Airborne Topographic Lidar Report Wisconsin WROC – 3DEP Clark County Lidar 2018

Prime contractor: Ayres Associates Airborne lidar acquisition completed by Quantum Spatial

TABLE OF CONTENTS

1. Summary / Scope	Page 1
1.1 Summary	
1.2 Scope	
1.3 Coverage	
1.4 Duration	
1.5 Issues	Page 1
1.6 Deliverables	Page 2
2. Planning / Equipment	Page 4
2.1 Flight Planning	
2.2 Lidar Sensor	
2.3 Aircraft	
2.4 Time Period	Page 8
3. Processing Summary	Page 9
3.1 Lidar Processing	
4. Project Coverage Verification	Page 11
5. Ground Control and Check Point Collection	Page 13
5.1 Calibration Control Point Testing	Page 13

LIST OF FIGURES

Figure 1. Project Boundary	Page 3
Figure 2. Planned Flight Lines	
Figure 3. The Optech Orion H300 Lidar Sensor	Page 6
Figure 4. Some of Quantum Spatial's Planes	
Figure 5. Lidar Tile Layout	_
Figure 6. Lidar Flightline Coverage	Page 12
Figure 7. Calibration Control Point Locations	Page 14
LIST OF TABLES	
Table 1. Originally Planned Lidar Specifications	Page 1
Table 2. Lidar System Specifications	Page 6
Table 3. Calibration Control Point Report	Page 15

1. SUMMARY / SCOPE

1.1. SUMMARY

This report contains a summary of the Wisconsin WROC – 3DEP 2018 Clark County lidar acquisition task order, issued by Clark County, Wisconsin. The task order yielded a project area covering 1,228 square miles over Clark County, Wisconsin. The intent of this document is only to provide specific validation information for the data acquisition/collection, processing, and production of deliverables completed as specified in the task order.

1.2. SCOPE

Aerial topographic lidar was acquired using state-of-the-art technology, along with the necessary surveyed ground control points (GCPs) and airborne GPS and inertial navigation systems. The aerial data collection was designed with the following specifications listed in Table 1 below.

Table 1. Originally Planned Lidar Specifications

AVERAGE POINT DENSITY	FLIGHT ALTITUDE (AGL)	FIELD OF VIEW	MINIMUM SIDE OVERLAP	RMSEz
2 pts / m ²	2000 m	36°	30%	<u><</u> 10 cm

1.3. COVERAGE

The project boundary covers 1,228 square miles and encompasses Clark County, Wisconsin. A buffer of 100 meters was created to meet task order specifications. Project extents are shown in Figure 1.

1.4. DURATION

Lidar data was acquired from May 5, 2018, to May 12, 2018, in nine total lifts. See "Section: 2.4. Time Period" for more details.

1.5. ISSUES

There were no major issues to report for this project.

1.6. DELIVERABLES

The following products were produced and delivered:

- Lidar point cloud data, tiled, in LAS 1.4 format
- Flight logs and GPS/IMU statistics in .PDF format

All geospatial deliverables were produced with a horizontal datum/projection of Clark County Coordinate System (WISCRS), NAD83 (2011) and a vertical datum/projection of NAVD88 (Geoid 12B), US Survey Feet. All tiled deliverables have a tile size of 4,500-ft x 4,500-ft.

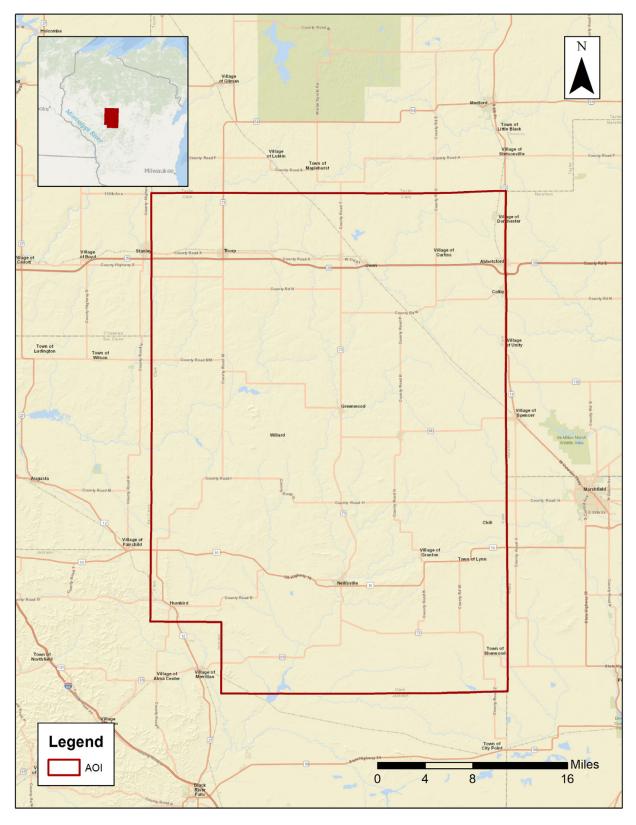


Figure 1. Project Boundary

2. PLANNING / EQUIPMENT

2.1. FLIGHT PLANNING

Flight planning was based on the unique project requirements and characteristics of the project site. The basis of planning included: required accuracies, type of development, amount/type of vegetation within project area, required data posting, and potential altitude restrictions for flights in project vicinity.

Detailed project flight planning calculations were performed for the project using Optech FMS Planner planning software. The entire target area was comprised of 70 planned flight lines (Figure 2).

2.2. LIDAR SENSOR

Quantum Spatial used an Optech Orion H300 lidar sensor (Figure 3), serial number 329, during the project. These systems are capable of collecting data at a maximum frequency of 167 kHz, which affords elevation data collection of up to 167,000 points per second. These systems use a Multi-Pulse in the Air option (MPIA). These sensors are also equipped with the ability to measure up to 4 returns per outgoing pulse from the laser and these come in the form of first, second, third, and last returns. The intensity of the first four returns is also captured during aerial acquisition.

A brief summary of the aerial acquisition parameters for the project are shown in the Lidar System Specifications in Table 2.

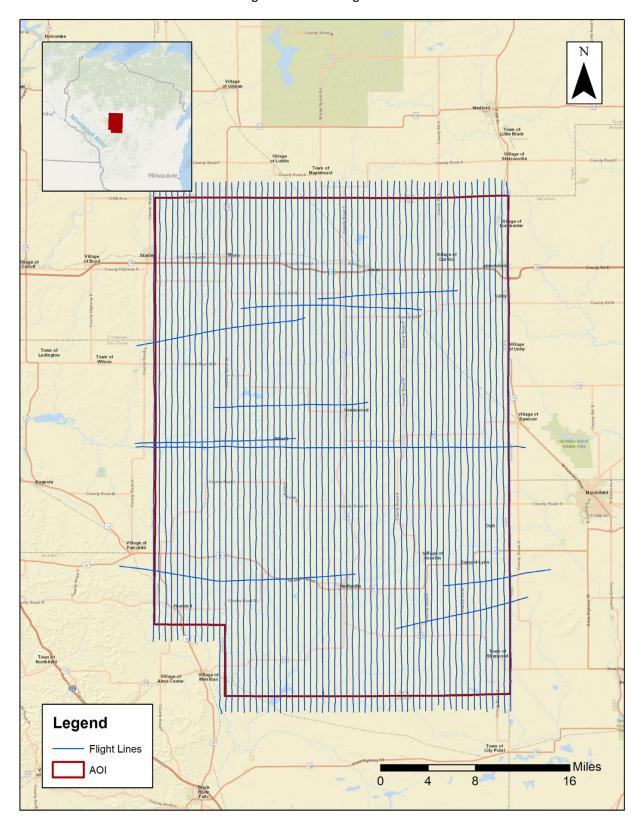


Figure 2. Planned Flight Lines

Table 2. Lidar System Specifications

Terrain and	Flying Height	2000 m	
Aircraft Scanner	Recommended	150 kts	
	Ground Speed		
	Field of View	36°	
Scanner	Scan Rate Setting Used	50 Hz	
	Laser Pulse Rate Used	300 kHz	
Laser	Multi Pulse in Air Mode	yes	
Q	Full Swath Width	1457 m	
Coverage	Line Spacing	728 m	
Point Spacing and	Average Point Spacing	0.71 m	
Density	Average Point Density	2 pts / m ²	

Figure 3. Optech Orion H300 Lidar Sensor

2.3. AIRCRAFT

All flights for the project were accomplished through the use of a customized plane. Plane type and tail numbers are listed below.

Lidar Collection Planes

Piper Navajo (twin-piston) PA31, Tail Number: N262AS

This aircraft provided an ideal, stable aerial base for lidar acquisition. This aerial platform has a relatively fast cruise speed, which is beneficial for project mobilization/demobilization while maintaining relatively slow stall speeds, which proved ideal for collection of high-density, consistent data posting using a state-of-the-art Optech Orion H300 lidar system. Some of Quantum Spatial's operating aircraft can be seen in Figure 4 below.

Figure 4. Some of Quantum Spatial's Planes

2.4. TIME PERIOD

Project-specific flights were conducted over one month. Nine aircraft lifts were completed. Accomplished lifts are listed below.

- May 5, 2018-A (N262AS, SN329)
- May 6, 2018-A (N262AS, SN329)
- May 7, 2018-A (N262AS, SN329)
- May 7, 2018-B (N262AS, SN329)
- May 8, 2018-A (N262AS, SN329)

- May 8, 2018-B (N262AS, SN329)
- May 10, 2018-A (N262AS, SN329)
- May 12, 2018-A (N262AS, SN329)
- May 12, 2018-B (N262AS, SN329)

3. PROCESSING SUMMARY

3.1. LIDAR PROCESSING

Applanix + POSPac Mobile Mapping Suite software was used for post-processing of airborne GPS and inertial data (IMU), which is critical to the positioning and orientation of the lidar sensor during all flights. Applanix + POSPac Mobile Mapping Suite combines aircraft raw trajectory data with stationary GPS base station data yielding a "Smoothed Best Estimate Trajectory" (SBET) necessary for additional post processing software to develop the resulting geo-referenced point cloud from the lidar missions.

During the sensor trajectory processing (combining GPS & IMU datasets) certain statistical graphs and tables are generated within the Applanix + POSPac Mobile Mapping Suite processing environment which are commonly used as indicators of processing stability and accuracy. This data for analysis include: max horizontal/vertical GPS variance, separation plot, altitude plot, PDOP plot, base station baseline length, processing mode, number of satellite vehicles, and mission trajectory.

The generated point cloud is the mathematical three dimensional composite of all returns from all laser pulses as determined from the aerial mission. Laser point data are imported into TerraScan and a manual calibration is performed to assess the system offsets for pitch, roll, heading and scale. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface model in which the above-ground features are removed from the data set. Point clouds were created using the Optech DashMap software. GeoCue distributive processing software was used in the creation of some files needed in downstream processing, as well as in the tiling of the dataset into more manageable file sizes. TerraScan and TerraModeler software packages were then used for the automated data classification, manual cleanup, and bare earth generation. Project specific macros were developed to classify the ground and remove side overlap between parallel flight lines.

All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Global Mapper was used as a final check of the bare earth dataset. GeoCue was used to create the deliverable industry-standard LAS files for both the All Point Cloud Data and the Bare Earth. In-house software was then used to perform final statistical analysis of the classes in the LAS files.

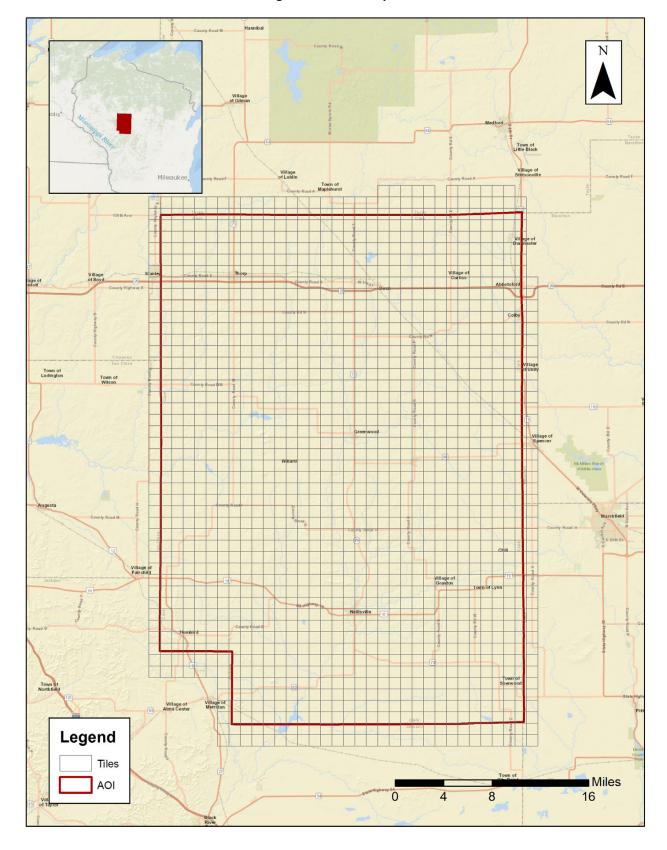


Figure 5. Lidar Tile Layout

4. PROJECT COVERAGE VERIFICATION

Coverage verification was performed by comparing coverage of processed .LAS files captured during project collection to generate project shape files depicting boundaries of specified project areas. Please refer to Figure 6.

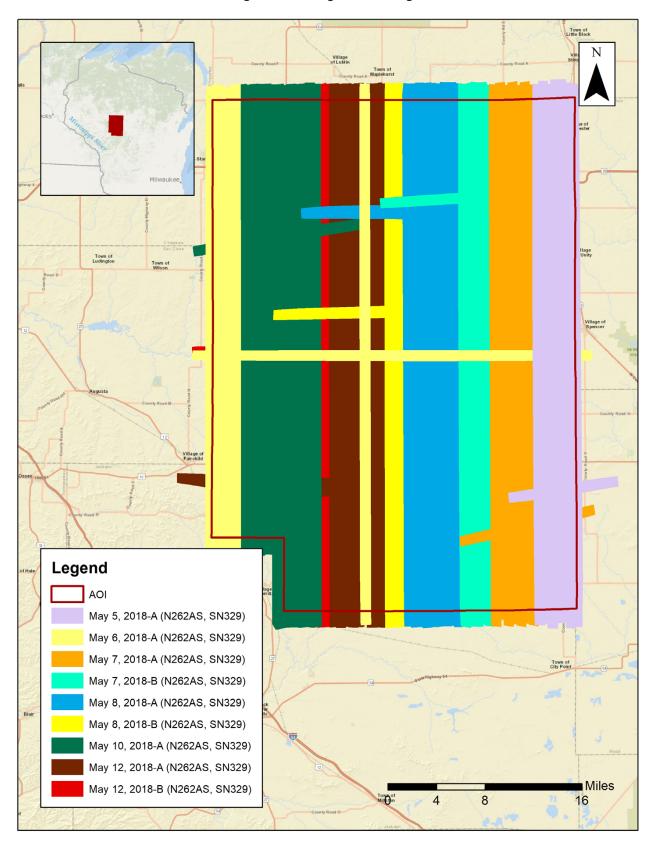


Figure 6. Lidar Flightline Coverage

5. GROUND CONTROL AND CHECK POINT COLLECTION

Quantum Spatial used 13 ground control (calibration) points collected by Ayres Associates, Inc as an independent test of the accuracy of this project.

5.1. CALIBRATION CONTROL POINT TESTING

Figure 7 shows the location of each bare earth calibration point for the project area. Table 3 depicts the Control Report for the lidar bare earth calibration points, as computed in TerraScan as a quality assurance check. Note that these results of the surface calibration are not an independent assessment of the accuracy of these project deliverables, but the statistical results do provide additional feedback as to the overall quality of the elevation surface.

Figure 7. Calibration Control Point Locations

Table 3. Calibration Control Point Report
Units = US survey feet

Number	EASTING	Northing	Known Z	LASER Z	Dz
101	757664.088	522934.007	1452.421	1452.610	+0.189
102V	601058.774	521842.101	1162.217	1162.230	+0.013
103V	753261.660	300715.509	1005.115	1005.330	+0.215
104	631652.231	299874.911	924.152	923.950	-0.202
105V	600804.383	405633.578	1000.064	1000.070	+0.006
106	757601.249	422150.800	1321.062	1321.150	+0.088
107	684595.962	424458.207	1174.102	1174.080	-0.022
108	719911.385	360082.440	1131.844	1131.820	-0.024
109	650264.594	354620.236	1013.264	1013.220	-0.044
110	714793.867	468908.546	1294.300	1294.220	-0.080
111	643053.294	479541.198	1223.118	1223.130	+0.012
112	684542.585	497058.236	1278.824	1278.870	+0.046
113	695158.440	327882.279	992.593	992.370	-0.223
	Average Dz	-0.002			
	Minimum Dz	-0.223			
	Maximum Dz	+0.215			
F	Root Mean Square	0.122			
	Std Deviation	0.127			