             |                |        |
| 27        | SE   | 02:18        | 02:38        | 154      | 1.03/17       | 12,887       |                  | ReFl          | Y          |                                         |            |                         |                             |                |        |
| 27        | VW   | 02:43        | 03:05        | 148      | 19/17         | 13068        |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |
|           |      |              |              |          |               |              |                  |               |            |                                         |            |                         |                             |                |        |


Mission Trajectory







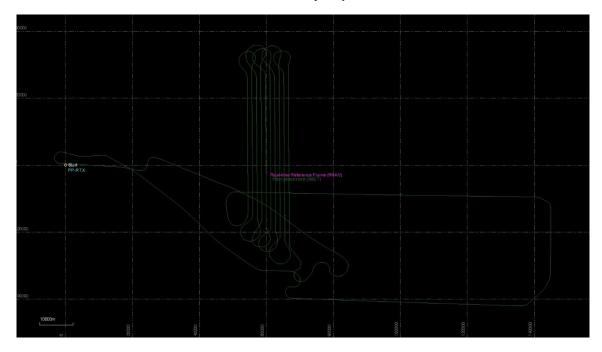


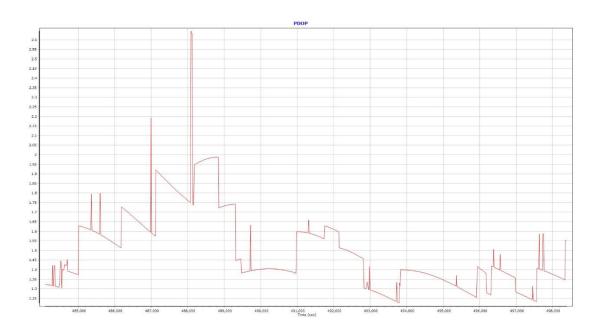


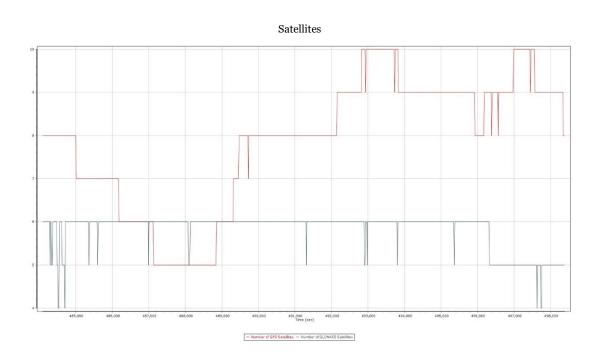

- North Position Error RMS (m) - East Position Error RMS (m) - Down Position Error RMS (m)

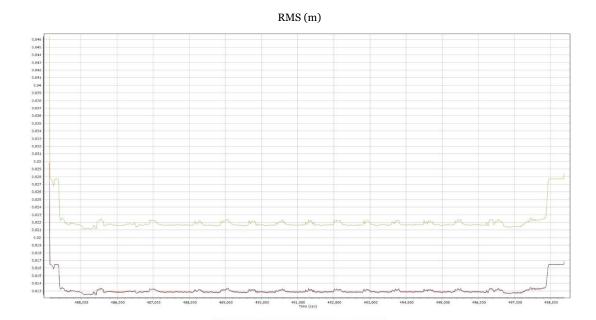
### RPH (deg)

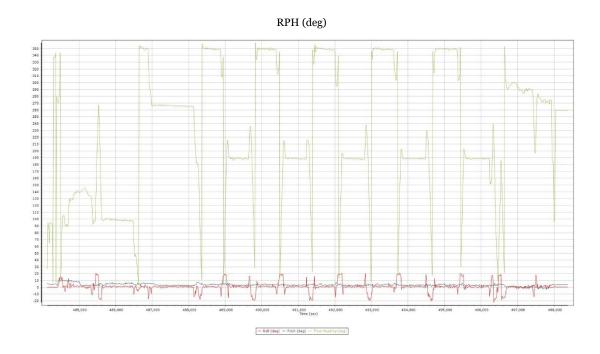



- Roll (deg) - Pitch (deg) - True Heading (deg)


# Mission 10 (20190927A)


Flight Log


| dreuß     | (CE)   |              | o may u      | 1 5000 | (email log di | ally to flight | log_distribution_ | Ust@quantums | atisLom)  | patial, In     | С                 |                   | te: 9/27           |           | _ of              |
|-----------|--------|--------------|--------------|--------|---------------|----------------|-------------------|--------------|-----------|----------------|-------------------|-------------------|--------------------|-----------|-------------------|
| Project:  | Wec    | t Ix         |              |        |               | Proj#          |                   |              |           | ht Mgmt File   |                   | Lin               | ABCUE              | -79.      | _ 01              |
| Aircraft: | N71    | 56 Q         | Begin Hol    | bbs:   | E             | nd Hobbs       | 1:                | Total:       |           | Pilot: Dala    |                   | Co-Pilot:         | To Sau             | Tech:     |                   |
| Dep Apt   | :      |              | Dep Time     | (Lcl): | (Z):          |                | Arr A             | pt:          | Arr       | Time (Local):  | (Z)               |                   |                    | me Aloft: |                   |
| CORS:     | Y /    | N Sta        | 1:           |        | 5             | Sta 2:         |                   | Flyo         | vers: Y / | N IFY the      | nes: Sta 1)       |                   | Sta2)              |           |                   |
| GPS Unit  | : Y/   | N Sta        | 1:           |        | 5             | Sta 2:         |                   |              | vers: Y / | 100            | nea: Sta1)        |                   | Sta2)              |           |                   |
| Gd Tem    | p beg: | •            | c End:       | *0     | OAT b         | eg:            | °c End:           |              | Altimeter |                | end:              |                   |                    | Beg<br>GB | Storage<br>Nama/e |
|           | Туре   |              | Seriel #     |        | Alt<br>AGL    | - 1            | Mt<br>MSL         | Avg Terr     |           | Max            | Avg Pt            | -                 | 6.5                | End<br>GB | Aretagle          |
| LIDAR     | FOV    |              | Scan<br>Freq |        | MpIA          | VINE           | ulsea<br>n Air    | Pulse        |           | Gdspd<br>Power | Specing<br>PPSM   |                   |                    | Tot<br>GB | -                 |
| Line #    | Hdg    | Start (UTC): |              | Gd Spd | -             |                | - Turb            | Rate         |           |                |                   |                   |                    | UB .      |                   |
| Tie!      | E      | 14:50        | 15:07        | 146    | 99/19         | 13,957         | e C30 (0,-,+)     | 1158         | Corrie    |                | INE NOTES – visil | slity, clouds, sm | oke, partial, etc. |           |                   |
| Live      | W      | 15:19        | 15:35        | 132    | 1,04/19       | 13422          |                   | 157          |           | or #13         |                   |                   |                    |           |                   |
| 198       | N      | 15:40        | 15:47        | 159    | 109/19        | 14.314         |                   | 171          | Carro     | 1 1-13         |                   |                   |                    |           |                   |
| 47        | 5      | 15:52        | 16:00        | 142    | 1.03/20       | 14 258         |                   |              |           |                |                   |                   |                    |           |                   |
| 46        | N      | 16:05        | 16:13        | 154    | 100/21        | 14.249         |                   |              |           |                |                   |                   |                    |           |                   |
| 45        | 5      | 16:18        | 16.74        | 152    | 98/21         | 14190          |                   |              |           |                |                   |                   |                    |           |                   |
| 44        | N      | 16:31        | 16:40        | 154    | 196/21        | 14,137         |                   |              |           |                |                   |                   |                    | 1         |                   |
| 43        | 5      | 16:45        | 16:53        | 154    | 193/21        | 14,091         |                   |              |           |                |                   |                   |                    | F-151     |                   |
| 42        | N      | 16:57        | 17:07        | 160    | 90/22         | 14.045         |                   | 1 = 1        |           |                |                   |                   |                    |           |                   |
| 41        | 5      | 17:12        | 17:21        | 156    | 87/22         | 11,006         |                   |              |           |                |                   |                   |                    |           |                   |
| 40        | N      | 17:26        | 17:35        | 154    | 99/19         | 13,990         |                   |              |           |                |                   |                   |                    |           |                   |
| 39        | 5      | 17:40        | 17:50        | 152    | .93/19        | 13,960         |                   | Cloud        | at        | South en       | of of             | line m            | ay                 |           |                   |
|           |        |              |              |        |               |                |                   |              |           | 4              |                   |                   |                    |           |                   |
|           |        |              |              |        |               |                |                   |              |           |                |                   |                   |                    |           |                   |
|           |        |              |              |        |               |                |                   |              |           |                |                   |                   |                    |           |                   |
|           |        |              |              |        |               |                |                   |              |           |                |                   |                   |                    |           |                   |
|           |        |              |              |        |               |                |                   |              |           |                |                   |                   |                    |           |                   |
|           | Lines: |              |              |        |               |                |                   |              |           |                |                   |                   |                    |           |                   |

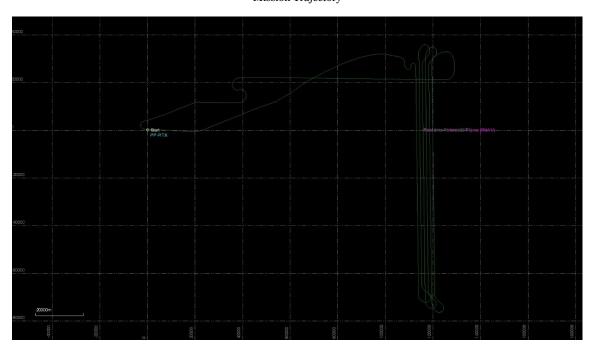

Mission Trajectory

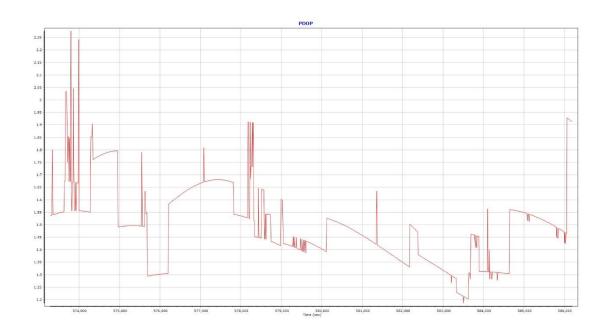


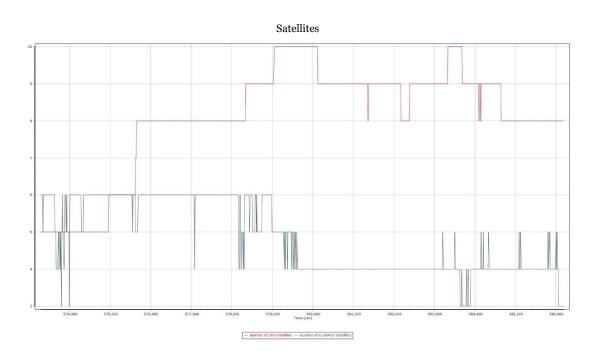


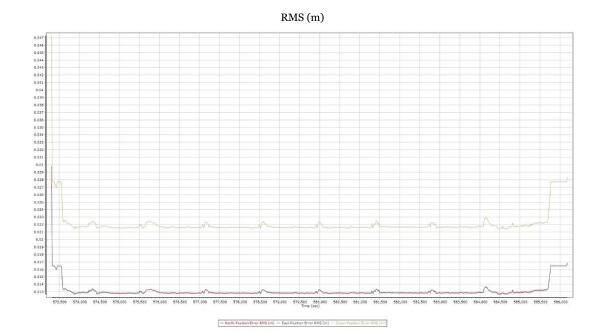


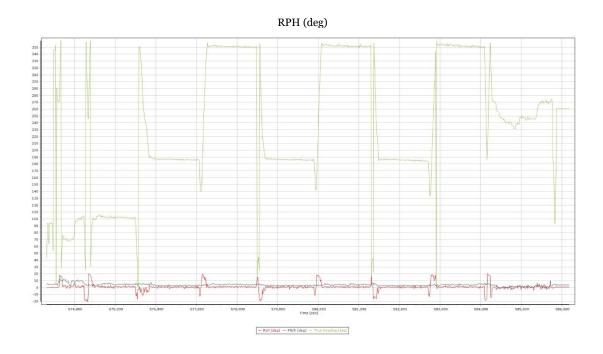






# Mission 12 (20190928B)


Flight Log


| dreugh    |      | irborn       | e LiDA     | R Data |              |              |              |        | :: Quar     | tum Sp      | atial, Ind  | С               |               | Date:            | 09/12       | 0//9<br>Pg | _ of             |
|-----------|------|--------------|------------|--------|--------------|--------------|--------------|--------|-------------|-------------|-------------|-----------------|---------------|------------------|-------------|------------|------------------|
| Project:  | 11/1 | st Tx        |            |        | (emas. tog o | Proj #:      | og_discribut | ion_us | тединсинира |             | Mgmt File:  |                 |               |                  |             |            |                  |
| Aircraft: | 17   | 51/1/9       | Begin Ho   | bbs:   | 1            | End Hobbs    |              |        | Total:      | PIL         | ot: Day     |                 | Co-           | Pilot: Ja        | Sou         | Tech:      |                  |
| Dep Apt   | :    | 0.00         | Dep Time   | (Lcl): | (Z):         |              | A            | гг Ар  | t:          | Arr Tin     | ne (Local): |                 | (Z):          |                  | Tot Ti      | me Aloft:  |                  |
| CORS:     | Y /  | N Sta        | 1:         |        |              | Sta 2:       |              |        | Flyov       | ers: Y / N  | If Y, tim   | nes: Sta 1      | )             | St               | a2)         |            |                  |
| GPS Unit  | : Y/ | N Str        | 1:         |        |              | Sta 2:       |              |        | Flyov       | ora: Y_/ N  | If Y, tim   | nen: Sta 1      | )             | St               | a2)         |            |                  |
| Gd Temp   | beg: |              | c End:     | °c     | OAT b        | eg:          | o End:       |        | °c Al       | timeter beg | dn:         | en              | id:           |                  |             | Beg<br>GB  | Storage<br>Name@ |
|           | Type |              | Seriel a . | 386    | Alt<br>AGL   | A            | it<br>MSL    |        | Avg Terr    | Mac         | c<br>nod    | Avg P<br>Specie | t             |                  |             | End<br>GB  |                  |
| LIDAR     | FOV  |              | Scan       | 500    | MpiA         | v I st Po    | lses<br>Air  |        | Pulse       | Por         |             | PPSM            |               |                  |             | Tot<br>GB  |                  |
| Line #    | Hidg | Start (UTC): | End (UTC): | Gd Spd | PDOF/# Sats  | GPS Altitude | Crab T       | urb    |             |             | FLIGHT LI   | NE NOTES -      | visibility, o | lauds, smoke, pa | rtist, etc. |            |                  |
| TTE       | E    | 15:37        | 15:51      | 1/1    | 1.05/14      | 13,514       | 100          | -      | F1 11       | Corridor    | #12         | 1 64            |               | -                |             |            |                  |
| 00        | 5    | 15:58        | 16:17      | 128    | 1.06/19      | 13,491       |              | 1      |             |             |             |                 |               |                  |             |            |                  |
| 101       | N    | 16:22        | 110:211    | 152    | 1.14/19      | 13,455       |              |        |             |             |             |                 |               |                  |             |            |                  |
| 102       | 5    | 16:46        | 17:04      | 146    | 1.04/20      | 13,428       |              |        |             |             |             |                 |               |                  |             |            |                  |
| 103       | N    | 17:09        | 17:28      | 159    | 1.03/20      | 13,432       |              |        |             | -           | ^           |                 |               |                  |             |            |                  |
| 104       | 5    | 17:33        | 17:52      | 150    | 1.07/19      | 13,432       |              |        | Possibe     | dand        | 161         | ui F            | ion           | · South          | end         | of live    |                  |
| 105       | N    | 17:56        | 18:15      | 156    | 100/19       | 13438        |              |        |             |             |             |                 |               |                  |             |            |                  |
|           |      |              |            |        |              |              |              |        |             |             |             |                 |               |                  |             |            |                  |
|           |      |              |            |        |              |              |              |        |             |             |             |                 |               |                  |             |            |                  |
|           |      |              |            |        |              |              |              |        |             |             |             |                 |               |                  |             |            |                  |
|           |      |              |            |        |              |              |              | -      |             |             |             |                 |               |                  |             |            |                  |
|           |      |              |            |        |              |              |              | -      |             |             |             |                 |               |                  |             |            |                  |
|           |      |              |            |        |              |              |              |        |             |             |             |                 |               |                  |             |            |                  |
|           |      |              |            |        |              |              |              | +      |             |             |             |                 |               |                  |             |            |                  |
|           |      |              |            |        |              |              |              | -      |             |             |             |                 |               |                  |             | *          |                  |
|           |      |              |            |        |              |              |              | -      |             |             |             |                 |               |                  |             |            |                  |
|           |      |              |            |        |              |              |              | -      |             |             |             |                 |               |                  |             |            |                  |
|           |      |              | -          | \      |              |              |              |        |             |             |             |                 |               |                  |             |            |                  |

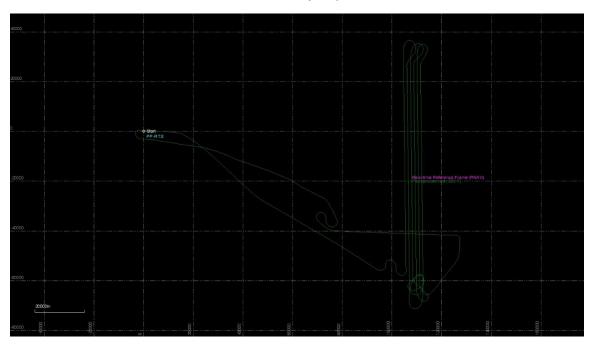

Mission Trajectory

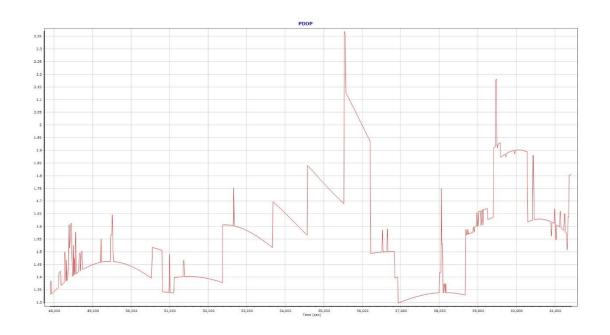




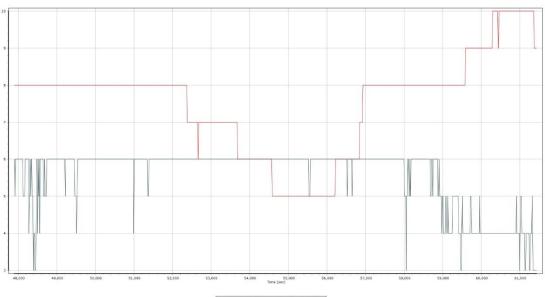




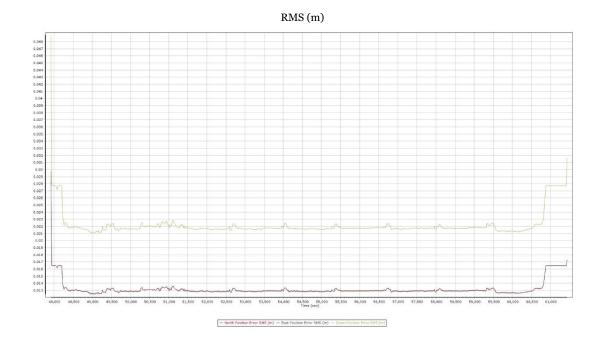


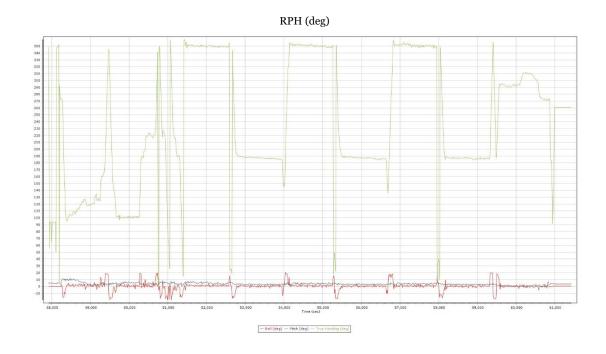


# Mission 13 (20190929A)

Flight Log


| emento     |        | Airborr     | ne LiDA     | R Data   |            |             |                 | t :: Qua      |               | tial, Inc  |                          | Date: 09                   |             | _ of              |
|------------|--------|-------------|-------------|----------|------------|-------------|-----------------|---------------|---------------|------------|--------------------------|----------------------------|-------------|-------------------|
| Project:   | We     | st To       | ×           |          | 1          | Proj #      |                 |               |               | 1gmt File: |                          |                            |             |                   |
| Aircraft   |        |             | Begin Ho    | bbs:     |            | End Hobb    | BC .            | Total:        | Pilo          | t: Dan     | Co-F                     | Plot: Jason                | Tech:       |                   |
| Dep Apt    | t:     |             | Dep Time    | e (Lcl): | (Z):       |             | Arr             | Apt:          | Arr Time      | e (Local): | (Z):                     | Tot                        | Time Aloft: | -                 |
| CORS:      | Υ,     | N St        | na 1:       |          |            | Sta 2:      |                 | Flyov         | ers: Y / N    | If Y, tim  | es: Sta 1)               | Sta2)                      |             |                   |
| GPS Unit   | t: Y   | N St        | a 1:        |          |            | Sta 2:      |                 | Flyov         | ers: Y / N    | If Y, tim  | es: Sta 1)               | Sta2)                      |             |                   |
| Gd Tem     | p beg: |             | °c End:     | •        | OAT        | beg:        | *c End:         | *c A          | timeter begin | 1:         | end:                     |                            | GB          | Storage<br>Name/# |
|            | Туре   | Pring       | Serial #    | 386      | ALE<br>AGL | 1           | ALC<br>AMSL     | Avg Terr      | Max<br>Gdsp   | 4          | Avg Pt<br>Specing        |                            | End<br>GB   |                   |
| LIDAR      | FOV    |             | Scan        | ,,,,     | 1.000      | V 1 N F     | rulees<br>n Air | Pulse<br>Rate | Powe          |            | PPSM                     |                            | Tot<br>GB   |                   |
| Line #     | Hdg    | Start (UTC) |             | Gd Spd   | PDOP/#Sats | GPS Altitud | - Cut Turb      |               |               | FLIGHT LIN | E NOTES - visibility, di | ouds, smoke, partial, etc. |             |                   |
| TIE        | E      | 13:49       | 13:58       | 152      | 105/23     | 1395        | 19,-,-          | F/ -1'        | 2. Corri      | doc #      | 14 -                     | -                          |             |                   |
| 106        | N      | 14:18       | 14:3%       | 150      | 10/20      | 1 7         |                 | 1-11          |               | OU TI      | -                        |                            |             |                   |
| 07         | 5      | 14:40       | 14:59       | 149      | 1.06/19    | 17.383      |                 |               | 6-70-         |            |                          |                            |             |                   |
| 108        | N      | 15:03       | 15:21       | 150      | 102/20     | 13,363      |                 |               |               |            |                          |                            |             |                   |
| 109        | 5      | 15:25       | 15:44       | 146      | 1.05/19    | 13,366      |                 |               |               |            |                          |                            |             |                   |
| 10         | N      | 15:48       | 1605        | 154      | 1.05/19    | 13,369      |                 |               |               |            |                          |                            |             |                   |
| 110        | 5      | 16:10       | 11:28       | 148      | 1.73/18    | 13,386      |                 |               |               |            |                          |                            |             |                   |
|            |        |             |             |          | 1          |             |                 |               |               |            |                          |                            |             |                   |
|            |        |             |             |          |            |             |                 |               |               |            |                          |                            |             |                   |
|            |        |             |             |          | -          | -           |                 | -             |               |            |                          |                            |             |                   |
|            |        |             |             |          | -          | -           |                 |               |               |            |                          |                            |             |                   |
|            |        |             |             |          | -          | -           |                 | -             |               |            |                          |                            |             |                   |
|            |        |             |             |          |            | -           |                 | -             |               |            |                          |                            |             |                   |
|            |        |             |             |          | -          |             |                 |               |               |            |                          |                            |             |                   |
|            |        |             | -           |          |            |             |                 | -             |               |            |                          |                            | -           |                   |
|            |        |             |             |          |            |             |                 |               |               |            |                          |                            |             |                   |
|            |        |             |             |          |            |             |                 |               |               |            |                          |                            |             |                   |
| tal Proj L | Inne   | _           | Lines Flows |          | litere     | Remain:     | 1               | Online Time:  | M.            | b Time:    | Not                      |                            |             |                   |

Mission Trajectory



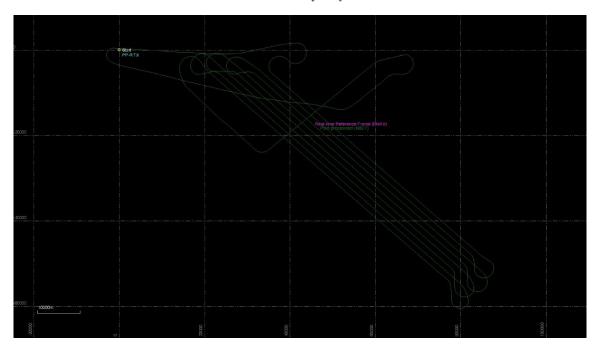



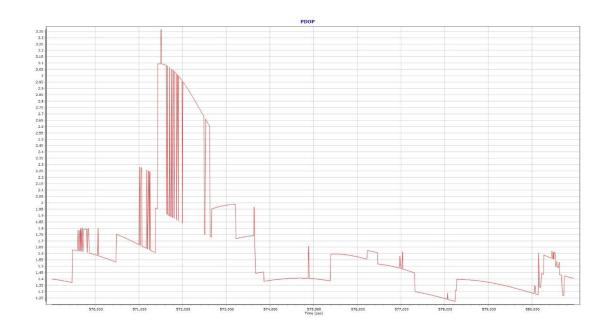


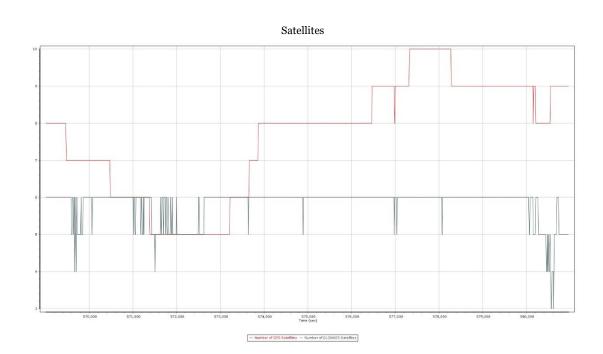


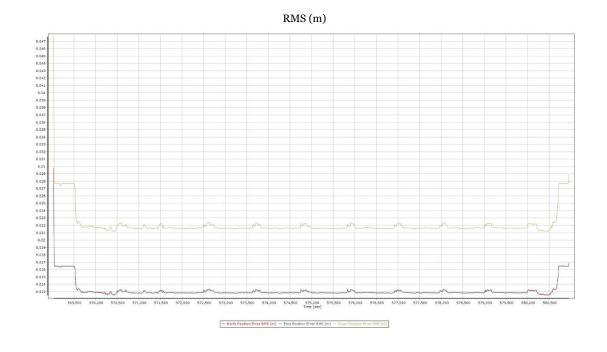

- Number of GPS Satellites - Number of GLONASS Satellites

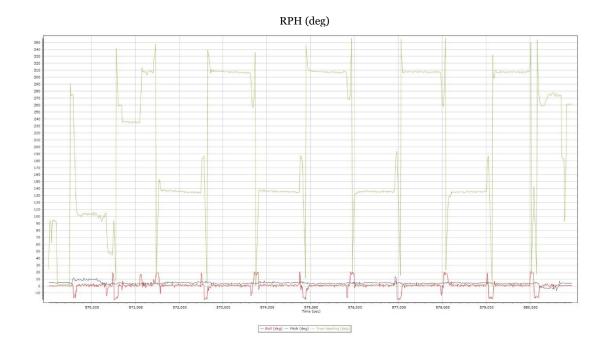






# Mission 14 (20191005A)


Flight Log


| Project:             | Live. | 100         | ,            |          | (email log o | ally to fligh | ht_log_di        | stribution   | list@quantumapa |               |            |                      | Uft: A           | 10-5          | -1q         | d      |
|----------------------|-------|-------------|--------------|----------|--------------|---------------|------------------|--------------|-----------------|---------------|------------|----------------------|------------------|---------------|-------------|--------|
|                      | - NO. | est l'      | Bagin Ho     |          |              | Proj          |                  |              |                 |               | 1gmt File: |                      |                  |               |             |        |
| Aircreft:<br>Dep Apt |       | 1460        |              |          |              | End Hob       | ba:              |              | Total:          | _             | MAG :      | Co                   | -Pilot:          |               | Tech: Exi K |        |
| CORS:                | Υ /   |             | Dep Time     | e (Lcl): | (Z):         |               |                  | Arr A        |                 |               | e (Local): | (Z):                 |                  | Tot Tir       | ne Aloft:   |        |
|                      |       |             | n 1:         |          |              | Sta 2:        |                  |              | Flyov           | ens:Y∫N       | If Y, time | e: Sta 1)            | 5                | ta2)          |             |        |
| GPS Unit             | _     |             | a 1:         |          |              | Sta 2:        |                  |              | Flyov           | era: Y / N    | If Y, time | e: Sta1)             | 9                | ta2}          |             |        |
| Gd Tem               |       |             | c End:       |          | OAT          | eg;           | ••               | End:         |                 | ltimeter begi | n:         | end:                 |                  |               | a a         | Discon |
| LIDAR                | INP   | rime        | SeriaLe      | 96       | ALt<br>AGL   |               | ALT<br>AMSL      |              | Avg Terr<br>Ht  | Mex<br>Gdep   |            | Avg Pt<br>Specing    |                  |               | lind<br>GB  |        |
|                      | FOV   |             | Scan<br>Freq |          | MpiA         | Y / N         | Pulees<br>In Air |              | Pulee<br>Rate   | Pow           | •          | PPSM                 |                  |               | Tot<br>GB   |        |
| Line #               | Hdg   | Start (UTC) | End (UTC):   | Gd Spd   | PDOP/#Sats   | GPS Altito    | ude Crat         | Turb         |                 |               | FUGHT UN   | E NOTES - visibility | , clouds, smake, | partial, etc. |             | _      |
| TL                   | SW    | 1435        | 1438         | 154      | 1./14        | 1346          | 51,              |              | -               |               |            |                      |                  |               |             |        |
| 53                   | 56    | 145         | 1501         | 160      | 1.115        | 1337          | 9                | 1            |                 |               |            |                      |                  | - 4           |             |        |
| 52                   | NW    | 1505        | 1570         | 154      | 1.117        | 1345          | 8                | 1            |                 |               |            |                      |                  |               |             |        |
| 51                   | SE    | 1523        | 1534         | 156      | 1119         | 1357          | -                | 1_           |                 |               |            |                      |                  | 1 1           |             |        |
| 30                   | W     | 1543        | 1557         | 160      | 1/14         | 1366          |                  | 1            | 4               |               |            |                      |                  |               |             |        |
| 49                   | 3     | 600         | 1615         | 155      | 1/18         | 137           | -                | $\checkmark$ |                 |               |            | 1000                 |                  |               |             |        |
| 48                   | NN    | 1618        | 1632         | 161      | 1/20         | 1791          | -                | 1            |                 |               |            |                      |                  | _             |             | -      |
| 47                   | LE    | 1655        | 1650         | 159      | 18/77        | KIO           | -                | 1            |                 |               |            |                      |                  |               |             |        |
| 46                   | _     | 1654        | 1706         | 157      | 9/20         | 1405          | -                | 4            |                 |               |            |                      |                  |               |             |        |
| 10                   | N     | 47          | 128          | 150      | 1.11         | 13391         | -                | R            | 004             | Jamm          |            |                      |                  | 1             |             |        |
| 113                  | 5.    | 130         | 47           | 1        | 9/20         | -             |                  | 0            | 613             | Jamm          | ing        |                      | 1                |               |             |        |
| , KL                 | N     | 151         | 210          | 150      |              | 1339          |                  | +            | 11              | +1            |            |                      | 1                |               |             |        |
| 17                   | -     |             |              |          | 1            | .//           | +                |              |                 |               |            | - 1                  | E.               |               |             |        |
|                      |       |             |              | - 4      |              |               |                  |              |                 |               |            | 1                    | A C              |               | ,           |        |
|                      |       |             |              | 1        |              |               |                  |              |                 |               |            | Jr.                  |                  | 1             |             | 10     |
|                      |       |             |              |          |              |               |                  |              |                 |               | 14.5.0     | 1                    |                  |               | Court V     |        |
|                      |       | 7.7         | -            |          |              |               |                  |              |                 |               |            | 1                    |                  |               |             |        |
| otel Proj Li         | ines: | V 20        | Lines Flows  |          | Lines        | Remain:       |                  | c            | nline Time:     |               | Mob Time:  |                      | Notes:           |               | 14111411    |        |

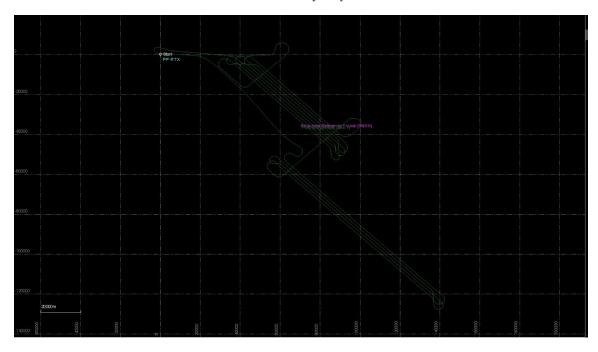

Mission Trajectory

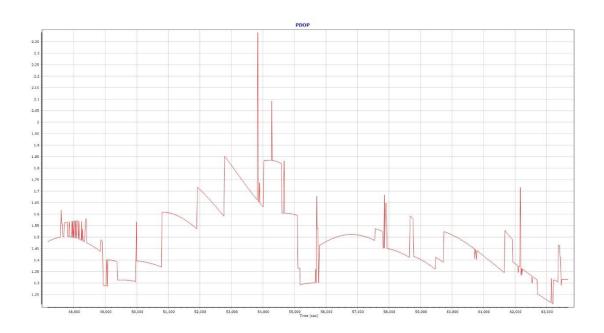


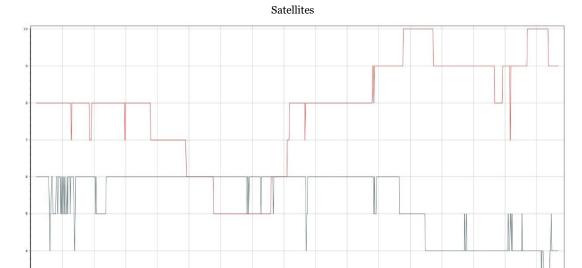


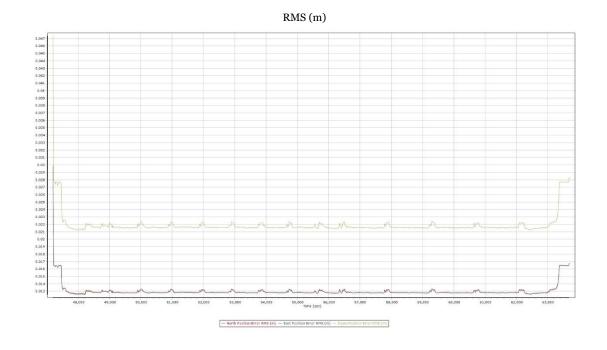


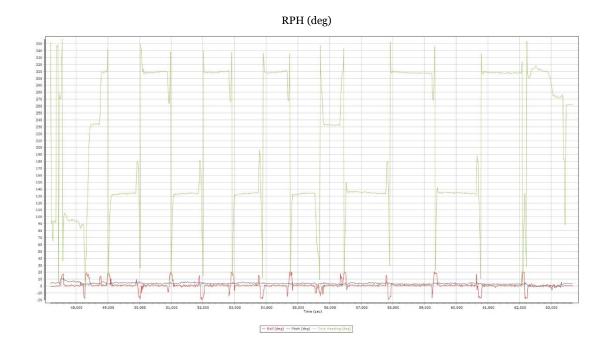






# Mission 15 (20191006A)


Flight Log


| Project: V |                 |              |        | email log da | ally to flight_l | og_distril   | oution_lists | : Quant       | com)        |            | L                        | Dete: 10 - 6            | -(-)        | -       |
|------------|-----------------|--------------|--------|--------------|------------------|--------------|--------------|---------------|-------------|------------|--------------------------|-------------------------|-------------|---------|
|            | My IX           |              |        |              | Proj #:          |              |              |               | Flight M    | gmt File:  |                          |                         | -           | -       |
|            | 175760          |              |        |              | ind Hobbe:       |              |              | Total:        | Pilo        | NAG        | Co-Pilo                  | t:                      | Tech: 6.1   | -       |
| Dep Apt:   |                 | Dep Time     | (Ld.): | (Z):         |                  |              | Arr Apt      |               | Art Time    |            | (Z):                     | Tot 1                   | Time Aloft: |         |
| CORS:      | Y/N St          | 1:           |        | 5            | ita 2:           |              |              | Flyover       | R Y / N     | If Y, time | t: 5ta 1)                | Sta2)                   |             |         |
| GPS Unit:  | Y/N St          | n 1;         |        |              | Sta 2:           |              |              | Flyover       | KY/N        | If Y, time | e: Sta1)                 | Sta2)                   |             |         |
| Gd Temp b  | eg:             | °c End:      | •c     | OATE         | eg:              | °o Er        | nd:          | °c Alt        | meter begi  | n:         | end:                     |                         | To .        | Storego |
| LIDAR      | Dime            | Sertel #     | 96     | Alt<br>AGL   | Â                | lt<br>MSL    |              | Avg Terr      | Mex<br>Gdec |            | Avg Pt<br>Specing        |                         | End<br>GB   |         |
| DDAK P     | ov              | Scan<br>Freq |        | MpiA         | YIN              | ulaes<br>Air |              | Pulse<br>Rate | Pow         |            | PPSM                     |                         | Tot         |         |
| Line #     | Hdg Start (UTC) | End (UTC):   | Gd Spd | PDOP/#Sets   | GPS Altitud      | Crab         | Turb         | 1000          |             | DICHTIN    | E NOTES - visibility, do |                         |             |         |
| TUE        | W 1327          | 1332         | 160    | 9123         | 13465            | 1            | 10,-,+)      | *             |             | Tugin gir  | E NOTES - VIBILITY, d.o  | ids, smoke, partial, et |             |         |
| 45 6       | E 1338          | 1351         | 165    |              | 14081            | 1            |              |               | 1.00 mm     |            |                          |                         |             |         |
| 44 1       | W 135L          | 1 1408       | 160    | -            | 14085            | -            |              |               |             |            |                          |                         |             |         |
|            | E 1411          | 1424         | 159    | ,9/70        | 14058            |              |              |               |             |            |                          |                         |             |         |
| 1          | W 1427          | 1.0          | 156    | 19/19        | 1407             | 2 /          |              |               |             |            |                          |                         |             |         |
|            | E 1443          | 1455         | 159    | 1/19         | 14040            | 14           | A            |               |             |            |                          |                         | 2007        |         |
|            | JW1459          | 1211         | 160    | 1/18         | 14032            |              |              |               |             |            |                          |                         |             |         |
|            | E 1514          | 1526         | 159    | 1/19         | 41022            | -            |              |               |             |            |                          |                         |             |         |
|            | W 153           | 1539         | 150    | 1119         | 13606            | -            |              |               |             |            |                          |                         |             |         |
| -          | E 1544          | 1603         | 160    | 1117         | 1 10 00 00       | _            |              |               |             |            |                          |                         |             |         |
|            | E 1630          | 1627         | 154    | 1.418        |                  |              | 1            |               |             |            |                          |                         |             |         |
|            | E 1630          | 1714         | 161    | 11/18        | 1328             | _            | /-           |               |             |            |                          |                         |             |         |
| 63 W       | 165 3           | 1            | 157    | 1.1/13       | 7 13370          | 1            | +==          |               |             |            |                          | 10 363                  |             |         |
| Ti A       | F 1835          | 1844         | 150    | 19/18        | 13600            | 1            | -            |               |             |            | -                        |                         |             | -       |
|            | E 1947          | - 1902       | 11/    | 9/10         | -                |              | 1            |               |             |            |                          |                         |             |         |
|            | N 1905          | 1970         | 1      | 9119         |                  | ь            | 1            |               |             | -          |                          |                         |             |         |
| -          | E 1973          |              | 159    | 1///         | 1300             | 1            | B            |               | -           |            |                          |                         |             |         |

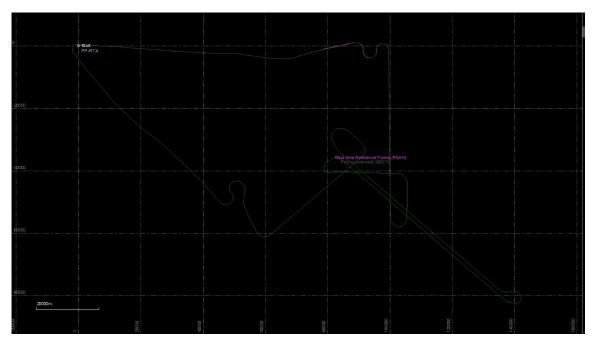

Mission Trajectory

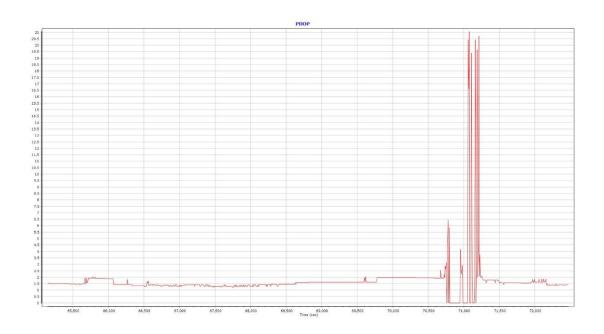


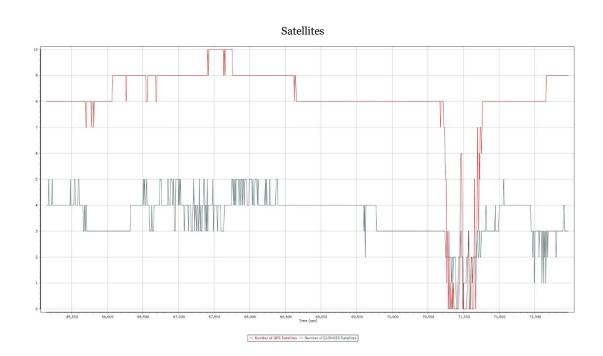




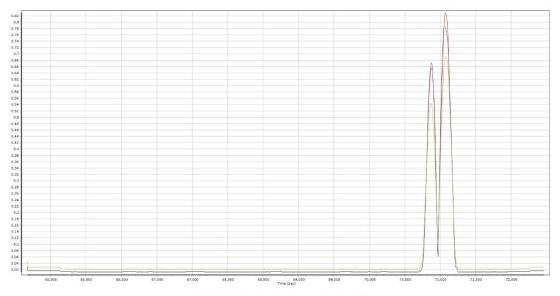


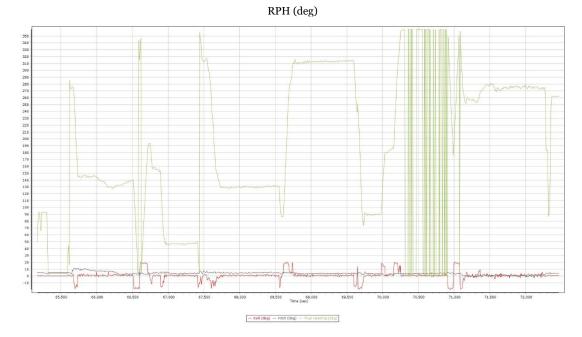




# Mission 16 (20191006B)


Flight Log

| dreak    | HEE. | Airbome      | LIDA         | K Data | (email log d | ITION LO     | og Sh<br>og skri | button_list       | : Quantur      | n Sp <b>ati</b> a | l, Inc    |                   | Date: 10           |                 | Za _   |
|----------|------|--------------|--------------|--------|--------------|--------------|------------------|-------------------|----------------|-------------------|-----------|-------------------|--------------------|-----------------|--------|
| Project  |      |              |              |        |              | Proj #:      |                  |                   |                | Flight Mgn        | rt File:  |                   |                    |                 |        |
| Aircreft | :    |              | Begin Ho     | obbe:  | E            | nd Hobbe     |                  |                   | Total:         | Pllot:            |           | Co-               | Pllot:             | Tech:           | 11.00  |
| Dep Ap   |      |              | Dep Time     | (Lcl): | (Z):         |              |                  | Arr Apt           | =              | Arr Time (L       | ocal):    | (Z):              |                    | Tot Time Aloft: | X      |
| CORS:    | Y    |              | 1:           |        | 5            | ta 2:        |                  |                   | Flyovers:      | Y / N             | f Y, time | s: Sta 1)         | Stag               | 1)              |        |
| GPS Unit | : Y/ | N Sta        | 1:           |        | 5            | ta 2:        |                  |                   | Flyovers:      | Y/N               | f Y, time | e: Sta1)          | Staf               | 1)              |        |
| Gd Tem   | _    | •c           | End:         |        | OAT b        | -            | c En             | id:               | *c Altime      |                   |           | end:              |                    | a               | -      |
| LIDAR    | Туре |              | Serial #     |        | Alt<br>AGL   |              | MSL              |                   | Avg Terr<br>Ht | Mex<br>Gdepd      |           | Avg Pt<br>Specing |                    | GB End          |        |
|          | FOV  |              | Scan<br>Freq |        | MpIA 1       | / N In       | Air              |                   | Pulso<br>Rate  | Power             |           | PPSM              |                    | Tet<br>Ca       |        |
| Line =   | Hdg  | Start (UTC): | End (UTC):   | Gd Spd | PDOP/# Sats  | GPS Altitude | Crab             | Turb<br>(0, -, +) |                |                   |           |                   | douds, smoke, part |                 |        |
| 15       | N    | 1931         | -            | 157    | 1/16         | 134.02       |                  | B                 | Carboge        | GP=               | Ja        | mining            | 3 sat              | ell:tes         | 15P00P |
|          |      |              |              |        |              |              |                  |                   |                |                   |           |                   |                    |                 |        |
|          |      |              |              |        |              |              | -                |                   | Will be the    |                   |           |                   | 1000               |                 |        |
|          |      |              |              |        |              |              |                  |                   |                | a surrend         |           |                   |                    |                 |        |
|          | -    |              |              |        |              | -            | - 35             |                   |                |                   |           | -                 | -                  |                 |        |
|          |      |              |              |        |              |              |                  |                   |                |                   |           |                   |                    |                 | L      |
|          |      |              |              |        |              |              |                  |                   |                |                   |           |                   |                    |                 |        |
|          |      |              |              |        |              |              |                  |                   |                |                   |           |                   |                    |                 |        |
|          |      |              |              |        |              |              |                  |                   |                |                   |           |                   |                    |                 |        |
|          |      |              |              |        |              |              |                  |                   |                |                   |           |                   |                    |                 |        |
|          |      |              |              |        |              |              |                  |                   |                |                   |           |                   |                    |                 |        |
|          |      |              |              |        |              |              |                  |                   |                |                   |           |                   |                    |                 | 0.24   |
|          |      |              |              |        |              |              |                  | -                 |                |                   |           |                   | -                  |                 |        |
|          |      |              |              |        |              |              |                  | +                 |                |                   | 7         |                   |                    |                 |        |
|          |      |              |              |        | -            |              |                  | -                 |                |                   |           |                   |                    |                 |        |
|          |      |              |              |        |              | -            |                  | -                 |                |                   | -         | -                 |                    |                 |        |
|          |      |              |              |        |              |              |                  | 1                 |                |                   |           |                   |                    | Y.              |        |


Mission Trajectory

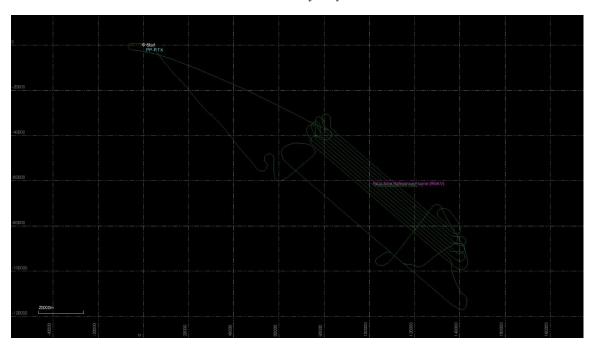


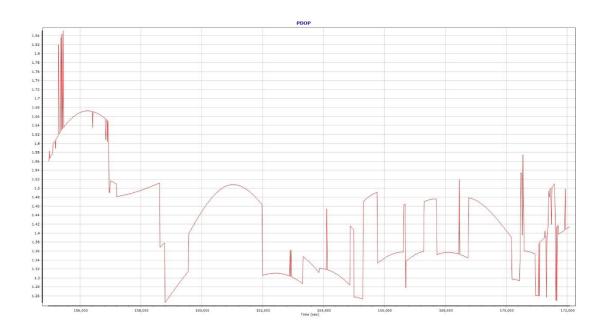


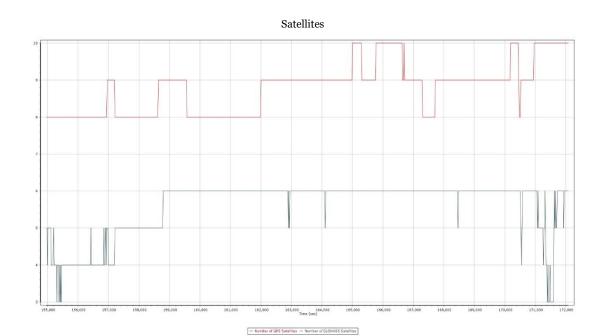


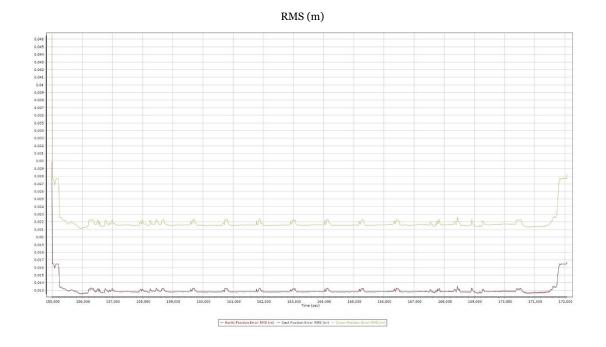


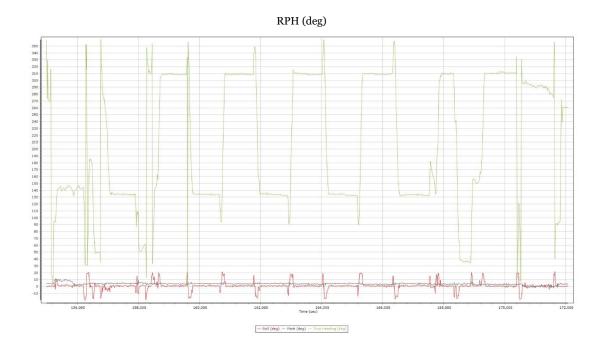




# Mission 17 (20191007B)


Flight Log


| Project    | A47.99 | est t            | ×           |        | (email log d       | Proj #  |     | ribution_l                              | ist@quantumspati |                                    | 1gmt File; |                             | Dete: 10-7-19         |                          |                 |  |
|------------|--------|------------------|-------------|--------|--------------------|---------|-----|-----------------------------------------|------------------|------------------------------------|------------|-----------------------------|-----------------------|--------------------------|-----------------|--|
| Aircraft   | = NF   | ×160             | Begin Ho    | obbs:  | End Hobbe:         |         |     |                                         | Total:           |                                    | t: Dan     | Co-Pilot                    |                       | Toda E N                 | -               |  |
| Dep Ap     | t:     | Dep Time (Lcl.): |             |        | (Z): Arr A         |         |     | Arr A                                   | The pan          |                                    |            | (Z):                        | 0.6                   |                          |                 |  |
| CORS:      |        |                  |             |        |                    | Sta 2:  |     |                                         |                  | Flyovers: Y / N If Y, times: Sta1) |            |                             |                       | Tot Time Aloft:<br>Sta2) |                 |  |
| GPS Uni    | t: Y   | N St             | a 1:        |        | 5                  | Sta 2:  |     |                                         |                  | ma: Y/N                            |            | 9                           | Sta2)                 |                          |                 |  |
| Gd Tem     | p beg: |                  | °c End:     | ••     | OAT beg: *a End:   |         |     |                                         |                  | timeter begi                       |            | end:                        |                       |                          |                 |  |
|            | Type   |                  |             |        | Alt Alt<br>AGL AMS |         |     | Avg Terr Mex Avg Pt<br>Ht Gdepd Specing |                  |                                    | Avg Pt     |                             | End<br>GB             |                          |                 |  |
| Lidar      | FOV    |                  | Som<br>Freq |        | MpIA Y / N Pulses  |         |     | Pules                                   | Pow              |                                    |            |                             | Tet                   |                          |                 |  |
| Line #     | Hdg    | Start (UTC):     |             | Gd Spd | PDOP/#Sats         |         |     | Turb<br>(0 - +)                         |                  |                                    | FLIGHT LIN | E NOTES - visibility, cloud | t tracks partial etc. |                          |                 |  |
| TU         | E      | 1929             | 1932        | 160    | -                  | 13606   | 1   | (0, -, +)                               |                  |                                    |            | CHOID - Nationally, closed  | , since, par car, ecc |                          |                 |  |
| 22         | E      | 1137             | 952         | 156    | 9/20               | -       | 1   |                                         | Partial          | line                               | 14         | from the co                 | A SF                  |                          |                 |  |
| 3          | NW     | 958              | -           | 157    | 9120               |         | 1   | \                                       | Aread.           | , dane                             |            |                             |                       |                          |                 |  |
| 4          | No     | 2005             | 2019        | 152    | 19/20              | 1385    | 5   |                                         |                  |                                    |            |                             |                       |                          |                 |  |
| 5          | SE     | 2023             | 2039        | 159    | 9123               | 13848   | -   | -                                       |                  |                                    |            |                             |                       |                          | Carlo Alexandra |  |
| 6          | NW     | 2041             | 2056        | 157    | 1122               | 13829   |     | 0                                       |                  |                                    |            |                             |                       |                          |                 |  |
| 7          | sŧ     | 2100             | 2114        | 159    | 1/22               | 13816   | 1 3 | B                                       |                  |                                    |            |                             |                       |                          |                 |  |
| 8 .        | nu     | 2118             | 2133        | 156    | 9122               | 1377    | 3   |                                         |                  |                                    |            |                             |                       |                          |                 |  |
| 9          | 5E     | 2137             | 2153        | 161    | 9172               | 13720   | 1   |                                         |                  |                                    |            |                             |                       |                          |                 |  |
| 10         | Mul.   | 2158             | 2212        | 157    | ,9/23              | 1370    |     |                                         |                  |                                    |            |                             |                       |                          |                 |  |
| 11.        | SE     | 2215             | 2232        | 160    | .9/25              | 13704   |     |                                         | frate.           | 2007                               | -6.3       |                             |                       |                          |                 |  |
| 22         | MM     | 237              | 2245        | 160    | 9124               | 13461   |     |                                         | Portial          | line                               | Cample     | te                          |                       |                          |                 |  |
| TL         | E      | 2248             | 2254        | 170    |                    | 13461   | 1/  |                                         |                  |                                    |            |                             |                       |                          |                 |  |
| 12         | NW     | 2301             | 2219        | 159    | 1122               |         | /   |                                         |                  |                                    |            |                             | BECK!                 |                          | -               |  |
|            |        |                  | FY          | JEL    | STO                | NP _    |     |                                         |                  |                                    |            |                             |                       |                          |                 |  |
|            |        |                  |             |        |                    |         | -   |                                         |                  |                                    |            |                             |                       | -                        |                 |  |
|            |        |                  |             |        |                    |         | -   |                                         |                  |                                    |            |                             |                       |                          |                 |  |
| tal Proj L |        |                  | Lines Flows |        |                    | lemein: |     |                                         | iline Time:      | -                                  | fob Time:  | Note                        |                       |                          |                 |  |

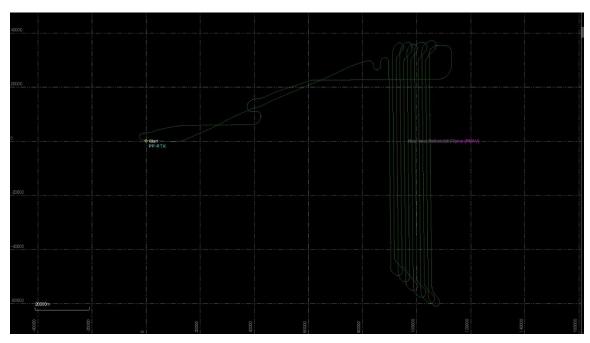

Mission Trajectory

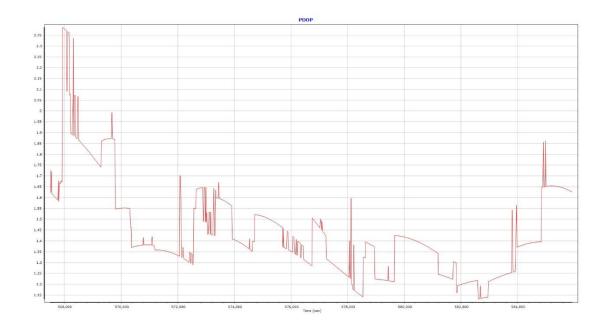




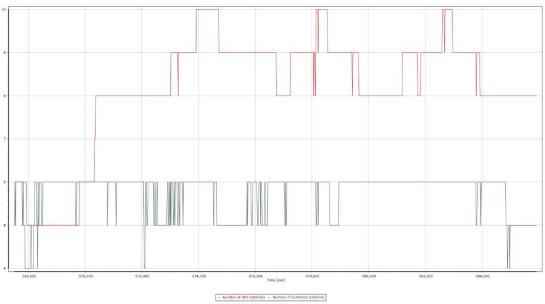


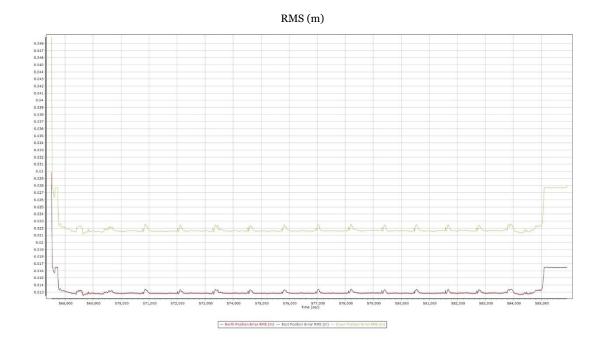


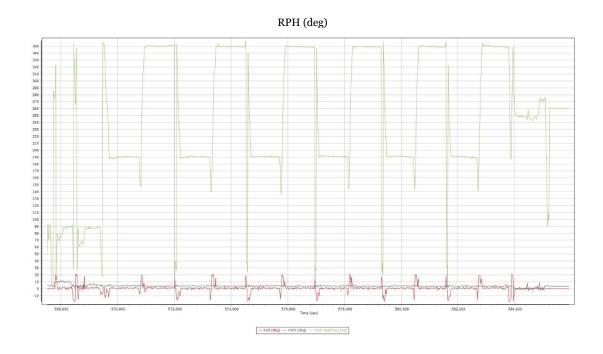




## Mission 19 (20191019A)

Flight Log

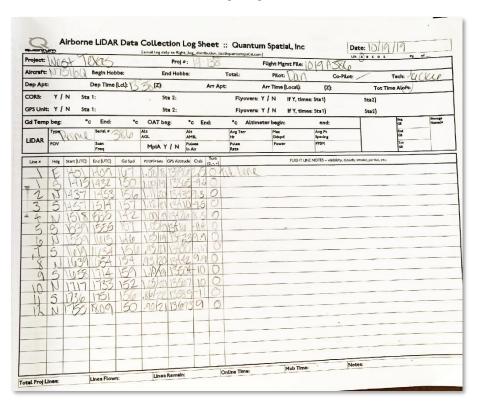

| roject:                        | y 18 | (email log da | *: 101       | -138    |             |           | Flight Mgmt File: 1983 |                          |               |               |              |                            |                   |                    |                 |           |                   |  |
|--------------------------------|------|---------------|--------------|---------|-------------|-----------|------------------------|--------------------------|---------------|---------------|--------------|----------------------------|-------------------|--------------------|-----------------|-----------|-------------------|--|
| Ircraft: N 151100 Begin Hobbs: |      |               |              |         | End Hobbs:  |           |                        | Total: Pllot:            |               |               | 11-10        | Co-Pilot: Tech: \((10\)(10 |                   |                    | w.              |           |                   |  |
| ep Apt: Dep Time               |      |               | (Lcl):       | y: (z): |             |           | Arr Ap                 | Arr Time (Local):        |               | Local):       | 11           |                            | Tot Time Aloft:   |                    | wa              |           |                   |  |
| CORS:                          | Y    | / N Sta 1:    |              |         | Sta 2:      |           |                        | Flyovers: Y / N If Y, th |               |               | If Y, times: |                            |                   | Sta2)              |                 |           |                   |  |
| GPS Unit: Y / N Sta            |      |               | 1:           |         | Sta 2:      |           |                        |                          |               | Flyovers: Y / |              | N If Y, times              |                   |                    | Sta2)           |           |                   |  |
| 3d Temp                        | beg: | •0            |              | °c      | OAT b       | eg:       | °c                     | End:                     | °c            | Altimeter     | begin:       |                            | end:              |                    |                 | Eag<br>GB | Storage<br>Name/# |  |
|                                | Type | dovue         | Serial .     | 386     | ALt<br>AGL  |           | ALt<br>AMSL            |                          | Avg Ter       | т             | Mex<br>Gdspd |                            | Avg Pt<br>Specing |                    |                 | End<br>GB |                   |  |
| LIDAR                          | FOV  | 1.            | Scan<br>Freq |         | MpIA 1      | r/N       | Pulses<br>In Air       |                          | Pulso<br>Rate |               | Power        |                            | PPSM              |                    |                 | Tet<br>GB |                   |  |
| Line #                         | Hdg  | Start (UTC):  | End (UTC):   | Gd Spd  | PDOP/# Sats | GPS ALtin | tude Cral              | 6 (Turb                  |               |               |              | FLIGHT LINE N              | OTES – visibil    | ity, clouds, smoke | , partial, etc. |           | 1                 |  |
| 1                              | 4    | 1030          | 1039         | 169     | on 13       | 1300      | 01                     | 0                        |               |               |              |                            |                   |                    |                 |           |                   |  |
| TL                             | M    | 2094          | 2047         | 144     | 8/0/12      | 133       | H4                     | 0                        |               |               |              |                            |                   |                    |                 | -         |                   |  |
| 10                             | 5    | 2051          | 2053         | 150     | 190/14      | 1325      | 4-1                    | 10                       |               |               |              |                            |                   |                    |                 |           |                   |  |
| 7                              | N    | 2056          | 2008         | 150     | 87174       | 1320      | 13 1                   | 10                       |               |               |              |                            |                   |                    |                 |           |                   |  |
| - 0                            | 5    | 2103          | 2100         | 159     | 40124       | 1351      | 0 -1                   | 40                       |               |               |              |                            |                   |                    |                 |           |                   |  |
| 5                              | N    | 1112          | 2116         | 150     | 008 125     | 130       | 200                    | 0                        |               |               |              |                            |                   |                    |                 |           |                   |  |
| A                              | 5    | 1110          | 1100         | 150     | 06/1/9      | 120       | 070                    | 7 0                      |               |               |              |                            |                   |                    |                 |           |                   |  |
| 13                             | N    | 2130          | 2113         | 1001    | 9974        | 100       | 11-1                   | 10                       |               |               |              |                            |                   |                    |                 |           |                   |  |
| 14                             | 5    | 2148          | 1202         | 150     | Colo        | 137       | 27 0                   | 0                        |               |               |              |                            |                   |                    |                 |           |                   |  |
| 15                             | N    | 2200          | UW           | 101     | 08/11       | 137       | 37 -1                  | 10                       |               |               |              |                            |                   |                    |                 |           |                   |  |
| 16                             | 5    | 1115          | 1150         | 1101    | DALOS       | 12:7      | 95 0                   | 0                        |               |               |              | ***                        |                   |                    |                 |           |                   |  |
| 17                             | N    | TEXT          | 200          | 100     | make        | 1305      | ×2-1                   | 70                       |               |               |              |                            |                   |                    |                 |           |                   |  |
| 18                             | 2    | 1150          | 1310         | 101     | 0010        | 1351      | 20                     | 10                       |               |               |              |                            |                   |                    |                 |           |                   |  |
| 19                             | N    | 15/16         | 130          | 157     | 100/1       | 139       | 13-1                   | 20                       |               |               |              |                            |                   |                    |                 |           |                   |  |
| 20                             | 5    | 2500          | 000          | 151     | 1.04/7      | 1/201     | 4711                   | 0                        |               |               | -            |                            |                   |                    |                 | -         |                   |  |
| -11                            | N    | 134           | 10001        | 156     | 1.12/10     | 140       | 17                     | 30                       |               |               | _            |                            |                   |                    |                 |           |                   |  |
| 22                             | 5    | 000           | 1/1/23       | 156     | 13511       | 8 140     | 691                    | 00                       |               |               | Mo           | b Time:                    |                   | Notes:             |                 |           | -                 |  |
| Total Proj                     | N    | WH            | Linea Flor   | 1 1/1/2 | Unes        | Remain    | :                      | 0                        | nline Time    |               |              |                            |                   |                    |                 |           |                   |  |


Mission Trajectory

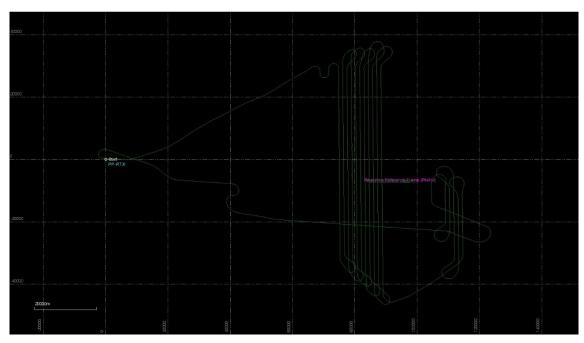


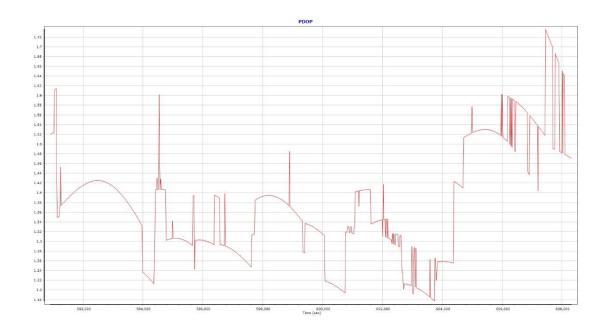


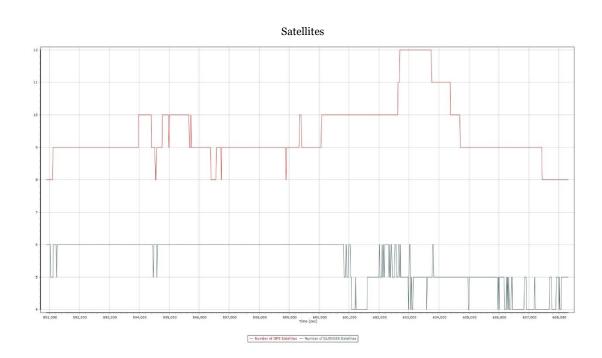


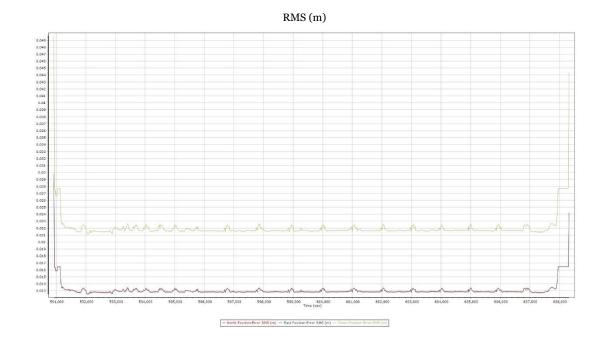



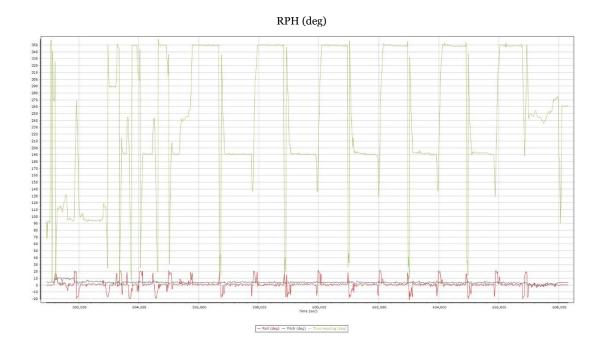




### Mission 20 (20191019B)


Flight Log



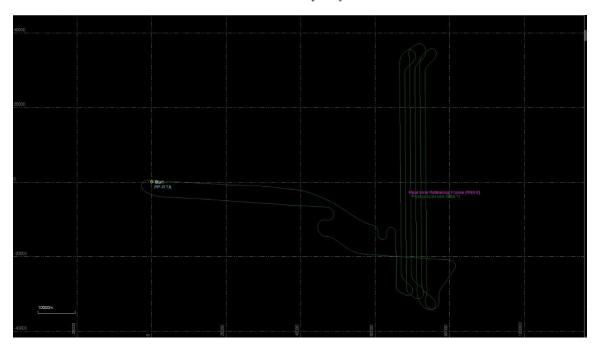


Mission Trajectory

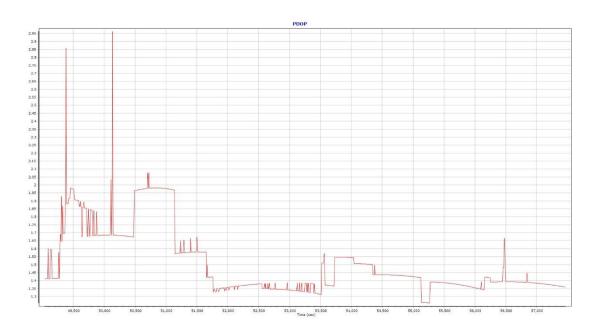


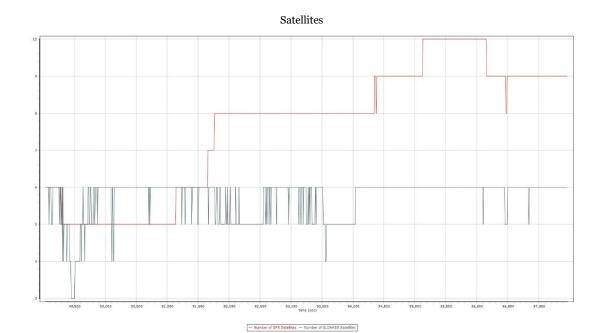


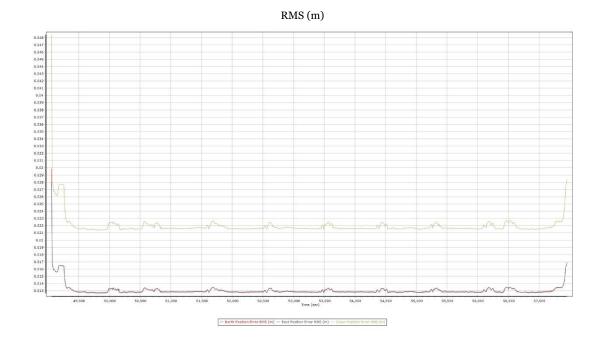


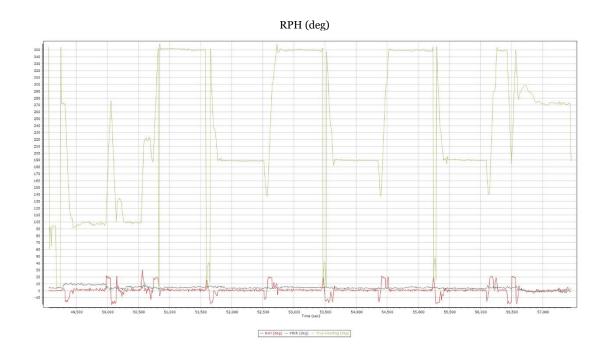






# Mission 21 (20191020A)


Flight Log


| Project:\(\)                                    | est       | 1lyae                                                                 | )                                                        |                                                                  | Proj                                                  |                                          | 13     |                                 | FL        | -                     | Igmt File:    | 1020                              | A386               |                  | - 1                                 | n-l-              |
|-------------------------------------------------|-----------|-----------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|--------|---------------------------------|-----------|-----------------------|---------------|-----------------------------------|--------------------|------------------|-------------------------------------|-------------------|
| Alrcraft: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 16163     | Begin H<br>Dep Tim                                                    | HOTE CONTRACT                                            | (Z):                                                             | End Hob                                               | ba:                                      | Arr Ap | Total:                          | Are       | Pilot                 | (Local):      | (Z):                              | Co-Pilot:          | Tot T            | Tech:                               | eoce              |
| 10.00                                           |           | Sta 1:                                                                |                                                          | -                                                                | Sta 2:<br>Sta 2:                                      |                                          | 711.74 | Flyo                            | vers: Y / | N                     | If Y, time    | s: Sta 1)                         |                    | Sta2)            | ino Atore.                          | -                 |
| Ed Temp be                                      | Mir Vo.   | °C End:                                                               | *c<br>386                                                | OAT L                                                            |                                                       | Alt<br>AMSL<br>Pulsos<br>In Air          | End:   | Avg Terr<br>Ht<br>Pulse<br>Rate | Altimeter | Mex<br>Gdspd<br>Power |               | end:<br>Avg Pt<br>Spacing<br>PPSM |                    |                  | Beg<br>GB<br>End<br>GB<br>Tot<br>GB | Storage<br>Nameje |
| Ine a lite                                      | Start (U) | 1 402<br>1 49<br>1 49<br>1 49<br>1 49<br>1 49<br>1 49<br>1 49<br>1 49 | Gr Spot<br>157<br>163<br>132<br>159<br>157<br>154<br>157 | PROPINE NOT 1/19 - 97/20 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 | GPS ALERON 13.731 14.00 14.07 14.07 14.07 14.07 14.07 | -4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |        |                                 |           |                       | PLIGHT LINE I | NOTES – visibil                   | lty, clouets, amok | e, partial, ecc. |                                     |                   |


Mission Trajectory









