

Dewberry Engineers Inc.813.225.13251000 North Ashley Drive, Suite 801813.225.1385 faxTampa, FL 33602www.dewberry.com

UT_FEMA_Flaming_Gorge_ 2020_B20-195625

Report Produced for U.S. Geological Survey

USGS Contract: G16PC00020

Task Order: 140G0220F0147

Report Date: November 16, 2021

SUBMITTED BY: Dewberry 1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

SUBMITTED TO: U.S. Geological Survey 1400 Independence Road Rolla, MO 65401 573.308.3810

11/16/2021:

TABLE OF CONTENTS

Att	achme	nts	2
1.	Exect	utive Summary	3
	1.1 1.2 1.3 1.4 1.5	Project Team Project Area Coordinate Referenœ System Project Deliverables Dewberry Production Workflow Diagram	3 4 5 5
2.	Lidar	Acquisition Report	7
	2.1 2.2 2.3 2.4 2.5 2.6	Lidar Acquisition Details Lidar System Parameters Acquisition Status Report and Flight Lines Acquisition Static Control Airbome Kinematic Control Generation and Calibration of Raw Lidar Data	7 7 8 9 9 9
		2.6.1 Boresight and Relative accuracy	11
	2.7	Final Calibration Verification	11
3.	Lidar	Production & Qualitative Assessment	13
	3.1	Initial Processing	13
		3.1.1 Post Calibration Lidar Review	13
	3.2	Data Classification and Editing	15
		3.2.1 Qualitative Review3.2.2 Formatting Review	16 20
4.	Break	kline Production & Qualitative Assessment	21
	4.1	Breakline Production Methodology	21
		4.1.1 Breakline Collection Requirements	21
	4.2	Breakline Qualitative Assessment	23
5.	DEM	Production & Qualitative Assessment	25
	5.1 5.2	DEM Production Methodology DEM Qualitative Assessment	25 25
6.	Deriva	ative Lidar Products	26
	6.1 6.2	Swath Separation Images Interswath and Intraswath Polygons	26 27
		6.2.1 Interswath Accuracy6.2.2 Intraswath Accuracy	27 27

140G0220F0147

11/16/2021:

ATTACHMENTS

Appendix A: GPS Processing Reports

11/16/2021:

1. EXECUTIVE SUMMARY

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy light detection and ranging (lidar) technology for the UT_FEMA_Flaming_Gorge-195625 project.

Lidar data were processed and classified according to project specifications. Detailed breaklines and bareearth Digital Elevation Models were produced for the project area. Project components were formatted based on a tile grid with each tile covering an area 1,500 m by 1,500 m. A total of 16,795 tiles were produced for the project, providing approximately 13,681 sq. miles of coverage. A total of 2355 tiles were produced for block 195625, providing approximately 1816 sq. miles of coverage.

1.1 Project Team

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, digital elevation model (DEM) production, and quality assurance.

Ground survey was completed for the project. Survey tasks were to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model and to acquire surveyed ground control points for use in calibration activities. It was also verified the GPS base station coordinates used during lidar data acquisition.

Aerial Surveys International, LLC completed lidar data acquisition and data calibration for the project area.

1.2 Project Area

The block area is shown in figure 1. 195625 Block contains 2355 1,500 m by 1,500 m tiles. The project tile grid contains 16,795 1,500 m by 1,500 m tiles.

11/16/2021:

USGS Utah Flaming Gorge - Block 195625

1.3 Coordinate Reference System

Data produced for the project are delivered in the following spatial reference system:

140G0220F0147

11/16/2021:

Horizontal Datum:	North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))
Vertical Datum:	North American Vertical Datum of 1988 (NAVD88)
Geoid Model:	Geoid18
Coordinate System:	UTM Zone 12N
Horizontal Units:	Meters
Vertical Units:	Meters

1.4 Project Deliverables

The deliverables for the block are as follows:

- 1. Project Extents (Esri SHP)
- 2. Classified Point Cloud (tiled LAS))
- 3. Intensity Images (tiled, 8-bit gray scale, GeoTIFF format)
- 4. Breakline Data (file GDB)
- 5. Bare Earth Surface (tiled raster DEM, TIF format)
- 6. Swath Separation Images
- 7. Interswath Polygons
- 8. Intraswath Polygons
- 9. Metadata (XML)
- 10. Block Report
- 11. Flightline Index

1.5 Dewberry Production Workflow Diagram

The diagram below outlines Dewberry's standard lidar production workflow.

Figure 2. Dewberry's Lidar Production Workflow Diagram.

11/16/2021:

2. LIDAR ACQUISITION REPORT

Dewberry elected to subcontract the lidar acquisition and calibration activities to Aerial Surveys International, LLC. Aerial Surveys International LLC was responsible for providing lidar acquisition, calibration, and delivery of lidar data files to Dewberry.

The lidar aerial acquisition for the 195625 AOI and was conducted between September 14, 2020 thru November 5, 2020.

2.1 Lidar Acquisition Details

Aerial Surveys International, LLC planned 163 passes as a series of parallel flight lines with cross flightlines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, Aerial Surveys International, LLC followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, includes the following criteria:

- A digital flight line layout using Airborne Mission Manager flight design software for direct integration into the aircraft flight navigation system.
- Planned flight lines; flight line numbers; and coverage area.
- Lidar coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.

• Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally, Aerial Surveys International, LLC will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission.

Aerial Surveys International, LLC monitored weather and atmospheric conditions and conducted lidar missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. Lidar systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. Aerial Surveys International, LLC accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition.

Within 72-hours prior to the planned day(s) of acquisition, Aerial Surveys International, LLC closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis.

2.2 Lidar System Parameters

Aerial Surveys International, LLC operated a Cessna 310 (Tail # N7516Q) outfitted with an Optech T2000 lidar system during the collection of the project. Table 1 illustrates Aerial Surveys International, LLC system parameters for lidar acquisition on this project.

Table 1. Aerial Surveys International, LLC lidar system parameters.

Item	Parameter
System	Optech T2000

11/16/2021:

Item	Parameter
Maximum Number of Returns per Pulse	8
Nominal Pulse Spacing (single swath), (m)	0.62
NominalPulseDensity(singleswath)(ppsm),	
(m)	2.67
Aggregate NPS(m) (if ANPS was designed to	
be metthrough single coverage, ANPS and	
NPS will be equal)	0.62
Aggregate NPD (m) (it ANPD was designed to	
be met through single coverage, ANYD and NPD will be equal)	2.67
Altitude (ACI motore)	2.0/
Altitude (AGLineters)	1900
Approx. Flight Speed (knots)	160
Total Sensor Scan Angle (degree)	34
Scan Frequency (hz)	66
Scanner Pulse Rate (kHz)	500
Pulse Duration of the Scanner (nanoseconds)	10
Pulse Width of the Scanner (m)	3.04
Central Wavelength of the Sensor Laser	
(nanometers)	1064
Did the Sensor Operate with Multiple Pulses	
in The Air? (yes/no)	Yes
Beam Divergence (milliradians)	0.23
NominalSwathWidthon the Ground (m)	1456
Swath Overlap(%)	30%
Computed Down Track spacing (m)per beam	0.62
Computed Cross Track Spacing (m) per beam	0.62

2.3 Acquisition Status Report and Flight Lines

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. The Acquisition Manager contacted air traffic control and coordinated flight pattern requirements. Lidar acquisition began immediately upon notification that control base stations were in place. During flight operations, the flight crew monitored weather and atmospheric conditions. Lidar missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of PDOPs, and performed the first Q/C review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines impacted by unfavorable conditions were marked as invalid and re-flown immediately or at an optimal time.

Figure 2 shows the combined flight line trajectories.

140G0220F0147

11/16/2021:

2.4 Acquisition Static Control

Aerial Surveys International, LLC utilized Applanix's PPRTX module for the static control. Using the precise data derived from the real-time CenterPoint RTX system, a new high-accuracy post-processed RTX-Aided inertial processing method has been developed for POSPac MMS, enabling robust, cm level positioning to be achieved for mobile mapping without reference stations. The Post-processed RTX (PP-RTX) implementation in POSPac is comprised of three components: 1. A web-based service that provides the CenterPoint RTX information along the rover trajectory to be post-processed. 2. A QC step that processes the information from the service with the raw rover observables in forward and reverse time to generate the convergence-free PPRTX GNSS solution 3. Generation of the final RTX-Aided Inertial navigation solution using a Kalman filter and optimal smoother processing.

2.5 Airborne Kinematic Control

Airborne GPS data was processed using the POSPac MMS version 8.5 and the PPRTX module. Flights were flown with a minimum of 6 satellites in view (13° above the horizon) and with a PDOP of better than 4.

GPS processing reports for each mission are included in Appendix A.

2.6 Generation and Calibration of Raw Lidar Data

The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete.

140G0220F0147

11/16/2021:

Subsequently the mission points are output using Optech's LMS software, initially with default values from Optech or the last mission calibrated for the system. The initial point generation for each mission calibration is verified within MARS 8 for calibration errors. If a calibration error greater than specification is observed within the mission, the roll, pitch and scanner scale corrections that need to be applied are calculated. The missions with the new calibration values are regenerated and validated internally once again to ensure quality.

Data collected by the lidar unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

On a project level, a supplementary coverage check is carried out to ensure no data voids unreported by Field Operations are present.

Figure 4. Lidar swath output showing complete coverage.

11/16/2021:

2.6.1 Boresight and Relative accuracy

The initial points for each mission calibration were inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the lidar unit or GPS. Roll, pitch and scanner scale were optimized during the calibration process until relative accuracy requirements were met (figure 4).

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the lidar unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

The following relative accuracy specifications were used for this project:

- ≤ 6 cm maximum difference within individual swaths (intra-swath); and
- ≤ 8 cm RMSDz between adjacent and overlapping swaths (inter-swath).

A different set of QC blocks were generated for final review after any necessary transformations were applied.

Figure 5. Profile views showing results of roll and pitch adjustments.

2.7 Final Calibration Verification

Dewberry conducted the survey for 34 ground control points (GCPs) which were used to test the accuracy of the calibrated swath data. These 34 GCPs were available to use as control in case the swath data exhibited any biases which would need to be adjusted or removed. The coordinates of all GCPs are provided in table 3 and the accuracy results from testing the calibrated swath data against the GCPs is provided in table 4; no further adjustments to the swath data were required based on the accuracy results of the GCPs.

Table 3.	Surveyed	ground	control	points	(GCPs).
----------	----------	--------	---------	--------	---------

Point ID NAD83 (2011) UTM 12N NAVD88 (Geoid 18)	
---	--

	Easting X (m)	Northing Y (m)	Z-Survey (m)	Z-LiDAR (m)
GCP-101	230707	4165231	1877.545	1877.51
GCP-102	264724	4154641	2177.924	2177.8
GCP-103	277524	4163885	1736.614	1736.63
GCP-104	299046.1	4153427	1728.91	1728.93
GCP-105	303089.4	4147534	1544.75	1544.77
GCP-106	318074.7	4146142	2476.515	2476.46
GCP-107	319050.3	4146649	2480.656	2480.63
GCP-108	325367.3	4141935	2054.825	2054.82
GCP-109	316808.8	4138646	2370.261	2370.3
GCP-110	300049.9	4140557	1518.655	1518.68
GCP-111	232774	4157160	1677.88	1677.74
GCP-112	234490.8	4133288	1092.212	1092.2
GCP-113	263562.7	4133902	1431.072	1431.01
GCP-114	306430.6	4127520	1723.535	1723.47
GCP-115	311633.1	4129169	1645.387	1645.37
GCP-116	314007.4	4111445	1430.412	1430.45
GCP-117	316518.6	4111563	1349.89	1349.95
GCP-118	301256.4	4116999	1149.503	1149.57
GCP-119	286738.4	4122325	973.382	973.425
GCP-120	263113.8	4112705	852.278	852.314
GCP-121	231471.6	4114220	884.546	884.61
GCP-122	240932.9	4100072	843.026	843.095
GCP-123	279645.9	4099285	860.497	860.454
GCP-124	280636.6	4108474	892.528	892.543
GCP-125	291309.2	4104866	1065.542	1065.6
GCP-126	293217.4	4099735	1002.87	1002.97
GCP-127	300450.1	4101453	1778.959	1778.9
GCP-128	299320.7	4108431	1326.486	1326.48
GCP-129	330703.4	4096747	1631.841	1631.78
GCP-130	259340.1	4162649	1629.538	1629.49
GCP-131	267466	4152257	1775.282	1775.23
GCP132	263975.4	4139118	1499.711	1499.67
GCP-133	268191.5	4125767	1382.138	1382.13
GCP-134	26824.3	4112921	884.719	884.742

140G0220F0147

11/16/2021:

This project must meet Non-vegetated Vertical Accuracy (NVA) \leq 19.6 cm at the 95% confidence level based on RMSE_z \leq 10 cm x 1.9600.

100 % of Totals	# of Points	RMSEz (m) NVA Spec=0.100 m	NVA- Non- vegetated Vertical Accuracy ((RMSEz x 1.9600) Spec=0.196 m	Mean (m)	Median (m)	Skew	Std Dev (m)	Min (m)	Max (m)	Kurtosis
GCP	34	0.055	0.108	-0.006	-0.007	-0.454	0.056	-0.144	0.099	0.086

Table 4. Ground control points (GCPs) vertical accuracy results.

3. LIDAR PRODUCTION & QUALITATIVE ASSESSMENT

3.1 Initial Processing

Following receipt of the calibrated swath data from the acquisition provider, Dewberry performed vertical accuracy validation of the swath data, inter-swath relative accuracy validation, intra-swath relative accuracy validation, verification of horizontal alignment between swaths, and confirmation of point density and spatial distribution. This initial assessment allowed Dewberry to determine whether the data was suitable for full-scale production.

3.1.1 Post Calibration Lidar Review

The table below identifies requirements verified by Dewberry prior to tiling the swath data, running initial ground macros, and starting manual classification.

Requirement	Description of Deliverables	Additional Comments
Non-vegetated vertical accuracy (NVA) of the swath data meet required specifications of 19.6 cm at the 95% confidence level based on RMSEz (10 cm) x 1.96	The swath NVA was tested and passed specifications.	None
The NPD/NPS (or Aggregate NPD/Aggregate NPS) meets required	The average calculated (A)NPD of this project is 14.067 ppsm. Density raster	None

Table 5. Post calibration and initial processing data verification steps.

Requirement	Description of Deliverables	Additional Comments
specification of 2 ppsm or 0.7 m NPS.	visualization also passed specifications.	
The NPD (ANPD) is calculated from first		
return points only.		
Spatial Distribution requires 90% of the		
project grid, calculated with cell sizes of	98% of cells (2*NPS cell size) had at	
2"NPS, to contain at least one lidar	least 1 lidar point within the cell.	None
point. This is calculated from first return		
Within swath (Intra-swath or hard		
surface repeatability) relative accuracy	Within swath relative accuracy passed	None
must meet < 6 cm maximum difference	specification.	None
Between swath (Inter-swath or swath		
overlap) relative accuracy must meet 8	Between swath relative accuracy	
cm RMSDz/16 cm maximum difference.	passed specification, calculated from	None
These thresholds are tested in open, flat	single return lidar points.	
terrain.		
Horizontal Calibration-There should not		
be horizontal offsets (or vertical offsets)		
between overlapping swaths that would	Horizontal calibration met project	
negatively impact the accuracy of the	requirements	None
data or the overall usability of the data.	requirements.	
Assessments made on rooftops or other		
hard planar surfaces where available.		
Ground Penetration-The missions were		
planned appropriately to meet project	Ground penetration beneath	
density requirements and achieve as	vegetation was acceptable.	None
much ground penetration beneath		
vegetation as possible.		
Sensor Anomalies-The sensor should		
perform as expected without anomalies		
data including include such as expossive	No sensor anomalies were present.	None
sensor noise and intensity gain or		
rande-walk issues		
Edge of Flight line bits-These fields must		
show a minimum value of 0 and		
maximum value of 1 for each swath	Edge of Flight line bits were populated	None
acquired, regardless of which type of	correctly.	
sensor is used.		

11/16/2021:

Requirement	Description of Deliverables	Additional Comments
Scan Direction bits-These fields must show a minimum value of 0 and maximum value of 1 for each swath acquired with sensors using oscillating (back-and-forth) mirror scan mechanism. These fields should show a minimum and maximum of 0 for each swath acquired with Riegl sensors as these sensors use rotating mirrors.	Scan Direction bits were populated correctly.	None
Swaths are in LAS v1.4 formatting.	Swaths were in LAS v1.4 as required by the project.	None
All swaths must have File Source IDs assigned (these should equal the Point Source ID or the flight line number).	File Source IDs were correctly assigned.	None
GPS timestamps must be in Adjusted GPS time format and Global Encoding field must also indicate Adjusted GPS timestamps.	GPS timestamps were Adjusted GPS time and Global Encoding field were correctly set to 17.	None
Intensity values must be 16-bit, with values ranging between 0-65,535.	Intensity values were 16-bit.	None
Point Source IDs must be populated and swath Point Source IDs should match the File Source IDs.	Point Source IDs were assigned and match the File Source IDs.	None

3.2 Data Classification and Editing

Once the calibration, absolute swath vertical accuracy, and relative accuracy of the data were confirmed, Dewberry utilized proprietary and TerraScan software for processing. The acquired 3D laser point clouds were tiled according to the project tile grid using proprietary software. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classified any obvious low outliers in the dataset to class 7 and high outliers in the dataset to class 18, after classification, class 7 & 18 were flagged with the withheld bit. Points along flight line edges that were geometrically unusable were flagged as withheld and classified to a separate class so that they would be excluded from the initial ground algorithm. After points that could negatively affect the ground were removed from class 1, the ground layer was extracted from this remaining point cloud using an iterative surface model.

This surface model was generated using four main parameters: building size, iteration angle, iteration distance, and maximum terrain angle. The initial model was based on low points being selected by a "roaming window" with the assumption that these were the ground points. The size of this roaming window was determined by the building size parameter. The low points were triangulated and the remaining points were evaluated and

140G0220F0147

11/16/2021:

subsequently added to the model if they met the iteration angle and distance constraints. This process was repeated until no additional points were added within iterations. Points that did not relate to classified ground within the maximum terrain angle were not captured by the initial model.

After the initial automated ground routine, each tile was imported into TerraScan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing. Dewberry analysts employed 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points were removed from the ground classification. Bridge decks were classified to class 17 and bridge saddle breaklines were used where necessary. After the ground classification corrections were completed, the dataset was processed through a water classification routine selected ground points within the breakline polygons and automatically classified them as class 9, water. During this water classification routine, points that were within 1 NPS distance or less of the hydrographic feature boundaries were moved to class 20, ignored ground, to avoid hydro-flattening artifacts along the edges of hydro features.

The withheld bit was set on the withheld points previously identified in TerraScan before the ground classification routine was performed.

After manual classification, the LAS tiles were peer reviewed and then underwent a final independent QA/QC. After the final QA/QC and corrections, all headers, appropriate point data records, and variable length records, including spatial reference information, were updated and verified using proprietary Dewberry software.

3.2.1 Qualitative Review

Dewberry's qualitative assessment of lidar point cloud data utilized a combination of statistical analyses and visual interpretation. Methods and products used in the assessment included profile- and map view-based point cloud review, pseudo image products (e.g., intensity orthoimages), TINs, DEMs, DSMs, and point density rasters. This assessment looked for incorrect classification and other errors sourced in the LAS data. Lidar data are peer reviewed, reviewed by task leads (senior level analysts), and verified by an independent QA/QC team at key points within the lidar workflow.

The following table describes Dewberry's standard editing and review guidelines for specific types of features, land covers, and lidar characteristics.

Category	Editing Guideline	Additional Comments
No Data Vaida	The SOW for the project defines	No unacceptable voids are present in
No Data volus	unacceptable data voids as voids	this dataset.

Table	6.	Lidar	editing	and	review	guidelines.
-------	----	-------	---------	-----	--------	-------------

Category	Editing Guideline	Additional Comments
	greater than 4 x ANPS ² , or 1.96 m ² , that	
	are not related to water bodies or other	
	areas of low near-infrared reflectivity	
	and are not appropriately filled by data	
	from an adjacent swath. The LAS files	
	were used to produce density grids	
	based on Class 2 (ground) points for	
	review.	
	Artifacts in the point cloud are typically	
	caused by misclassification of points in	
	vegetation or man-made structures as	
	ground. Low-lying vegetation and	
	buildings are difficult for automated	
	grounding algorithms to differentiate	
	and often must be manually removed	
Artifacts	from the ground class. Dewberry	None
	identified these features during lidar	
	editing and reclassified them to Class 1	
	(unassigned). Artifacts up to 0.3 m	
	above the true ground surface may	
	have been left as Class 2 because they	
	do not negatively impact the usability of	
	the dataset.	
	The DEM surface models are created	
	from TINs or terrains. TIN and terrain	
	models create continuous surfaces from	
	the input points, interpolating surfaces	
	beneath bridges where no lidar data	
	was acquired. The surface model in	
	these areas tend to be less detailed	
	Bridge saddles may be created where	There are bridge saddle breaklines in
Bridge Saddles	the surface interpolates between high	the breakline adb
	and low ground points. Dewberry	the breaking gab.
	identifies problems arising from bridge	
	removal and resolves them by	
	reclassifying misclassified around points	
	to class 1 and/or adding bridge saddle	
	breaklines where applicable due to	
	internolation	
	It is Dewberry's standard operating	
Culverts and Bridges	procedure to leave culverts in the bare	None

Category	Editing Guideline	Additional Comments
	earth surface model and remove bridges from the model. In instances where it is difficult to determine whether the feature was a culvert or bridge, Dewberry errs on the side of culverts, especially if the feature is on a secondary or tertiary road.	
In-Ground Structures	In-ground structures typically occur on military bases and at facilities designed for munitions testing and storage. When present, Dewberry identifies these structures in the project and includes them in the ground classification.	No in-ground structures were present in this dataset.
Dirt Mounds	Irregularities in the natural ground, including dirt piles and boulders, are common and may be misinterpreted as artifacts that should be removed. To verify their inclusion in the ground class, Dewberry checked the features for any points above or below the surface that might indicate vegetation or lidar penetration and reviews ancillary layers in these locations as well. Whenever determined to be natural or ground features, Dewberry edits the features to class 2 (ground)	No dirt mounds or other irregularities in the natural ground were present in this dataset.
Irrigated Agricultural Areas	Per project specifications, Dewberry collected all areas of standing water greater than or equal to 2 acres, including areas of standing water within agricultural areas and not within wetland or defined waterbody, hydrographic, or tidal boundaries. Areas of standing water that did not meet the 2 acre size criteria were not collected.	Standing water within agricultural areas was not present in this dataset.
Wetland/Marsh Areas	Vegetated areas within wetlands/marsh areas are not considered water bodies and are not hydroflattened in the final DEMs. However, it is sometimes difficult to determine true ground in low wet areas due to low reflectivity. In these	No marshes were present in this dataset.

Category	Editing Guideline	Additional Comments
	areas, the lowest points available are used to represent ground, resulting in a sparse and variable ground surface. Open water within wetland/marsh areas greater than or equal to 2 acres is collected as a waterbody.	
Flight Line Ridges	Flight line ridges occur when there is a difference in elevation between adjacent flight lines or swaths. If ridges are visible in the final DEMs, Dewberry ensures that any ridges remaining after editing and QA/QC are within project relative accuracy specifications.	No flight line ridges were present in this dataset.
Temporal Changes	If temporal differences are present in the dataset, the offsets are identified with a shapefile.	No temporal offsets were present in this dataset.
Low NIR Reflectivity	Some materials, such as asphalt, tars, and other petroleum-based products, have low NIR reflectivity. Large-scale applications of these products, including roadways and roofing, may have diminished to absent lidar returns. USGS LBS allow for this characteristic of lidar but if low NIR reflectivity is causing voids in the final bare earth surface, these locations are identified with a shapefile.	No low NIR reflectivity were present in this dataset.
Laser Shadowing	Shadows in the LAS can be caused when solid features like trees or buildings obstruct the lidar pulse, preventing data collection on one or more sides of these features. First return data is typically collected on the side of the feature facing toward the incident angle of transmission (toward the sensor), while the opposite side is not collected because the feature itself blocks the incoming laser pulses. Laser shadowing typically occurs in areas of single swath coverage because data is only collected from one direction. It can	2 Voids present in the dataset caused by laser shadowing

11/16/2021:

Category	Editing Guideline	Additional Comments
	be more pronounced at the outer edges	
	of the single coverage area where	
	higher scanning angles correspond to	
	more area obstructed by features.	
	Building shadow in particular can be	
	more pronounced in urban areas where	
	structures are taller. Data are edited to	
	the fullest extent possible within the	
	point cloud. As long as data meet other	
	project requirements (density, spatial	
	distribution, etc.), no additional action	
	taken.	

3.2.2 Formatting Review

After the final QA/QC was performed and all corrections were applied to the dataset, all lidar files were updated to the final format requirements and the final formatting, header information, point data records, and variable length records were verified using proprietary tools. The table below lists the primary lidar header fields that are updated and verified.

Parameter	Project Specification	Pass/Fail
LAS Version	1.4	Pass
Point Data Record Format	6	Pass
Horizontal Coordinate Reference System	NAD83 (2011) UTM Zone 12N, meters in WKT format	Pass
Vertical Coordinate Referenœ System	NAVD88 (Geoid 18), meters in WKT format	Pass
Global Encoder Bit	17 for adjusted GPS time	Pass
TimeStamp	Adjusted GPS time (unique timestamps)	Pass
System ID	Sensor used to acquire data	Pass
Multiple Returns	The sensor shall be able to collect multiple returns per pulse and the return numbers are recorded	Pass
Intensity	16-bit intensity values recorded for each pulse	Pass
Classification	Class 1: Unclassified Class 2: Ground	Pass

Table	7.	Classified	lidar	formatting	parameters.
Table		olassilica	nau	ronnatting	parameters.

11/16/2021:

Parameter	Project Specification	Pass/Fail
	Class 7: Low Noise (Withheld bit	
	applied)	
	Class 9: Water	
	Class 17: Bridge Decks	
	Class 18: High Noise (Withheld bit	
	applied)	
	Class 20: Ignored Ground	
	Withheld bits set: Class 1 Withheld	
Withheld Points	set in overlapping flightlines, and all	Pass
	Class 7 & 18 set as Withheld	
Scan Angle	Recorded for each pulse	Pass
XYZ Coordinates	Recorded for each pulse	Pass

4. BREAKLINE PRODUCTION & QUALITATIVE ASSESSMENT

4.1 Breakline Production Methodology

Breaklines were manually digitized within an Esri software environment, using full point cloud intensity imagery, bare earth terrains and DEMs, the lidar point cloud, and ancillary ortho imagery where appropriate.

When data characteristics are suitable, Dewberry may use eCognition software to generate initial, automated water polygons, which are then manually reviewed and refined where necessary.

Breakline features with static or semi-static elevations (ponds and lakes, bridge saddles, and soft feature breaklines) were converted to 3D breaklines within the Esri environment where breaklines were draped on terrains or the las point cloud. Subsequent processing was done on ponds/lakes to identify the minimum z-values within these features and re-applied that minimum elevation to all vertices of the breakline feature.

Linear hydrographic features show downhill flow and maintain monotonicity. These breaklines underwent conflation by using a combination of Esri and LP360 software. Centerlines were draped on terrains, enforced for monotonicity, and those elevations were then assigned to the bank lines for the final river/stream z-values.

Tidal breaklines may have been converted to 3D using either method, dependent on the variables within each dataset.

4.1.1 Breakline Collection Requirements

The table below outlines breakline collection requirements for this dataset.

11/16/2021:

Table 8. Breakline collection requirements.

Parameter	Project Specification	Additional Comments
Ponds and Lakes	Breaklines are collected in all inland ponds and lakes ~2 acres or greater. These features are flat and level water bodies at a single elevation for each vertex along the bank.	None
Rivers and Streams	Breaklines are collected for all streams and rivers ~30meter nominal width or wider. These features are flat and level bank to bank, gradient will follow the surrounding terrain and the water surface will be at or below the surrounding terrain. Streams/river channels will break at culvert locations however not at elevated bridge locations.	Rivers and streams wider than ~30 m were not present in this dataset so no breaklines were collected.
Tidal	Breaklines are collected as polygon features depicting water bodies such as oceans, seas, gulfs, bays, inlets, slat marshes, very large lakes, etc. Includes any significant water body that is affected by tidal variations. Tidal variations over the course of collection, and between different collections, can result in discontinuities along shorelines. This is considered normal and should be retained. Variations in water surface elevation resulting from tidal variations during collection should not be removed or adjusted. Features should be captured as a dual line with one line on each bank. Each vertex placed shall maintain vertical integrity. Parallel points on opposite banks of the tidal waters must be captured at the same elevation to ensure flatness of the water feature. The entire water surface edge is at or below the immediate surrounding terrain.	No tidally influenced features are present in this dataset so no tidal breaklines were collected.

11/16/2021:

Islands	Donuts will exist where there are islands greater than 1 acre in size within a hydro feature.	No islands were present in this dataset so no breaklines were collected.
Bridge Saddle Breaklines	Bridge Saddle Breaklines are collected where bridge abutments were interpolated after bridge removal causing saddle artifacts.	Bridge Saddle Breaklines are in the final breakline GDB.
Soft Features	Soft Feature Breaklines are collected where additional enforcement of the modeled bare earth terrain was required, typically on hydrographic control structures or vertical waterfalls, due to large vertical elevation differences within a short linear distance on a hydrographic features.	Soft features were not applicable to this dataset so no breaklines were collected.

4.2 Breakline Qualitative Assessment

Dewberry performed both manual and automated checks on the collected breaklines. Breaklines underwent peer reviews, breakline lead reviews (senior level analysts), and final reviews by an independent QA/QC team. The table below outlines high level steps verified for every breakline dataset.

Parameter	Requirement	Pass/Fail
Collection	Collect breaklines according to project specifications using lidar-derived data, including intensity imagery, bare earth ground models, density models, slope models, and terrains.	Pass
Placement	Place the breakline inside or seaward of the shoreline by 1-2 x NPS in areas of heavy vegetation or where the exact shoreline is hard to delineate.	Pass
Completeness	Perform a completeness check, breakline variance check, and all automated checks on each block before designating that block complete.	Pass
Merged Dataset	Merge completed production blocks. Ensure correct horizontal and vertical snapping between all production blocks. Confirm correct horizontal placement of breaklines.	Pass

Table 9. Breakline verification steps	Table
---------------------------------------	-------

140G0220F0147

Merged Dataset Completeness Check	Check entire dataset for features that were not captured but that meet baseline specifications or other metrics for capture. Features should be collected consistently across tile boundaries.	Pass
EdgeMatch	Ensure breaklines are correctly edge-matched to adjoining datasets. Check completion type, attribute coding, and horizontal placement.	Pass
Vertical Consistency	Waterbodies shall maintain a constant elevation at all vertices Vertices should not have excessive min or max z-values when compared to adjacent vertices Intersecting features should maintain connectivity in X, Y, Z planes Dual line streams shall have the same elevation at any given cross-section of the stream	Pass
Vertical Variance	Using a terrain created from lidar ground (class 2, 8, and 20 as applicable) and water points (class 9) to compare breakline Z values to interpolated lidar elevations to ensure there are no unacceptable discrepancies.	Pass
Monotonicity	Dual line streams generally maintain a consistent down-hill flow and collected in the direction of flow – some natural exceptions are allowed	Pass
Тороlоду	Features must not overlap or have gaps Features must not have unnecessary dangles or boundaries	Pass
Hydro-classification	The water classification routine selected ground points within the breakline polygons and automatically classified them as class 9, water. During this water classification routine, points that were within 1 NPS distance or less of the hydrographic feature boundaries were moved to class 20, ignored ground, to avoid hydroflattening artifacts along the edges of hydro features.	Pass
Hydro-flattening	Perform hydro-flattening and hydro- enforcement checks. Tidal waters should preserve as much ground as possible and can be non-monotonic.	Pass

11/16/2021:

5. DEM PRODUCTION & QUALITATIVE ASSESSMENT

5.1 DEM Production Methodology

Dewberry utilized LP360 to generate DEM products and both ArcGIS and Global Mapper for QA/QC.

The final classified lidar points in all bare earth classes were loaded into LP360 along with the final 3D breaklines and the project tile grid. A raster was generated from the lidar data with breaklines enforced and clipped to the project tile grid. The DEM was reviewed for any issues requiring corrections, including remaining lidar misclassifications, erroneous breakline elevations, incorrect or incomplete hydro-flattening or hydro-enforcement, and processing artifacts. The formatting of the DEM tiles was verified before the tiles were loaded into Global Mapper to ensure that there was no missing or corrupt data and that the DEMs matched seamlessly across tile boundaries. A final qualitative review was then conducted by an independent review department within Dewberry.

5.2 DEM Qualitative Assessment

Dewberry performed a comprehensive qualitative assessment of the bare earth DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. Dewberry conducted the review in ArcGIS using a hillshade model of the full dataset with a partially transparent colorized elevation model overlaid. The tiled DEMs were reviewed at a scale of 1:5,000 to look for artifacts caused by the DEM generation process and to verify correct and complete hydro-flattening and hydro-enforcement. Upon correction of any outstanding issues, the DEM data was loaded into Global Mapper for its second review and to verify corrections.

The table below outlines high level steps verified for every DEM dataset.

Parameter	Requirement	Pass/Fail
Digital Elevation Model (DEM) of bare-earth w/breaklines	DEM of bare-earth terrain surface (1 meter) is created from lidar ground points and breaklines. DEMs are tiled without overlaps or gaps, show no edge artifact or mismatch, DEM deliverables are .tif format	Pass
DEM Compression	DEMs are not compressed	Pass
DEM NoData	Areas outside survey boundary are coded as NoData. Internal voids (e.g., open water areas) are coded as NoData (-999999)	Pass
Hydro-flattening	Ensure DEMs were hydro-flattened or hydro-enforced as required by project specifications	Pass

Table 10. DEM verification steps.

140G0220F0147

11/16/2021:

Monotonicity	Verify monotonicity of all linear hydrographic features	Pass
Breakline Elevations	Ensure adherence of breaklines to bare- earth surface elevations, i.e., no floating or digging hydrographic feature	Pass
Bridge Removal	Verify removal of bridges from bare- earth DEMs and no saddles present	Pass
DEM Artifacts	Correct any issues in the lidar classification that were visually expressed in the DEMs. Reprocess the DEMs following lidar corrections.	Pass
DEM Tiles	Split the DEMs into tiles according to the project tiling scheme	Pass
DEM Formatting	Verify all properties of the tiled DEMs, including coordinate reference system information, cell size, cell extents, and that compression is not applied to the tiled DEMs	Pass
DEM Extents	Load all tiled DEMs into Global Mapper and verify complete coverage within the (buffered) project boundary and verify that no tiles are corrupt	Pass

6. DERIVATIVE LIDAR PRODUCTS

USGS required several derivative lidar products to be created. Each type of derived product is described below.

6.1 Swath Separation Images

Swath separation images representing interswath alignment have been delivered. These images were created from the last return of all points except points classified as noise or flagged as withheld. The images are in .TIF format. The swath separation images are symbolized by the following ranges:

- 0-8 cm: Green
- 8-16 cm: Yellow
- >16 cm: Red

11/16/2021:

6.2 Interswath and Intraswath Polygons

6.2.1 Interswath Accuracy

The Interswath accuracy, or overlap consistency, measures the variation in the lidar data within the swath overlap. Interswath accuracy measures the quality of the calibration or boresight adjustment of the data in each lift. Per USGS specifications, overlap consistency was assessed at multiple locations within overlap in non-vegetated areas of only single returns. As with precision, the interswath consistency was reported by way of a polygon shapefile delineating the sample areas checked and attributed with the following and using the cells within each polygon as sample values:

- Minimum difference in the sample area (numeric)
- Maximum difference in the sample area (numeric)
- RMSDz (Root Mean Square Difference in the vertical/z direction) of the sample area (numeric). Intraswath Accuracy

6.2.2 Intraswath Accuracy

The intraswath accuracy, or the precision of lidar, measures variations on a surface expected to be flat and without variation. Precision is evaluated to confirm that the lidar system is performing properly and without gross internal error that may not be otherwise apparent. To measure the precision of a lidar dataset, level or flat surfaces were assessed. Swath data were assessed using only first returns in non-vegetated areas.

Precision was reported by way of a polygon shapefile delineating the sample areas checked and attributed with the following and using the cells within each polygon as sample values:

- Minimum slope-corrected range (numeric)
- Maximum slope-corrected range (numeric)
- RMSDz of the slope-corrected range (numeric).