Airborne Topographic LiDAR Report

Wisconsin WROC / 3DEP 2016-17 LiDAR Project Report – Washburn County

October 31, 2016

Prime contractor: Ayres Associates Inc Airborne LiDAR Acquisition Completed by Quantum Spatial, Inc.

Contact: Ayres Associates, Geospatial Division 5201 East Terrace Drive, Suite 200, Madison, WI, 53718 (608) 443-1200

TABLE OF CONTENTS

1.	Summary / Scope	3
	1.1. Summary	
	1.2. Scope	3
	1.3. Coverage	3
	1.4. Duration	3
	1.5. Issues	4
	1.6. Deliverables	4
2.	Planning / Equipment	6
	2.1. Flight Planning	6
	2.2. LiDAR Sensor	6
	2.3. Aircraft	9
	2.4. Base Stations	10
	2.5. Time Period	10
3.	Processing Summary	12
	3.1. Flight Logs	
	3.2. LiDAR Processing.	
4.	Project Coverage Verification	
5.	Ground Control and Checkpoint Collection	16
	5.1. Calibration Control Points	

LIST OF FIGURES

Figure 1.	Project Boundary
Figure 2.	Planned Flight Lines
Figure 3.	Optech Orion H300 LiDAR Sensor
Figure 4.	Some of Quantum Spatial's Aircraft
Figure 5.	Base Station Locations
Figure 6.	Flightline Swath LAS File Coverage
Figure 7.	Calibration Point Locations

LIST OF TABLES

Originally Planned LiDAR Specifications Table 1. LiDAR System Specifications Table 2:

Table 3. Base Station Locations Table 4. Calibration Control Report

LIST OF APPENDICES

Appendix A. GPS / IMU Statistics, Flight Logs, and Base Station Logs

1. Summary / Scope

1.1. Summary

This report contains a summary of the Washburn County portion of the Wisconsin WROC / 3DEP LiDAR 2016-17 acquisition task order, issued by Ayres under their Task Order 20 dated March 7, 2016. The task order yielded a project area covering approximately 860 total square miles over Washburn County, Wisconsin. The intent of this document is only to provide specific validation information for the data acquisition/collection, processing, and production of deliverables completed as specified in the task order.

1.2. Scope

Aerial topographic LiDAR was acquired using state of the art technology along with the necessary surveyed ground control points (GCPs) and airborne GPS and inertial navigation systems. The aerial data collection was designed with the following specifications listed in Table 1 below.

Table 1. Originally Planned LiDAR Specifications

Density	Flight Altitude (AGL)	Field of View	Minimum Side Overlap	RMSEz
$\geq 2 \text{ pts} / m_2$	1,700 m	38°	30%	≤ 10 cm

1.3. Coverage

The LiDAR project boundary covers approximately 860 square miles over Washburn County in northwestern Wisconsin. LiDAR extents are shown in Figure 1. A buffer of 100 meters was created to meet task order specifications.

1.4. Duration

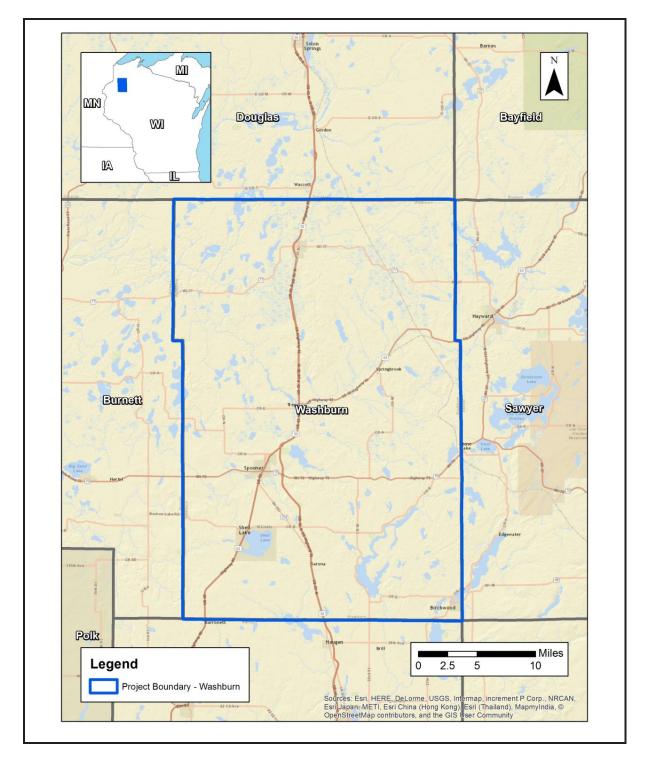
LiDAR data was acquired from April 12, 2016 to April 14, 2016 in four total lifts. See "Section: 2.5. Time Period" for more details.

1.5. **Issues**

There were no issues to report with this project.

1.6. Deliverables

The following products were produced and delivered:


- Flight plans in digital format
- As-flown flight lines in Esri shapefile format
- Flight logs and notes
- Flight Quality Control Report
- WISCORS and supplemental base station data and OPUS reports
- LiDAR point cloud data, tiled, in LAS 1.4 format
- LiDAR point cloud data, in raw swaths, in LAS 1.4 format
- SBET/ABGPS/IMU materials and documentation
- Trajectories in .TRJ format
- All Flight mission parameters appropriate for inclusion in FGDC/USGS compliant metadata

All geospatial deliverables were produced in NAD83 (2011) Washburn County Coordinate System (WISCRS), US survey feet; NAVD88 (Geoid 12A), US survey feet. All tiled deliverables were produced with a tile size of 4,500 feet x 4,500 feet. The tile index consists of 1,245 tiles.

Figure 1. Project Boundary

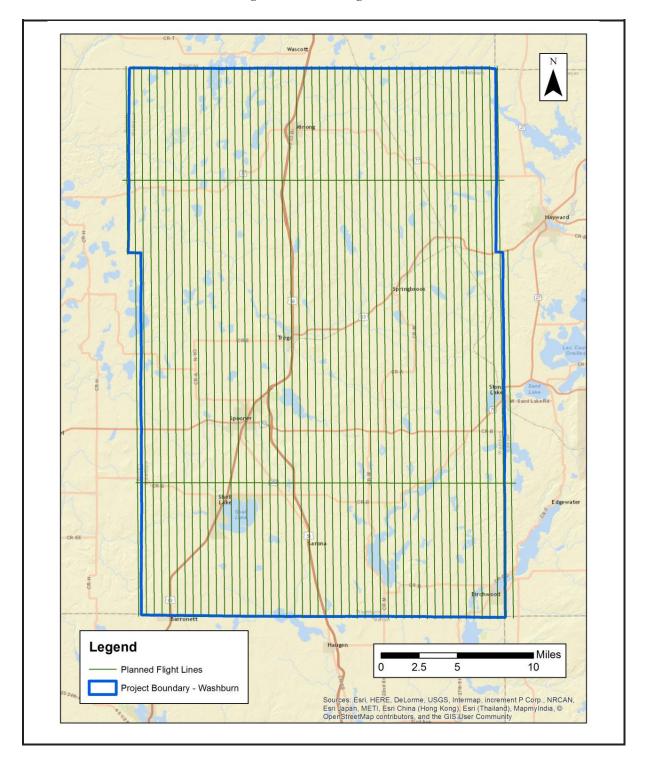
2. Planning / Equipment

2.1. Flight Planning

Flight planning was based on the unique project requirements and characteristics of the project site. The basis of planning included: required accuracies, type of development, amount / type of vegetation within project area, required data posting, and potential altitude restrictions for flights in project vicinity.

Detailed project flight planning calculations were performed for the project using Optech MissionNAV planning software. The entire target area was comprised of 53 planned flight lines measuring approximately 1,944.45 total flight line miles (Figure 2).

2.2. LiDAR Sensor


Quantum Spatial utilized one Optech Orion H300 LiDAR sensor (Figure 3), serial number 309, during the project. This system is capable of collecting data at a maximum frequency of 300 kHz, which affords elevation data collection of up to 300,000 points per second. This system utilizes a Multi-Pulse in the Air option (MPIA). This sensor is also equipped with the ability to measure up to 5 returns per outgoing pulse from the laser and these come in the form of 1st, 2nd, 3rd, 4th, and last returns. The intensity of the first four returns is also captured during aerial acquisition.

A brief summary of the aerial acquisition parameters for the project are shown in the LiDAR System Specifications in Table 2.

Figure 2. Planned Flight Lines

Table 2: LiDAR System Specifications

Terrain and Aircraft	Flying Height	1,700 m	
Scanner Scanner	Recommended Ground Speed	140 kts	
	Field of View	38°	
Scanner	Scan Rate Setting Used	52 Hz	
Laser	Laser Pulse Rate Used	225 kHz	
Lasei	Multi Pulse in Air Mode	Enabled	
Commen	Full Swath Width	1,170.71 m	
Coverage	Line Spacing	824 m	
Point Spacing and Density Average Point Density		2.19 pts / m2	

Figure 3. Optech Orion H300 LiDAR Sensor

2.3. Aircraft

All flights for the project were accomplished through the use of a customized Cessna 402 (twin-piston), Tail Number N2JJ. This aircraft provided an ideal, stable aerial base for LiDAR and orthoimagery acquisition. This aerial platform has relatively fast cruise speeds which are beneficial for project mobilization / demobilization while maintaining relatively slow stall speeds which proved ideal for collection of high-density, consistent data posting using state-ofthe-art Optech LiDAR systems. Some of Quantum Spatial's operating aircraft can be seen in Figure 4 below.

Figure 4. Some of Quantum Spatial's Aircraft

2.4. Base Stations

GPS base stations were utilized during all phases of flight (Table 3). The base station locations were verified using NGS OPUS service and subsequent surveys. Base station locations are depicted in Figure 5. Data sheets, graphical depiction of base station locations or log sheets used during station occupation are available in Appendix A.

Table 3. Base Station Locations

Base Station	Latitude	Longitude	Ellipsoid Height (m)	
2821	46° 1' 28.26036"	91° 26' 48.97963"	339.262	

2.5. Time Period

Project specific flights were conducted over one day. Four sorties, or aircraft lifts were completed. Accomplished sorties are listed below.

- Apr 12, 2016-A (N2JJ, SN309)
- Apr 12, 2016-B (N2JJ, SN309)
- Apr 13, 2016-A (N2JJ, SN309)
- Apr 14, 2016-A (N2JJ, SN309)

Legend Miles 2.5 5 10 Base Station Project Boundary - Washburn Sources-Asrr, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community

Figure 5. Base Station Locations

3. Processing Summary

3.1. Flight Logs

Flight logs were completed by LIDAR sensor technicians for each mission during acquisition. These logs depict a variety of information, including:

- Job / Project #
- Flight Date / Lift Number
- FOV (Field of View)
- Scan Rate (HZ)
- Pulse Rate Frequency (Hz)
- Ground Speed
- Altitude
- Base Station
- PDOP avoidance times
- Flight Line #
- Flight Line Start and Stop Times
- Flight Line Altitude (AMSL)
- Heading
- Speed
- Returns
- Crab

Notes: (Visibility, winds, ride, weather, temperature, dew point, pressure, etc). Project specific flight logs for each sortie are available in Appendix A.

3.2. LiDAR Processing

Applanix + POSPac Mobile Mapping Suite software was used for post-processing of airborne GPS and inertial data (IMU), which is critical to the positioning and orientation of the LiDAR sensor during all flights. POSPac combines aircraft raw trajectory data with stationary GPS base station data yielding a "Smoothed Best Estimate Trajectory (SBET) necessary for additional post processing software to develop the resulting geo-referenced point cloud from the LiDAR missions.

During the sensor trajectory processing (combining GPS & IMU datasets) certain statistical graphs and tables are generated within the Applanix POSPac processing environment which are commonly used as indicators of processing stability and accuracy. This data for analysis include: Max horizontal / vertical GPS variance, separation plot, altitude plot, PDOP plot, base station baseline length, processing mode, number of satellite vehicles, and mission trajectory. All relevant graphs produced in the POSPac processing environment for each sortic during the project mobilization are available in Appendix A.

The generated point cloud is the mathematical three dimensional composite of all returns from all laser pulses as determined from the aerial mission. Laser point data are imported into TerraScan and a manual calibration is performed to assess the system offsets for pitch, roll, heading and scale. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface model in which the above-ground features are removed from the data set. Point clouds were created using the Optech DashMap Post Processor software. GeoCue distributive processing software was used in the creation of some files needed in downstream processing, as well as in the tiling of the dataset into more manageable file sizes. TerraScan and TerraModeler software packages were then used for the automated data classification, manual cleanup, and bare earth generation. Project specific macros were developed to classify the ground and remove side overlap between parallel flight lines.

All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Global Mapper was used as a final check of the dataset. GeoCue was used to create the deliverable industry-standard LAS files for the All Point Cloud Data.

4. Project Coverage Verification

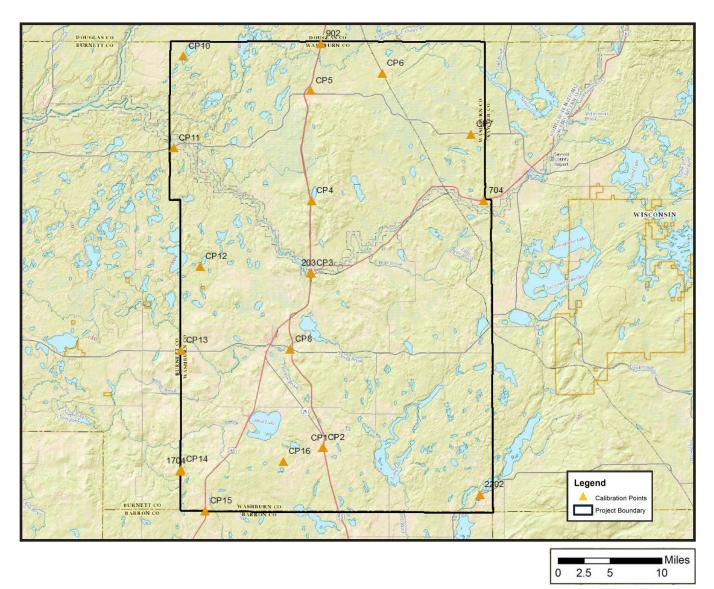
Coverage verification was performed by comparing coverage of processed .LAS files captured during project collection to generate project shape files depicting boundaries of specified project areas. Please refer to Figure 6.

D C В Legend Mission A: Apr 12, 2016-A (N2JJ, SN309) B: Apr 12, 2016-B (N2JJ, SN309) C: Apr 13, 2016-A (N2JJ, SN309) Miles 2.5 5 10 D: Apr 14, 2016-A (N2JJ, SN309) Project Boundary - Washburn Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN,** Esri Japan, METI. Esri China (Hong, Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community

Figure 6. Flightline Swath LAS File Coverage

5. Ground Control and Checkpoint Collection

Quantum Spatial utilized 20 ground control (calibration) points collected by Ayres Associates as an independent test of the accuracy of this project. In this document, horizontal coordinates for ground control and QA points for all LiDAR classes are reported in NAD83 (2011) Washburn County Coordinate System (WISCRS), US survey feet; NAVD88 (Geoid 12A), US survey feet.


5.1. Calibration Control Points

TerraScan was used to perform a quality assurance check for each of the LiDAR bare earth calibration points. Note that these results of the surface calibration are not an independent assessment of the accuracy of these project deliverables, but the statistical results do provide additional feedback as to the overall quality of the elevation surface. See Figure 7 and Table 4.

Figure 7. Calibration Point Locations

Table 4. Calibration Point Report Units = US Survey Feet

Number	Easting	Northing	Known Z	Laser Z	Dz
203	756961.910	596702.810	1092.270	1092.64	+0.370
704	826986.320	625849.240	1182.240	1182.47	+0.230
902	761099.240	689129.600	1071.520	1071.64	+0.120
1704	704521.090	516713.080	1363.420	1363.46	+0.040
2202	825312.800	507167.820	1264.630	1264.88	+0.250
CP1	761809.140	526155.800	1288.430	1288.3	-0.130
CP2	762041.010	526165.550	1290.030	1290.07	+0.040
CP3	757261.450	596624.360	1088.540	1088.88	+0.340
CP4	757374.720	625844.320	1112.300	1112.26	-0.040
CP5	756984.930	670227.130	1050.720	1050.62	-0.100
CP6	785879.810	677212.310	1091.410	1091.55	+0.140
CP7	821718.840	652548.090	1214.420	1214.71	+0.290
CP8	748814.110	565926.240	1098.320	1098.08	-0.240
CP10	705716.110	684061.660	1025.720	1025.68	-0.040
CP11	701819.280	647112.110	949.820	949.67	-0.150
CP12	712436.730	599195.180	1020.810	1020.77	-0.040
CP13	704596.660	565446.070	1122.710	1122.52	-0.190
CP14	704585.930	517399.240	1342.750	1342.44	-0.310
CP15	714421.190	500622.700	1364.740	1364.51	-0.230
CP16	746126.040	520677.230	1281.580	1281.27	-0.310
Average Dz		+0.002 ft			
Minimum Dz		-0.310 ft			
Maximum Dz		+0.370 ft			
Average Magnitude		0.180 ft			
Root Mean Square		0.210 ft			