WY Yellowstone NP 2020 D20

Lidar Mapping Report Work Unit WY Yellowstone NP 1RF 2020 - WU225074

November 2022

 Contract #
 G16PC00022

 Task Order #
 140G0220F0199

Contractor Woolpert Project # 81200

Table of Contents

1. Overview	
About	
Purpose	
Specifications	
Spatial Reference	
Task Order Deliverab	les 4
2. Acquisition	
Flight Planning	
Lidar Sensor Informat	ion6
Lidar Sensor Settings.	
Timeline	
GNSS and IMU Equip	ment8
Acquisition Quality A	ssurance
3. Processing	
Processing Summary	
GPS-IMU Trajectory P	rocessing11
Geometric Calibratic	n12
Relative Accuracy: Ir	nterswath (Overlap) Consistency12
Relative Accuracy: Ir	ntraswath Precision
Lidar Data Classificat	ion 17
Hydrologic Flattening	J
Digital Elevation Moc	lel
Intensity Imagery	
Metadata	
4. Accuracy Assessme	nt19
Horizontal Accuracy	
Classified Lidar Point	Cloud Testing
Digital Elevation Mod	del Testing

Table of Contents

List of Figures

Figure 1-1. Project Area	3
Figure 2-1. Flight Coverage	. 9
Figure 3-1. Interswath Testing Locations	. 14
Figure 3-2. Intraswath Testing Locations	. 16

List of Tables

Table 1-1. Spatial Reference System	2
Table 1-2. Deliverables	
Table 2-1. Acquisition Requirements	6
Table 2-2. Leica Terrain Mapper Sensor Info	7
Table 2-3. Lidar Sensor Settings	
Table 2-4. GNSS Base Stations	
Table 3-1. Interswath Results	
Table 3-2. Intraswath Results	
Table 3-3. Classified Point Breakdown	17
Table 4-1. Classified Point Cloud Vertical Accuracy	19
Table 4-2. DEM Accuracy	

Appendix Documents

Appendix 1: Sensor Calibration Report	A1-1
Appendix 2: Flight Logs	A2-1
Appendix 3: GPS / IMU Graphics	A3-1

1. Overview

About

This project contains a comprehensive outline of the 140G0220F0199 WY Yellowstone NP2020 D20 task order issued by the United States Geological Survey's National Geospatial Technical Operations Center (USGS-NGTOC). This task order called for the acquisition and processing of QL2 and QL1 data over two areas of interest covering approximately 6,549 square miles in Yellowstone National Park and Park County, Montana.

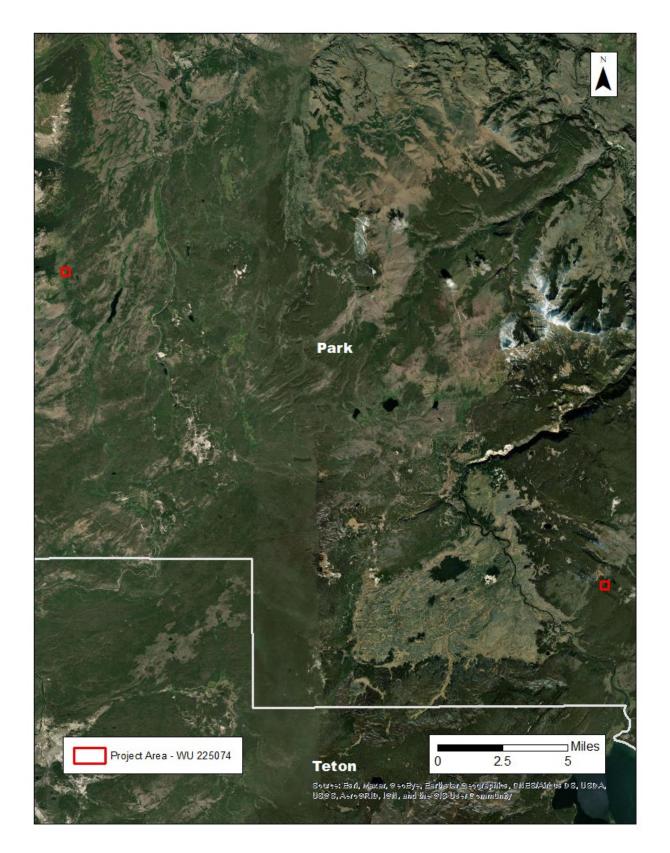
This report encompasses the WY_YellowstoneNP_1RF_2020 (WU225074) area of interest (Figure 1-1) and covers 0.2 square miles. This work unit was flown in summer 2022 to collect two small voids caused by vertical cliffs on some of the tallest peaks which were not collected during the initial acquisition and fall within the previously delivered WY_YellowstoneNP_2_2020. The Work Unit. The reflight data was tied into the previously collected data so the sections pertaining to interswath and intraswath accuracy reflect the results from WY_YellowstoneNP_2_2020. There are no hydro features within this work unit which required flattening.

Purpose

This project will support the 3DEP mission, the Natural Resources Conservation Service (NRCS) high resolution elevation enterprise program and the Federal Emergency Management Agency (FEMA) Risk Mapping Assessment and Planning (MAP) program.

Specifications

Data for this task order was acquired and produced to meet USGS Lidar Base Specification 2020 revision A standards and the American Society of Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data (Edition 1, Version 1.0).


Spatial Reference

Geospatial data products were produced using the following horizontal and vertical spatial data reference system information listed in Table 1-1.

Table 1-1. Spatial Reference System

Horizontal	EPSG Code	6341
	Datum	NAD83 (2011)
	Projection	UTM Zone 12
	Units	Meters
Vertical	Datum	NAVD88
	Geoid	GEOID18
	Units	Meters
	Height Type	Orthometric

Figure 1-1. Project Area - WU225074

Task Order Deliverables

All data products produced as part of this task order are listed in Table 1-2. All tiled deliverables had a tile size of f 500-meter x 500-meters. Tile names are derived from the US National Grid.

Example: 12TVP920865

This delivery's tiled dataset contains a total of 2 tiles.

Table 1-2.	Deliverables
------------	--------------

Lidar Data	
Classified lidar point cloud data	Tiles in LAS v1.4 format Classes • 1 – Processed, not Classified • 2 – Ground • 7 – Noise • 9 – Water • 17 – Bridge Decks • 18 – High Noise • 20 – Ignored Ground
Intensity imagery	0.5-meter pixel size, 8-bit gray-scale (linear rescaling from 16-bit intensity) GeoTIFF format

Table 1-2: Deliverables (continued)

Vertical Accuracy Data		
Calibration control points	Esri shapefile format delivered with WY_YellowstoneNP_2_2020	
NVA and VVA checkpoints	Esri shapefile format delivered with WY_YellowstoneNP_2_2020	
Interswath and intraswath test results	Esri shapefile format delivered with WY_YellowstoneNP_2_2020	
Spatial Metadata		
Tile index	Esri shapefile format	
Swath polygons	Georeferenced, polygonal representation of the detailed extents of each lidar swath Polygon feature class in an Esri file geodatabase	
Swath separation images	1-meter pixel size, 8-bit, GeoTIFF format	
Maximum surface height rasters	0.5-meter pixel size, 32-bit floating point, GeoTIFF format	
Metadata and Reports		
XML metadata	Deliverable-level FGDC CSDGM/USGS MetaParser Compliant metadata in XML format	
Lidar mapping report	Project report with ancillary data in PDF format	

2. Acquisition

Flight Planning

Acquisition was planned based on the task order specifications listed in Table 2-1.

Table 2-1. Acquisition Requirements

Specification	Target	
Resolution	 8 points per square meter 0.35-meter nominal point spacing 	
Overlap	At contractor's discretion, but enough to ensure there are no data gaps between usable portions of the swath and to ensure the aggregate nominal point density (ANPD) is achieved	
Acquisition Window	During period of annual minimal water level and minimal snow in the fall 2020 leaf-off window running through November 15, 2020 and on July 30 2022	
Data Voids	 Not allowed except Where caused by water bodies Where caused by areas of low near infra-red (NIR) reflectivity (i.e. asphalt or composition roofing) Where caused by lidar shadowing from buildings or other features Where appropriately filled-in by another swath 	
Data Acquisition Conditions	 Atmospheric Cloud and fog-free between the aircraft and ground Ground Snow free No unusual flooding or inundation, except in cases where the goal of the collection is to map the inundation Vegetation Leaf-off is preferred Time of Day Time of day is not of concern 	

Flight plans were created using Leica MissionPro software.

Lidar Sensor Information

Aerial lidar data was acquired for this project using the following lidar sensor systems:

• Leica TerrainMapper - serial numbers 511, 515, 557

Table 2-2 depicts a summary of sensor information. See Appendix 1 for the sensor calibration reports.

Sensor Specifications	Sensor Specifications		
Operating Altitude (m AGL)	300 - 5,500 at 10% reflective target		
Maximum Measurement Rate (kHz)	2,000		
Scan Angle	20 - 40		
Scan Width	Up to 70% of flight altitude		
Scan Frequency	Programmable up to 125 Hz (7,500 RPM), 250 scan lines per second		
Number of Returns	15		
Number of intensity measurements	15		
Pulse Mode(s)	Up to 35 pulses in air		
Laser Specifications			
Laser Beam Divergence	0.25 mrad (1/e)		
Laser Classification	Class 4 laser product		
Accuracy			
Range Resolution	< 1 cm RMS		
Elevation Accuracy	< 5 cm 1 σ		
Horizontal Accuracy	< 13 cm 1 σ		
Physical Specifications			
Size (cm), Weight (kg) • Scanner • Control Electronics	• 37 W x 68 L x 26 H cm, 47 kg • 45 W x 47 D x 25 H cm, 33 kg		
Operating Temperature Scanner Control Electronics 	 0 - 40°C cabin-side temperature 0 - 40°C 		
Flight Management	Leica FlightPro		
Power Consumption	922 W @ 22.0 – 30.3 VDC		

Source: Leica TerrainMapper Data Sheet

https://leica-geosystems.com/en-US/products/airborne-systems/topographic-lidar-sensors/leica-terrainmapper

Lidar Sensor Settings

Aerial lidar was acquired using the sensors and settings listed in the Table 2-3.

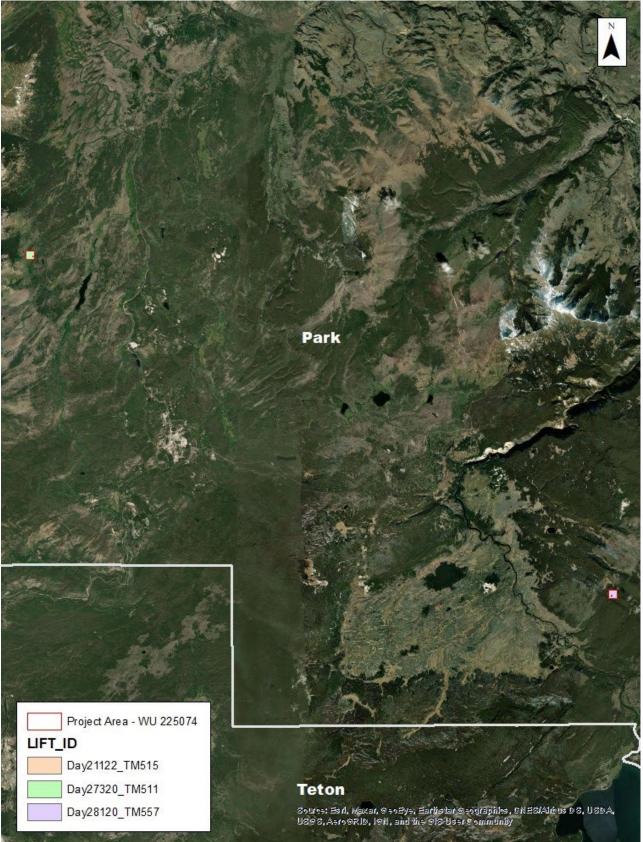
Settings	Blocks 1-4
Max. Number of Returns	15
Nominal Point Spacing	0.35 m
Nominal Point Density	8 ppsm
Flying Height Above Ground Level	2,133 m
Flight Speed	150 knots
Scan Angle	40°
Scan Rate Used	1,580 Hz
Pulse Rate Used	150 kHz
Multi-Pulse in Air	Enabled
Swath Width	1,553 m
Swath Overlap	25%

Timeline

Lidar data was collected from September 29, 2020 through July 30, 2022. A total of 7 individual flight lines were collected. Figure 2-1 shows aerial lidar coverage by lift.

For more information, see the Flight Logs in Appendix 2.

GNSS and IMU Equipment


Prior to mobilizing to the project site, flight crews coordinated with the necessary air traffic control personnel to ensure airspace access. Crews were on-site, operating a Global Navigation Satellite System (GNSS) Base Station for the airborne GPS support.

Flight navigation during acquisition was performed using IGI CCNS (Computer Controlled Navigation System). The pilots are skilled at maintaining their planned trajectory, while holding the aircraft steady and level. If atmospheric conditions are such that the trajectory, ground speed, roll, pitch and/or heading cannot be properly maintained, the mission is aborted until suitable conditions occur.

Base stations were set by acquisition staff and was used to support the aerial data acquisition. Table 2-3 lists the Station ID and coordinates for all base stations operated during acquisition.

For more information, see the GPS/IMU graphics in Appendix 3.

Figure 2-1. Flight Coverage

Table 2-4. GNSS Base Stations

Station Name	Longitude (DMS)	Latitude (DMS)	Ellipsoid Height L1 Phase Center (Meters)
MTSU_CORS	45° 39' 40.37685"	111° 2' 42.00897"	1495.554
IDDR_CORS	43° 44' 46.00161"	111° 6' 36.92145"	1863684

Acquisition Quality Assurance

An initial quality control process was immediately performed on to review the data coverage, airborne GPS data, and trajectory solution.

Woolpert developed a quality assurance and validation plan to ensure the acquired lidar data meets the USGS Base Specification requirements. For quality assurance purposes, the lidar data was processed immediately following acquisition to verify the coverage has appropriate density, distribution, and no unacceptable data voids. Accompanying GPS data was post processed using differential and Kalman filter algorithms to derive a best estimate of trajectory. The quality of the solution was verified to be consistent with the accuracy requirements of the task order. Any required re-flights were scheduled at the earliest opportunity.

The spatial distribution of the geometrically usable first return lidar points was reviewed for density requirements as well as regular and uniform point distribution - verifying the lidar data is spaced so that 90% of the cells in a 2*NPS grid placed over the data contain at least one lidar point. The NPS assessment is made against single swath, first return data located within the geometrically usable center portion (typically ~90%) of each swath. Additionally, the data was reviewed for unacceptable data voids – verifying no area greater than or equal to $(4 \times ANPS)^2$ exhibited data coverage gaps.

Woolpert received Notice to Proceed for the project on July 30, 2020 and mobilized to the project area on September 8, 2020. As of September 8, there was both wildfire smoke and snow in the project area. Wildfires continued to burn outside of Yellowstone National Park throughout the month of October, but flight crews were able to adjust mission locations daily to avoid smoke haze.

Significant snowfall September 26-28, 2020 resulted in snow on the north faces of peaks that would persist until 2021. Woolpert continued with acquisition with approval from the USGS to classify snowy peaks as Class 21-Snow. October 24 through October 26, 2020 a strong cold front brought 16+ inches of snow and record cold temperatures. The snow persisted through the rest of the month and effectively ended the fall 2020 acquisition season. The Ground control survey was 100% complete at this time. Data acquisition was 98% complete.

On July 30, 2022 Woolpert collected reflights over small data voids due to vertical cliffs on some of the tallest peaks. This data was processed as delivered in this work unit.

3. Processing

Processing Summary

Once the lidar data passed initial QC, the dataset was corrected for aircraft orientation and movement. This process used airborne inertial, orientation, and GPS data collected during acquisition along with ground-based GPS data. The data went through a geometric calibration that further corrected each laser point. This calibrated data set was used to create the LAS point cloud. The LAS point data was initially classified into "ground" and "non-ground", then further refined using the classes specified in this task order. Breaklines were drawn to denote hydrological features. After the hydro-flattening process, the final deliverables products were created.

GPS-IMU Trajectory Processing

Kinematic corrections for the aircraft position were resolved using aircraft GPS and static ground GPS (1-Hz) for each geodetic control (base station) for three subsystems: inertial measurement unit (IMU), sensor orientation information, and airborne GPS data.

Post-processing of the IMU system data and aircraft position with attitude data was completed to compute an optimally accurate, blended navigation solution based on Kalman filtering technology, or the smoothed best estimate of trajectory (SBET).

For more information, see the GPS/IMU graphics in Appendix 3.

Software: POSPac Software v. 5.3, IPAS Pro v.1.35., Novatel Inertial Explorer v8.60.6129

Trajectory Quality

The GNSS trajectory and high-quality IMU data are key factors in determining the overall positional accuracy of the final sensor data. Within the trajectory processing, there are many factors that affect the overall quality, but the most indicative are the combined separation, the estimated positional accuracy, and the positional dilution of precision (PDOP).

Combination Separation

Combined separation is a measure of the difference between the forward-run and the backward-run solution of the trajectory. The Kalman filter was processed in both directions to remove the combined directional anomalies. In general, when these two solutions match closely, an optimally accurate and reliable solution is achieved.

The data for this task order was processed with a goal to maintain a combined separation difference of less than ten (10) centimeters.

Estimated Positional Accuracy

Estimated positional accuracy plots the standard deviations of the east, north, and vertical directions along a time scale of the trajectory. It illustrates loss of satellite lock issues, as well as issues arising from long baselines, noise, and/or other atmospheric interference.

PDOP

The PDOP measures the precision of the GPS solution in regard to the geometry of the satellites acquired

and used for the solution.

The data for this task order was processed with a goal to maintain an average PDOP value below 3.0. Brief periods of PDOP over 3.0 are acceptable due to the calibration and control process if other metrics are within specification.

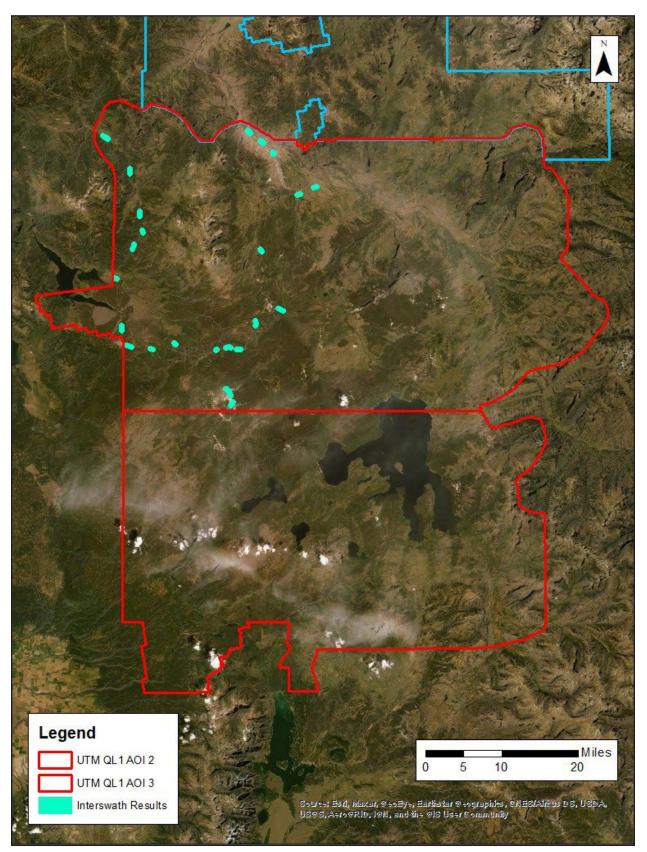
Geometric Calibration

After the initial phase was complete, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Automated line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift. Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error.

For more information, see the Sensor Calibration Report(s) in Appendix 1.

Software: Proprietary Software, TerraMatch v20, Leica CloudPro 1.2.4

Relative Accuracy: Interswath (Overlap) Consistency


Interswath or overlap consistency was assessed at multiple locations within overlap in non-vegetated areas containing only single returns and located in areas with slopes of less than 10 degrees. To the extent allowed by the data, test areas were chosen where the full width of the overlap was represented. These overlap areas include adjacent, overlapping parallel swaths within a project, cross-tie swaths and a sample of intersecting project swaths in both flight directions, and adjacent, overlapping lifts.

This project required the interswath accuracy to meet ≤ 8 cm RMSDz. Accuracy was assessed in accordance with the USGS Base Specification v2020 revision A.

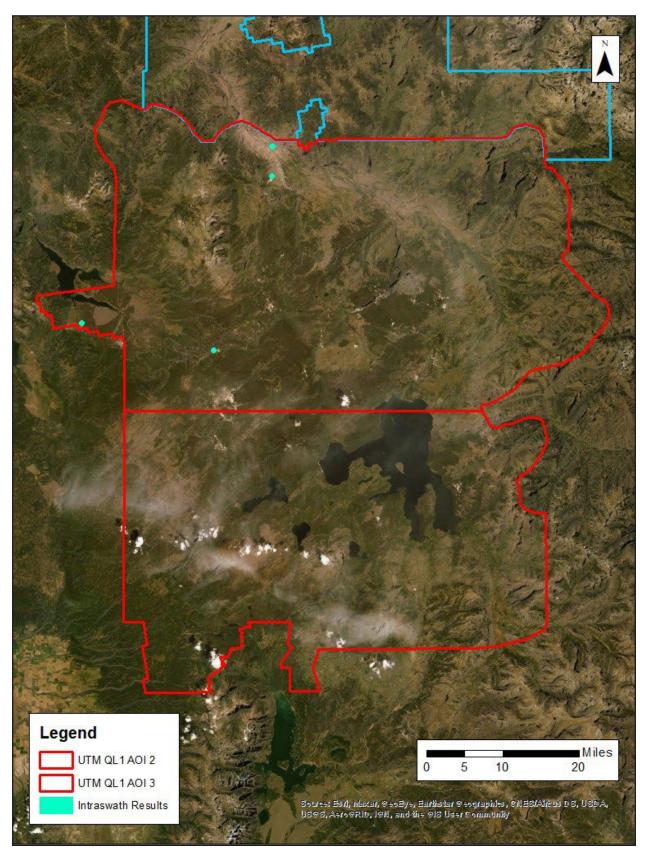
The interswath consistency results were produced as polygon features in Esri shapefile format. Table 3-1 lists the interswath test results. Figure 3-1 depicts the location of the interswath test locations.

Table 3-1. Interswath Results

Minimum (m)	Maximum (m)	RMSDz (m)
-0.080	0.065	0.017
-0.035	0.060	0.019
-0.105	0.045	0.017
-0.120	0.055	0.014
-0.070	0.080	0.019
-0.040	0.097	0.026
-0.070	0.115	0.026
-0.077	0.060	0.021
-0.105	0.040	0.032
-0.085	0.040	0.028
-0.030	0.150	0.017
-0.240	0.040	0.022
-0.050	0.043	0.014
-0.090	0.030	0.018
-0.085	0.053	0.013
-0.040	0.063	0.017
-0.046	0.010	0.019
-0.065	0.025	0.016
-0.041	0.057	0.012
-0.110	0.067	0.023
-0.080	0.120	0.019
-0.060	0.070	0.015
-0.080	0.075	0.022
-0.090	0.035	0.022
-0.090	0.055	0.027
-0.080	0.045	0.025

Figure 3-1. Interswath Testing Locations

Relative Accuracy: Intraswath Precision


Intraswath precision (or smooth surface precision) was performed on hard surfaces with areas consisting of approximately 100 pixels (ex.: parking lots, large rooftops) and containing only single return lidar points. Sample areas were selected where full width of the swath(s) (left, center, and right) were represented to the extent the data allowed.

This project required the intraswath accuracy to meet ≤ 6 cm RMSDz. Accuracy was assessed in accordance with the USGS Base Specification v2020 revision A.

The intraswath precision results were produced as polygon features in Esri shapefile format. Table 3-2 lists the intraswath test results. Figure 3-2 depicts the location of the intraswath test locations.

Minimum (m)	Maximum (m)	RMSDz (m)
-0.051	0.071	0.019
-0.073	0.025	0.030
-0.013	0.010	0.009
-0.057	0.057	0.018

Table 3-2. Intraswath Results

Figure 3-2. Intraswath Testing Locations

Lidar Data Classification

LAS data was initially classified as ground and non-ground points "first and only" as well as "last of many" lidar returns. Additional filters were created to meet the task order classification specifications. Statistical absolute accuracy was assessed via direct comparisons of ground classified points to ground RTK survey data. Based on the statistical analysis, the lidar data was then adjusted to reduce the vertical bias when compared to the survey ground control of higher accuracy.

The bare-earth (Class 2 - Ground) lidar points underwent a manual QA/QC step to verify the quality of the DEM as well as a peer-based QC review. This included a review of the DEM surface to remove artifacts and ensure topographic quality. After the bare-earth surface is finalized, it is then used to generate all hydro-breaklines through a semi-automated process.

All ground (Class 2) lidar data inside of the Lake Pond and Double Line Drain hydro flattening breaklines were then classified to water (Class 9) using TerraScan/LP360 macro functionality. A buffer of 0.7 meters was also used around each hydro-flattened feature to classify these ground (Class 2) points to Ignored Ground (Class 20). All Lake Pond Island and Double Line Drain Island features were checked to ensure that the ground (Class 2) points were reclassified to the correct classification after the automated classification was completed.

All overlap data was processed through automated functionality provided by TerraScan to classify the overlapping flight line data to approved classes by USGS. The overlap data was classified using standard LAS overlap bit. These classes were created through automated processes only and were not verified for classification accuracy. Due to software limitations within TerraScan, these classes were used to trip the withheld bit within various software packages. These processes were reviewed and accepted by USGS through numerous conference calls and pilot study areas.

All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Global Mapper was used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files. Woolpert proprietary software and LP360 was used to perform final statistical analysis of the classes in the LAS files, on a per tile level to verify final classification metrics and full LAS header information.

Table 3-3 lists the point classifications used.

Class Number	Class Name
Class 1	Processed, but unclassified
Class 2	Bare earth
Class 7	Low noise
Class 9	Water
Class 17	Bridge deck
Class 18	High noise
Class 20	Ignored ground

Table 3-3. Classified	Point Breakdown
-----------------------	-----------------

Hydrologic Flattening

No Hydro Flattening with this work unit.

Digital Elevation Model

TerraScan was used to add the hydrologic breakline vertices and export the lattice models. Class 2 (ground) lidar points in conjunction with the hydro breaklines and bridge breaklines were used to create 0.5-meter hydro-flattened bare-earth raster DEM files. Using automated scripting routines within ArcMap, a 32-bit floating point raster GeoTIFF file was created for each tile. Files were clipped to the data extent. Each surface is reviewed using Global Mapper to check for any surface anomalies or incorrect elevations found within the surface.

Software: TerraScan v20, GDAL 2.4.0, Esri ArcMap v10.7, Global Mapper v20.0

Intensity Imagery

Lidar intensity data derived from the acquired lidar data was linearly rescaled from 16-bit intensity and provided as 0.5-meter pixel, 8-bit, 256 gray scale GeoTIFF files. Files were clipped to the data extent.

Software: TerraScan v20, Esri ArcMap v10.7

Metadata

FGDC CSDGM/USGS MetaParser-compliant metadata was produced in XML format. The metadata includes a complete description of the task order client information, contractor information, project purpose, lidar acquisition and ground survey collection parameters, lidar acquisition and ground survey collection dates, spatial reference system information, data processing including acquisition quality assurance procedures, GPS and base station processing, geometric calibration, lidar classification, hydrologic flattening, intensity imagery development, and final product development.

Other metadata deliverables included tile index. A georeferenced, polygonal representation of the detailed extents of each acquired lidar swath was produced as a polygon feature class in an Esri file geodatabase. Swath separation images were produced in GeoTIFF format. Maximum height separation rasters were produced in GeoTIFF format.

4. Accuracy Assessment

Horizontal Accuracy

The data set was produced to meet ASPRS "Positional Accuracy Standards for Digital Geospatial Data" (2014) for a 0.158 cm RMSEx / RMSEy Horizontal Accuracy Class which equates to Positional Horizontal Accuracy = +/- 0.388 cm at a 95% confidence level.

Classified Lidar Point Cloud Testing

This project required Non-Vegetated Vertical Accuracy (NVA) and Vegetated Vertical Accuracy (VVA) to be tested on the classified lidar point cloud data. The dataset was required to meet a target NVA value of 19.6 cm at a 95% confidence level using an RMSEz target value of 10 cm x 1.9600 and a target VVA value of 30 cm at the 95th percentile. Testing was assessed and reported using guidelines developed by the National Digital Elevation Program (NDEP) and the American Society for Photogrammetry and Remote Sensing (ASPRS).

The NVA and VVA values were calculated using independent checkpoints that were not used in the calibration or post processing of the lidar point cloud data. Checkpoints were distributed throughout the project area. NVA checkpoints were located in bare earth and urban (non-vegetated) land cover classes. VVA checkpoints were located in brush/tall grass/weeds (vegetated) land cover classes. These checkpoints were surveyed using GPS techniques. See the survey report for acquisition methodologies.

Testing was performed using TINs created from the final calibrated and controlled swath data. For each NVA checkpoint, an elevation value was derived from the TIN at the point's x,y location. This value was compared to the checkpoint's surveyed elevation value.

The classified lidar point cloud accuracy test results are listed below in Table 4-1.

	Result	Points Used
NVA	0.034 m RMSEz 0.067 m at 95% CL	24
VVA	0.114 at 95th Percentile	12

Table 4-1. Classified Point Cloud Vertical Accuracy

Digital Elevation Model Testing

This project required Non-Vegetated Accuracy (NVA) and Vegetated Vertical Accuracy (VVA) testing of the digital elevation model (DEM) dataset. The calculated NVA value was required to meet 19.6 cm at a 95% confidence level using an RMSEz target value of 10 cm x 1.9600. VVA was required to meet 0.30 cm at the 95th percentile error. Testing was assessed and reported using guidelines developed by the National Digital Elevation Program (NDEP) and the American Society for Photogrammetry and Remote Sensing (ASPRS).

Testing was performed using the bare earth DEM created as part of this task order. For each checkpoint, an elevation value was derived from the DEM at the point's x,y location. This value was compared to the checkpoint's surveyed elevation value.

The NVA and VVA values were calculated using independent checkpoints that were not used in the calibration or post processing of the lidar point cloud data. Checkpoints were distributed throughout the project area. NVA checkpoints were located in bare earth and urban (non-vegetated) land cover classes. VVA checkpoints were located in brush/tall grass/weeds (vegetated) land cover classes. These checkpoints were surveyed using GPS techniques. See the survey report for acquisition methodologies.

The classified lidar point cloud accuracy test results are listed below in Table 4-2.

Table 4-2. DEM Accuracy

	Result	Points Used
NVA	0.035 m RMSEz 0.0686 m at 95% CL	24
VVA	0.071 at 95th Percentile	12

Appendix 1: Sensor Calibration Report

- when it has to be **right**

Leica Geosystems Leica TerrainMapper-LN Calibration Certificate

Product	Leica TerrainMapper-LN
Serial Number	91511
Date	03 July 2019
Inspector	Mark O'Neal

Leica Geosystems AG Heinrich-Wild-Strasse CH-9435 Heerbrugg Schweiz www.leica-geosystems.com

1. System Components

Component	Туре	Serial Number
Pod	TerrainMapper Pod	91511
GNSS/IMU	Litef LCI-100C 500 Hz	1139
LiDAR Unit	Hyperion2 LiDAR Unit	5511
Camera Head Lens	CH82 NAT-D 2.8/80	82659 80254

2. Estimation Process

		Passed	Date	Inspector
Image Flight	completed	ok	10.05.2019	Philip Benz
Image Quality Check	checked	ok	16.05.2019	Philip Benz
Image Calibration	completed	ok	18.05.2019	Xu Wang
Image Misalignment Update	completed	ok	02.07.2019	Mark O'Neal
LiDAR Flight	completed	ok	10.17.2018	Deniz Arslan
LiDAR Quality Check	checked	ok	23.10.2018	Rene Heirli
LiDAR Calibration and Accuracy LiDAR Misalingment Update	completed completed	ok	24.10.2018	Robert Bosch

3. Inspectors

Name Position	Bernhard Riedl Production Manager	15.11.2018	Rid Bunhard
Name Position	Robert Bosch Support Engineer	23.05.2019	Xu Wang
Name Position	Michael Vetter Support Engineer	03.07.2019	6.Bod

4. Remarks

5. LiDAR Calibration Results

The calibration results for the LiDAR Unit are only valid for:

• IMU and Pod as listed in the System Components section

5.1 LiDAR Geometric Calibration Results

IMU Misalignment		Value	Unit	
	ω	-0.138877	degree	
	Φ	0.130994	degree	
	К	-0.006412	degree	
Boresight		Value	Unit	
	Θ	0.001052	degree	
	Φ	-0.001885	degree	
Receiver 1		Value	Unit	
Range	∆ Offset	0.000000	meters	
Wedge 0		Value	Unit	
Wedge	Δ Alpha	0.001241	degree	
Wedge Position	Δ Offset	-0.426898	degree	
Position Correction	Х	-0.019523	degree	
	Y	0.007883	degree	
Mount	Roll	-0.020901	degree	
	Pitch	0.107683	degree	
Rotation Axis	Roll	0.103712	degree	
	Pitch	0.124140	degree	
Wedge 1		Value	Unit	
Wedge	Δ Alpha	-0.009545	degree	
Wedge Position	∆ Offset	0.412993	degree	
Position Correction	Х	0.004000	degree	
	Y	0.011085	degree	
Mount	Roll	0.102859	degree	
	Pitch	0.025756	degree	
	Speed Pitch	1.50E-06	degree/rps ²	
Rotation Axis	Roll	0.114811	degree	
	Pitch	-0.080531	degree	
LiDAR Geometric Calibration File				
HYPERION_GEOMETRY_LIDARUNIT-5511	-C-855570-DATETIME-2018102	3-153458.XMI	_	
	Date	23.10.2018		

	2010	
LiDAR Misalingment Flight	Date	-
LiDAR Misalingment Update Completed	Date	-

5.2 LiDAR Unit Accuracy Check

Accuracy checks:

M010_1000C_111736

- Deviation of two perpendicular lines to GCP's
- Difference of two perpendicular lines
- Difference of forward and backward scan of one line

5.2.1 Multi-line accuracy of two perpendicular lines to ground control points

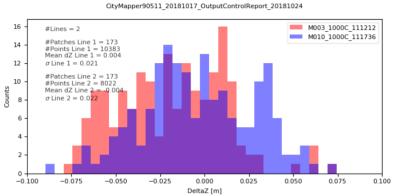


Figure 1 Vertical distance to ground control points at 1000 m AGL.

5.2.2 Difference of forward and backward scan of one line

	Number of patches	Proportion of total number o patches [%]
<=0.04	293823	93.48
0.04-0.07	20386	6.49
0.07-0.1	89	0.03
>0.1	16	

Figure 2 Vertical difference betweeen forward and backward scan at 1000 m AGL.

5.2.3 Multi-line accuracy between two perpendicular lines

M003_1000C_111212_vs_M010_1000C_111736

39940 valid patches with size of 2 m found. Only patches with standard deviation < 0.05 m and minimum of 5 points are included.

Color	Limits (m)	Number of patches	Proportion of total number of patches [%]
	<=0.04	32066	80.29
	0.04-0.07	7841	19.63
	0.07-0.1	21	0.05
	>0.1	12	0.03

Figure 3 Vertical difference betweeen two perpendicular lines at 1000 m AGL.

6. Imaging Sensors Estimation Results

The estimation results for the camera head and lens combination are only valid for:

- IMU and Pod as listed in the System Components section.
- Camera Head, lens and specified position as listed in the Estimation Results sections.

6.1 Camera Model of distortion free images

All factory calibration results contain fixed nominal focal lengths and zero principal point offsets. Leica HxMap applies the grid to create distortion-free images of nominal focal length and pixel size.

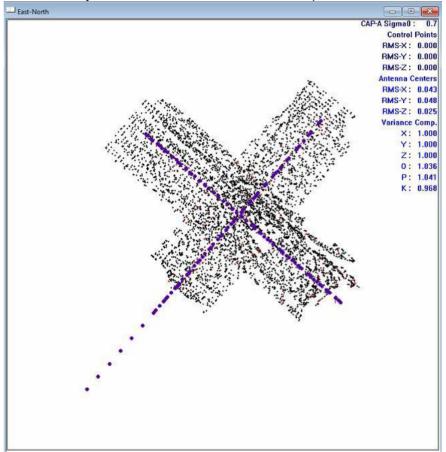
6.1.1 CH8x Model

			Component
Camera Head Lens			CH82 NAT-D 2.8/80
Camera Model			
Focal Length			Distance [mm]
	С		83.00
Radial Symmetric Distorsion			Distance [mm]
	ko k1 k2		0.0000 0.0000 0.0000
Decentering Distortion	р ₁ р2		Distance [mm] 0.0000 0.0000
Non-Orthogonality Distortion			Distance [mm]
Pixel Size (Height and Width)	b ₁ b ₂		0.0000 0.0000 Distance [mm]
	RGB NIR		0.0052 0.0120
Rows and Columns		Rows	Columns
	Active RGB Raw RGB Active NIR Raw NIR	7752 7788 3654 3366	10320 10336 4478 4500

6.2 Results of Geometric Calibration

6.2.1 Calibration method for Green Reference Band

Estimation of additional parameters (focal length, principal point, radial symmetric distortion, correction grid) and IMU misalignment in simultaneous bundle adjustment


Reference band (green)

Distance [mm]

0.0007

Resulting sigma naught of bundle adjustment:

Final bundle adjustment results after elimination of tie point blunders:

6.2.2 Calibration method for Other Spectral Bands

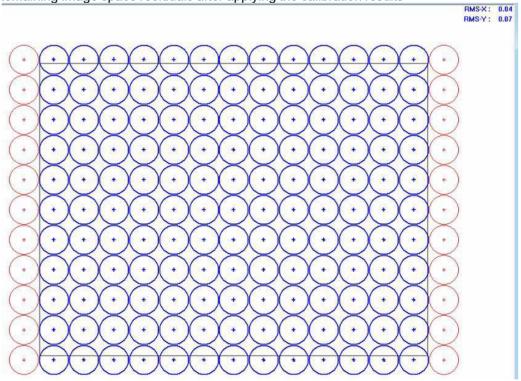
Estimation of additional parameters (correction grid), based on the result for green in simultaneous bundle adjustment

Other Spectral Bands

```
Distance [mm]
0.002
```

Co-registration to green better than:

Leica HxMap applies the grid to create distortion-free images of nominal focal length and fixed pixel size of 0.0052 mm.


6.3 Estimation Results for Nadir Camera Head and Lens

		Component	Serial Number
Camera Head Lens View Direction in Pod Position		CH82 NAT-D 2.8/80 Nadir	82659 80254
IMU Misalignment		Angle [degree]	
	ω Φ κ	-0.00815 0.00028 -0.26654	
Principal Point		Distance [mm]	
	х У	0.0000 0.0000	
Focal Length		Distance [mm]	
	с	83.00	
Geometric Calibration File			

RCD30_Geometry_CameraHead-82659-E-798528_LensSystem-80254-B-785423_DateTime-20190518-214751.xml

Geometric Calibration Date	Date	18.05.2019
Radiometric Calibration Date	Date	05.02.2019
Misalingment Flight	Date	23.06.2019
Misalingment Update Completed	Date	02.07.2019

Remaining image space residuals after applying the calibration results

Radius of circles is 0.0007 mm

- when it has to be **right**

Leica Geosystems Leica TerrainMapper-L Calibration Certificate

Product	Leica TerrainMapper-L
Serial Number	90515
Date	12 December 2018
Inspector	Robert Bosch

Leica Geosystems AG Heinrich-Wild-Strasse CH-9435 Heerbrugg Schweiz www.leica-geosystems.com

1. System Components

Туре	Serial Number
Terrainmapper Pod	90515
Litef LCI-100C 500 Hz	1226
Hyperion2 LiDAR Unit	5516
	Terrainmapper Pod Litef LCI-100C 500 Hz

2. Estimation Process

		Passed	Date	Inspector
LiDAR Flight	completed	ok	29.11.2018	Philip Benz
LiDAR Quality Check	checked	ok	06.12.2018	Rene Heierli
LiDAR Calibration and Accuracy LiDAR Misalignment Update	completed completed	ok	12.12.2018	Robert Bosch

3. Inspectors

Name Position	Bernhard Riedl Production Manager	12.12.2018	Rich Renhard
Name Position	Robert Bosch Support Engineer	12.12.2018	1.300A

4. Remarks

5. LiDAR Calibration Results

The calibration results for the LiDAR Unit are only valid for:

• IMU and Pod as listed in the System Components section

5.1 LiDAR Geometric Calibration Results

IMU Misalignment		Value	Unit		
	ω	-0.022555	degree		
	Φ	0.056357	degree		
	к	0.000504	degree		
Boresight		Value	Unit		
	Θ	0.015419	degree		
	Φ	-0.001923	degree		
Receiver 1		Value	Unit		
Range	∆ Offset	0.000000	meters		
Wedge 0		Value	Unit		
Wedge	Δ Alpha	-0.043014	degree		
Wedge Position	∆ Offset	0.442789	degree		
Position Correction	Х	-0.012826	degree		
	Y	0.000012	degree		
Mount	Roll	0.045379	degree		
	Pitch	0.210132	degree		
Rotation Axis	Roll	0.031087	degree		
	Pitch	0.076675	degree		
Wedge 1		Value	Unit		
Wedge	Δ Alpha	-0.005517	degree		
Wedge Position	∆ Offset	0.559649	degree		
Position Correction	Х	0.030760	degree		
	Y	-0.001169	degree		
Mount	Roll	0.012366	degree		
	Pitch	0.054254	degree		
	Speed Pitch	1.50E-06	degree/rps ²		
Rotation Axis	Roll	0.032485	degree		
	Pitch	-0.029191	degree		
LiDAR Geometric Calibration File	LiDAR Geometric Calibration File				
HYPERION_GEOMETRY_LIDARUNIT-5516	-C-855570-DATETIME-2018120	4-161828.XMI	-		

	Date	04.12.2018
LiDAR Misalignment Flight LiDAR Misalignment Update Completed	Date Date	-

5.2 LiDAR Unit Accuracy Check

Accuracy checks:

- Deviation of two perpendicular lines to GCP's
- Difference of two perpendicular lines
- Difference of forward and backward scan of one line

5.2.1 Multi-line accuracy of two perpendicular lines to ground control points

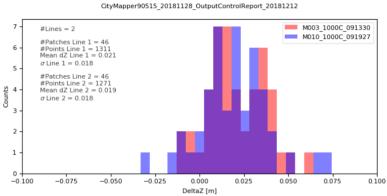


Figure 1 Vertical distance to ground control points at 1000 m AGL.

5.2.2 Difference of forward and backward scan of one line

Limits (m)	Number of patches	Proportion of total number o patches [%]
<=0.04	302593	99.75
0.04-0.07	716	0.24
0.07-0.1	17	0.01
>0.1	29	0.01

Figure 2 Vertical difference betweeen forward and backward scan at 1000 m AGL.

5.2.3 Multi-line accuracy between two perpendicular lines

Color	Limits (m)	Number of patches	Proportion of total number of patches [%]
	<=0.04	29546	99.86
	0.04-0.07	38	0.13
	0.07-0.1	1	0.00
	>0.1	3	0.01

M003_1000C_091330_vs_M010_1000C_091927

Figure 3 Vertical difference betweeen two perpendicular lines at 1000 m AGL.

- when it has to be **right**

Leica Geosystems Leica TerrainMapper-LN Calibration Certificate

Product	Leica TerrainMapper-LN
Serial Number	91557
Date	01 July 2020
Inspector	Ivan Belchev

Leica Geosystems AG Heinrich-Wild-Strasse CH-9435 Heerbrugg Schweiz www.leica-geosystems.com

1. System Components

Component	Туре	Serial Number
Pod	TerrainMapper Pod	91557
GNSS/IMU	Litef LCI-100C 500 Hz	1346
LiDAR Unit	Hyperion2 LiDAR Unit	5561
Camera Head Lens	CH82 NAT-D 2.8/80	82673 80264

2. Estimation Process

Image Flight	completed	Passed	Date	Inspector
Image Quality Check	checked	ok	23.06.2020	Deniz Arslan
Image Calibration	completed	ok	29.06.2020	Bernhard Riedl
Image Misalingment Update	completed	ok	29.06.2020	Zoltan Poth
LiDAR Flight LiDAR Quality Check LiDAR Calibration and Accuracy LiDAR Misalingment Update	completed checked completed completed	ok ok ok	23.06.2020 26.06.2020 25.06.2020	Deniz Arslan Rene Heierli Michael Vetter

3. Inspectors

Name Position	Bernhard Riedl Production Manager	01.07.2020	Rud Renhard
Name Position	Ivan Belchev Workflow Specialist	01.07.2020	Utres
Name Position	Michael Vetter Support Engineer	01.07.2020	Vete Scilar

4. Remarks

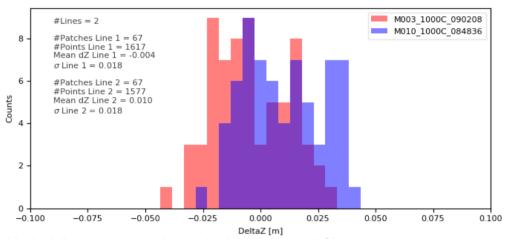
5. LiDAR Calibration Results

The calibration results for the LiDAR Unit are only valid for:

• IMU and Pod as listed in the System Components section

5.1 LiDAR Geometric Calibration Results

IMU Misalignment		Value	Unit		
	ω	-0.063987	degree		
	Φ	-0.049738	degree		
	К	-0.005305	degree		
Boresight		Value	Unit		
	Θ	-0.001796	degree		
	Φ	-0.003034	degree		
Receiver 1		Value	Unit		
Range	∆ Offset	0.000000	meters		
Wedge 0		Value	Unit		
Wedge	Δ Alpha	-0.045434	degree		
Wedge Position	∆ Offset	0.352942	degree		
Position Correction	Х	-0.014623	degree		
	Y	0.020330	degree		
Mount	Roll	0.210896	degree		
	Pitch	0.426854	degree		
Rotation Axis	Roll	0.232742	degree		
	Pitch	0.169968	degree		
Wedge 1		Value	Unit		
Wedge	Δ Alpha	0.003457	degree		
Wedge Position	∆ Offset	0.393122	degree		
Position Correction	Х	0.019198	degree		
	Υ	-0.002307	degree		
Mount	Roll	0.020583	degree		
	Pitch	0.038667	degree		
	Speed Pitch	1.50E-06	degree/rps ²		
Rotation Axis	Roll	0.061823	degree		
	Pitch	0.034555	degree		
LiDAR Geometric Calibration File					
HYPERION_GEOMETRY_LIDARUNIT-5561	HYPERION_GEOMETRY_LIDARUNIT-5561-D-855570-DATETIME-20200625-085747.XML				
	Date	25 06 2020			


	Date	25.06.2020
LiDAR Misalingment Flight LiDAR Misalingment Update Completed	Date Date	-

5.2 LiDAR Unit Accuracy Check

Accuracy checks:

- Deviation of two perpendicular lines to GCP's
- Difference of two perpendicular lines
- Difference of forward and backward scan of one line

5.2.1 Multi-line accuracy of two perpendicular lines to ground control points

TM-LN-91557_200623_OutputControlReport_200625

Figure 1 Vertical distance to ground control points at 1000 m AGL.

5.2.2 Difference of forward and backward scan of one line

M003_1000C_090208

377750 valid patches with size of 2 m found. Only patches with standard deviation < 0.05 m and minimum of 5 points are included.

Color	Limits [m]	Number of patches	Proportion of total number of patches [%]	
	<=0.04	372019	98.48	
	0.04-0.07	5529	1.46	
	0.07-0.1	169	0.04	
	>0.1	33	0.01	

Figure 2 Vertical difference betweeen forward and backward scan at 1000 m AGL.

5.2.3 Multi-line accuracy between two perpendicular lines

M003_1000C_090208_vs_M010_1000C_084836

50693 valid patches with size of 2 m found. Only patches with standard deviation < 0.05 m and minimum of 5 points are included.

Color	Limits [m]	Number of patches	Proportion of total number of patches [%]
	<=0.04	50354	99.33
	0.04-0.07	327	0.65
	0.07-0.1	6	0.01
	>0.1	6	0.01

Figure 3 Vertical difference betweeen two perpendicular lines at 1000 m AGL.

6. Imaging Sensors Estimation Results

The estimation results for the camera head and lens combination are only valid for:

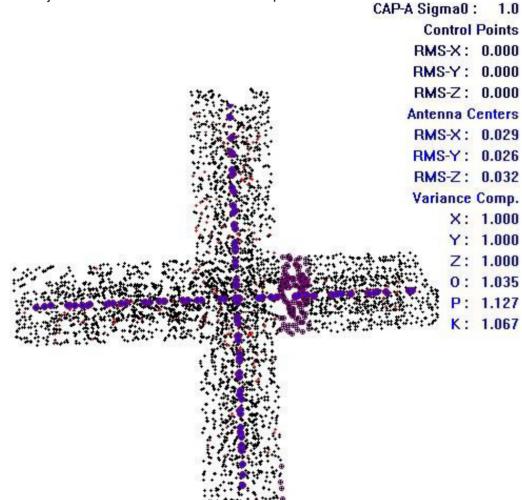
- IMU and Pod as listed in the System Components section.
- Camera Head, lens and specified position as listed in the Estimation Results sections.

6.1 Camera Model of distortion free images

All factory calibration results contain fixed nominal focal lengths and zero principal point offsets. Leica HxMap applies the grid to create distortion-free images of nominal focal length and pixel size.

6.1.1 CH8x Model

			Component
Camera Head Lens			CH82 NAT-D 2.8/80
Camera Model			
Focal Length			Distance [mm]
	С		83.00
Radial Symmetric Distorsion			Distance [mm]
	ko k1 k2		0.0000 0.0000 0.0000
Decentering Distortion	p1 p2		Distance [mm] 0.0000 0.0000
Non-Orthogonality Distortion			Distance [mm]
Pixel Size (Height and Width)	b1 b2		0.0000 0.0000 Distance [mm]
	RGB NIR		0.0052 0.0120
Rows and Columns		Rows	Columns
	Active RGB Raw RGB Active NIR Raw NIR	7752 7788 3654 3366	10320 10336 4478 4500


6.2 Results of Geometric Calibration

6.2.1 Calibration method for Green Reference Band

Estimation of additional parameters (focal length, principal point, radial symmetric distortion, correction grid) and IMU misalignment in simultaneous bundle adjustment

Reference band (green)	Distance [mm]
Resulting sigma naught of bundle adjustment:	0.0010

Final bundle adjustment results after elimination of tie point blunders:

6.2.2 Calibration method for Other Spectral Bands

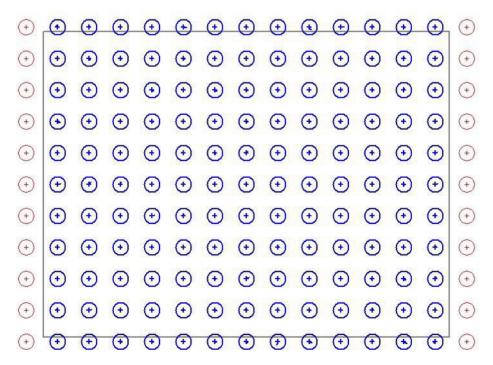
Estimation of additional parameters (correction grid), based on the result for green in simultaneous bundle adjustment

Other Spectral Bands

Distance [mm]

0.002

Co-registration to green better than:


Leica HxMap applies the grid to create distortion-free images of nominal focal length and fixed pixel size of 0.0052 mm.

6.3 Estimation Results for Nadir Camera Head and Lens

		Component	Serial Number
Camera Head Lens View Direction in Pod Position		CH82 NAT-D 2.8/80 Nadir	82673 80264
IMU Misalignment		Angle [degree]	
	ω Φ κ	0.03017 -0.01221 -0.25213	
Principal Point		Distance [mm]	
	x y	0.0000 0.0000	
Focal Length		Distance [mm]	
	С	83.00	
Geometric Calibration File			
RCD30_Geometry_CameraHead-826 20200629-142416.xml	673798528_Le	ensSystem-80264-B	-785423_DateTime-
Geometric Calibration Date Radiometric Calibration Date	Date Date	29.06.2020 30.01.2020	
Misalingment Flight Misalingment Update Completed	Date Date	-	

Remaining image space residuals after applying the calibration results

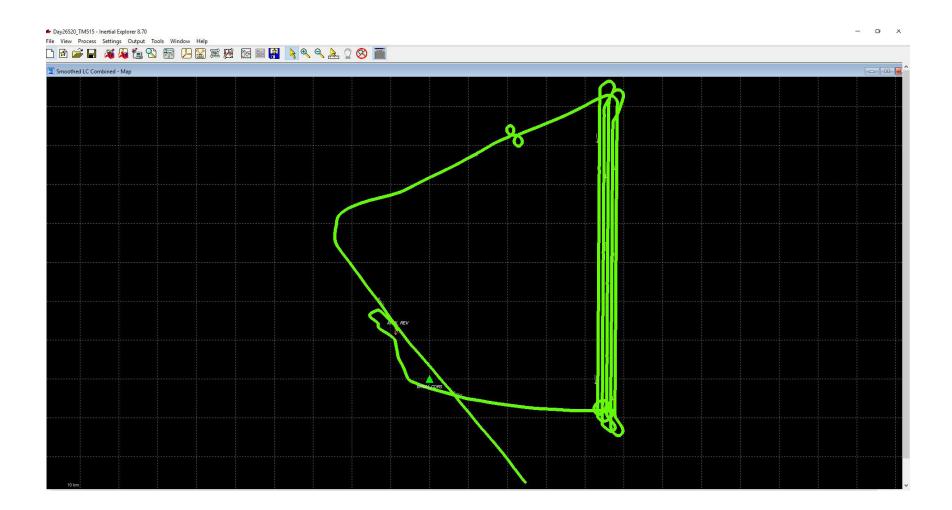
RMS-X: 0.13 RMS-Y: 0.11

Radius of circles is 0.0010 mm

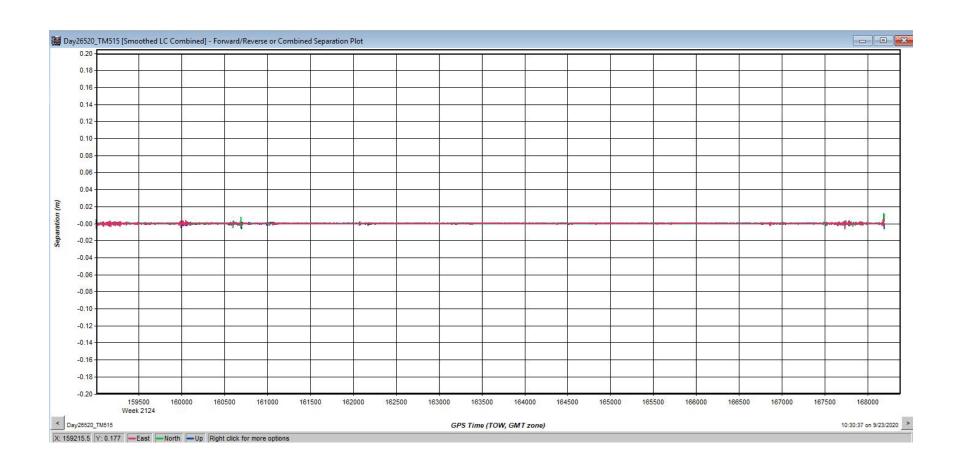
Appendix 2: Flight Logs

				Proie	ct Info								I	Date			
Project # Project Name Unique ID											Flight	Date			f Year	Flight	
81200			Yellowstor						73_90511_A		Flight Date (UTC) Day of Year Flight 09/29/2020 273 A						
Crew Equipment																	
Pilot Aircraft Make / Model / Tail #												Start		Ctart		rports	
						-		Hobbs St	Local Start UTC St								
	irika			Cessna 40						-	09:25:00 15:25:0						
	rator			nsor Mak	-	-								TC End Arriving			
Ry	/an		Le	eica Terra	in Mappe				8055.9	9	14:29:00 20:29:0			9:00	0 KBZN		
						C	Conditi	ons									
Wind Di	· (°)	Wind	Speed (kts)	Visibil	ty (mi)	ng (ft)	Clo	oud Cover	Temp	emp. (°C) Dew Point (°				°C) Pressure ("H			
200			3	1	0				Clear	3	3		-1		:	3035	
Air Spe	ed (kts)		Altitude	AGL (ft)	A	ltitude	MSL (ft)	Airfield El	evation (ft)							
1	50			. ,			, 707			473							
							Settin	ØS	,	-			_	_	_	_	
Point Spaci	og (m)	Poir	t Donsity (pr	(m)	Scan And					(Ц-)	Dulce	Pulse Rate (kHz)			Laser Power (%)		
0.35	15 (11)			y (ppsm) Sca		an Angle/FOV (°)		Jta	n Frequency (Hz)		ruise		(K112)	Las	100		
0.35	_		2		2	40			150			1580 rify S-Turns Before Miss					
					-	_				Ve	rity S-1	Furns E	Sefore	Missio	on	Yes	
line #	Line # Direction		start Time			me	Sate	llite	PDOP			Line N	otes/C	Comme	ents		
-			(UTC)	(UTC)	On	On-Line						-					
95	S 15:25:00			15:28:0		03:00			1.1								
97			15:45:00	15:49:0		04:00	2		1.4								
96	N		15:52:00	15:55:0		03:00	2	-	1.5								
94	S		15:57:00	16:00:0		03:00	2		1.2								
93	N		16:03:00	16:06:0		03:00	2	-	1.2								
92	S		16:09:00	16:11:0		02:00	2		1.2								
91 90	N S		16:15:00	16:18:0 16:23:0		03:00 03:00			1.2 1.2								
90 89	N N		16:20:00 16:25:00	16:23:0		03:00			1.2								
88	S		16:23:00	16:33:0		02:00	1	-	1.3								
87	N		16:36:00	16:33:0		02:00	1		1.3								
86	S		16:41:00	16:43:0		02:00	1	-	1.4								
85	N		16:46:00	16:48:0		02:00	1		1.4								
84	S		16:50:00	16:53:0				8	1.4	<u> </u>							
83	N		16:55:00	16:58:0		00:03:00		8	1.3								
82	S		17:00:00	17:02:0		00:02:00		8	1.3								
81	N		17:06:00	17:07:0		00:01:00		8	1.3								
80	S		17:10:00	17:11:0	0 00:0			0	1.2								
79	N		17:14:00	17:16:0				1	1.2								
30	N		17:27:00	17:41:0		00:14:00 2		2	1								
31	S		17:44:00	17:57:0		13:00	1		1.4								
45	N		18:03:00	18:17:0		14:00	1		1.3			ne sno					
46	S		18:22:00	18:35:0		13:00	1		1.2		sor	ne sno	w in th	ne high	peak	S	
47	N		18:38:00	18:51:0		13:00		2	1								
	S		18:54:00	19:07:0	0 00:1	13:00	2	2	1								
48	5						Page				erify S-					Yes	

										uisitio		-0							
	Project Info Project # Project Name Unique ID													Date					
Project #			Project																
81200 Yellowstone NP BLOCKS 1&2								Day281_91557_1					10/07/2020			31	1		
	ew				Equipment						Time					rports			
	lot		Aircraft Make / Model / Tail #							Hobbs S				Start Departin					
Dar	Perl		Reims F406 - N406SD							513.	09:1	15:1	4:00		KBZN				
Оре	rator		Sensor Make / Model / Serial #								Hobbs End				TC End		rriving		
Fan	ning		Leica Terrain Mapper - 91557								519 1			13:14:00 19:14			1:00 KBZN		
							C	onditi	ons										
Wind Dir	(°)	Wind	Speed (kts)	eed (kts) Visibility (mi) Ceilin					Clo	oud Cover	Tem	Temp. (°C) Dew			: (°C)	Pressure ("H			
170			3	10		18,00		000		Clear		4	1			3	30.15		
Air Spe	ed (kts)	Altitude	Altitude AGL (ft) Altitude					MSL (ft) Airfield El			evation (ft)							
1	50		6,9	98			13,	665		4	,471								
								Settin	gs										
Point Spacir	ng (m)	Poin	it Density (pp	Sca	an Angl	e/FOV	/ (°)	Sca	n Frequency	Pulse	e Rate	(kHz)	Las	er Pov	wer (%)				
0.35			8		4(0			150		1580		100						
											Ve	erify S-	Turns E	Before	Missi	on	Yes		
Line #	Direction Start Time End T (UTC) (UTC)				Time On-Line Sate		llite	PDOP		Line			e Notes/Comments						
6	6 S 15		15:14:00	15:1	7:00	00:03:00		21		1.4	BLO	BLOCK1 (BLOCK 1 COMPLETE)(13665' I				5' MSL)			
19	S		15:30:00	15:4		00:12:00		23		1.2		BLOCK 2 (12,858' MSL) VARIABLE MSL FOR BLOCKS 1&2							
27 28			15:47:00 16:03:00	16:0 16:1		00:13:00		23 21		1.1 1.3		VAR	IABLE I	VISL FC	DK BLO	CKS 1	\$2		
28	-		16:19:00	16:3		00:13:00		2		1.3									
30	S		16:34:00	16:4		00:13:00				1.2									
31	-		16:55:00	17:0		00:13		2		1									
32	32 S		17:12:00	17:2	5:00	00:13	3:00	1	5	1.4									
33	33 N		17:28:00	17:4		00:13			6	1.3									
34	5		17:44:00	17:5		00:13			6	1.2									
35	N S		18:00:00	18:1 18:2		00:13		1		1									
36 37	N		18:15:00 18:31:00	18:4		00:13:00 00:12:00			0 8	1.1									
38	S		18:46:00	18:5			00:12:00		8	1.1									
39	N		19:01:00	19:14		00:13			8	1.3									
													SCOU						
												REFLI	GHT LII			AL SN	OW		
											-			REMA	1185.				
								<u> </u>			1								
								Daga	1			anifu C	T	After	Missia		Vee		
dditional C								Page	T		V	erify S	-Turns	Alter	VIISSIO	n	Yes		
889 GB	WU: 08		ST WD: 14:	04MST	MAII	NT HOB	BS: 54	60.3											

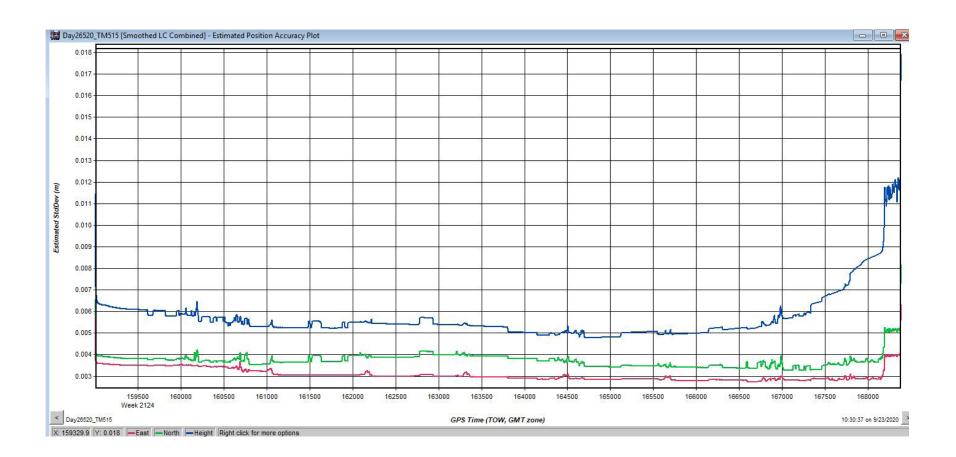

Project #								LUY	uisitio		JUS						
Ç					ct Info				•				D	ate			
			Project	t Name			Flight Date (UTC)Day of Year Flig										
81200			Yellowstone	Voids 20	22		Day2	11_90515_1		07/30/2022				1	1		
Cre	ew			Eq	luipmen	t					Time			A	irports		
Pil	lot		Aiı	Aircraft Make / Model / Tail #							Local Start UTC			Start Departing			
Cor	mer			2447		10:1	7:00	16:17	16:17:00		KIDA						
Oper	rator		Ser	nsor Mak	Hobbs H	Local End		UTC End		Α	rriving						
Fanr	ning		Le	2451.	10:2	6:00	16:26	5:00]	KIDA							
						С	onditi	ions									
Wind Dir	· (°)	Wind	Speed (kts)	peed (kts) Visibility (mi) Ce				Clo	oud Cover	Temp. (°C) De			Point ((°C)	Press	sure ("Hg	
350			4	1	0	17,	500		Clear 1		8		13			30.17	
Ground S	peed (l	xts)	Altitude	AGL (ft)	A	ltitude	MSL (ft)	Airfield E	levatio	n (ft)						
15	50		5,6	607		14,	882		4,	744							
							Settin	gs									
Point Spacin	ng (m)	Poin	t Density (pp	osm)	Scan Ang			0	n Frequency	(Hz)	Pulse	Rate	(kHz)	Lase	er Po	wer (%)	
			8		4	40			150			1645			10	0	
							·			Ver	rify S-7	urns	Before	Missi	on	Yes	
Line #	Direc	ction	Start Time (UTC)	End Tir (UTC		Time On-Line Sat			PDOP		Line Notes/Comments						
1				16:17:0		01:00	0 19		1.1								
2 S		5	16:25:00	16:26:0				9	1.1	6335'AGL; 15,210'MSL							
					_												
					_												
					_					<u> </u>							
					_												
					_												
							Page	1		Ve	rify S-	Turns	After I	Missic	on	Yes	
Additional C 5106GB		ents 09:42	MDT WD	: 12:45M	DT M	x Hobb	s out:6	5798.5	; Mx Hobbs	in: 68()1.6; C	ycles:	7432				

Appendix 3: GPS / IMU Graphics

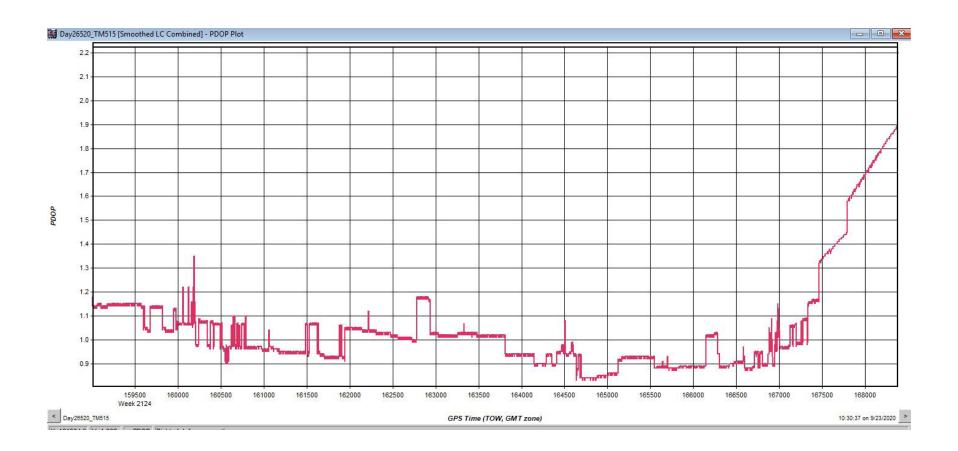

United States Geological Survey

Day27320_TM511 Trajectory

140G0220F0199 - WY Yellowstone NP 1RF 2020 D20 Project ID 196958 - Work Unit 225074

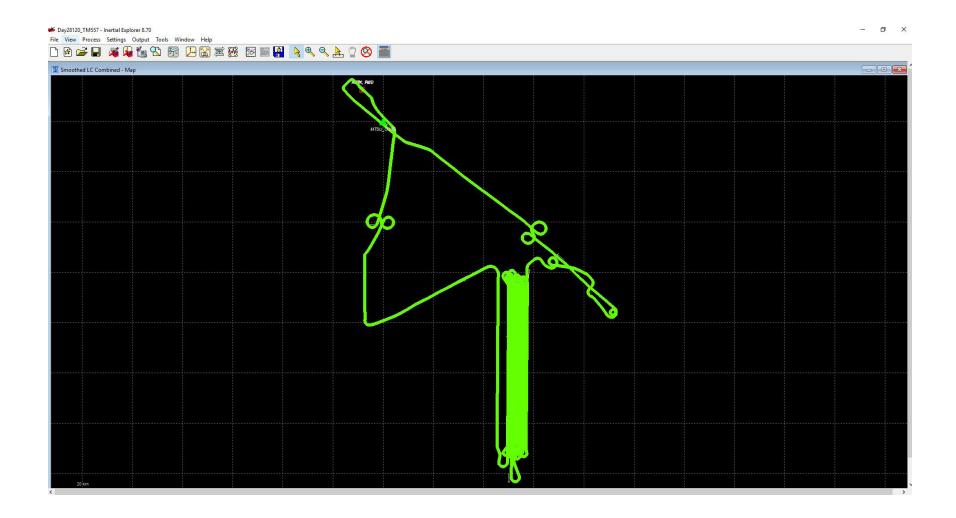


Day27320_TM511 Forward/Reverse or Combined Separation Plot


Day27320_TM511

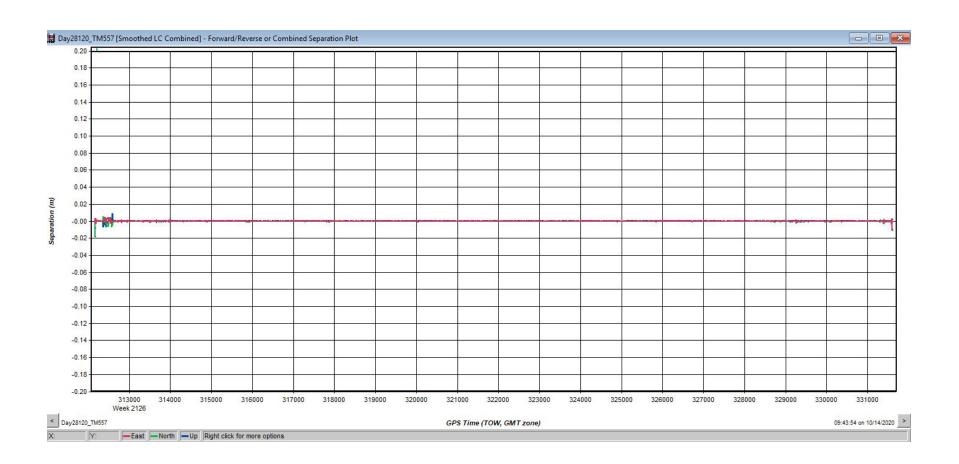
Estimated Position Accuracy

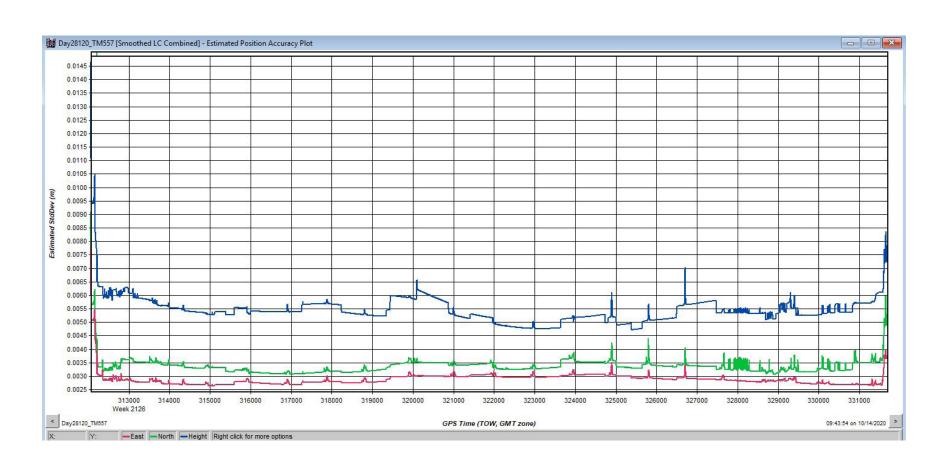
United States Geological Survey


Day27320_TM511 PDOP Plot

United States Geological Survey

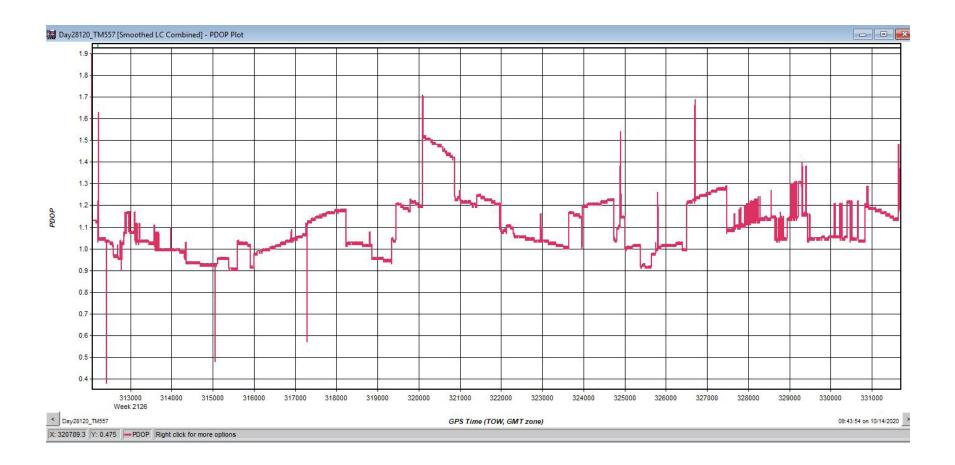
140G0220F0199 - WY Yellowstone NP 1RF 2020 D20 Project ID 196958 - Work Unit 225074


Day28120_TM557 Trajectory


Lidar Mapping Report - Appx. 3 GPS / IMU Graphics

Day28120_TM557

Forward/Reverse or Combined Separation Plot

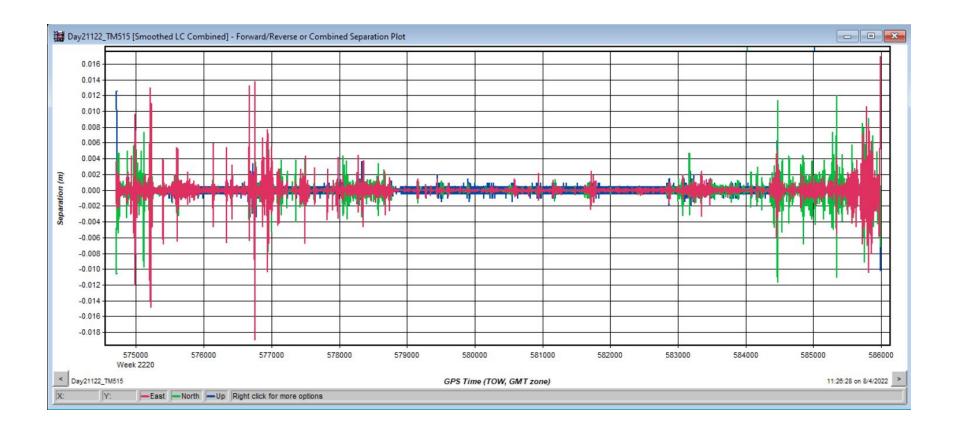

Day28120_TM557 Estimated Position Accuracy

140G0220F0199 - WY Yellowstone NP 1RF 2020 D20 Project ID 196958 - Work Unit 225074

United States Geological Survey

Day28120_TM557 PDOP Plot

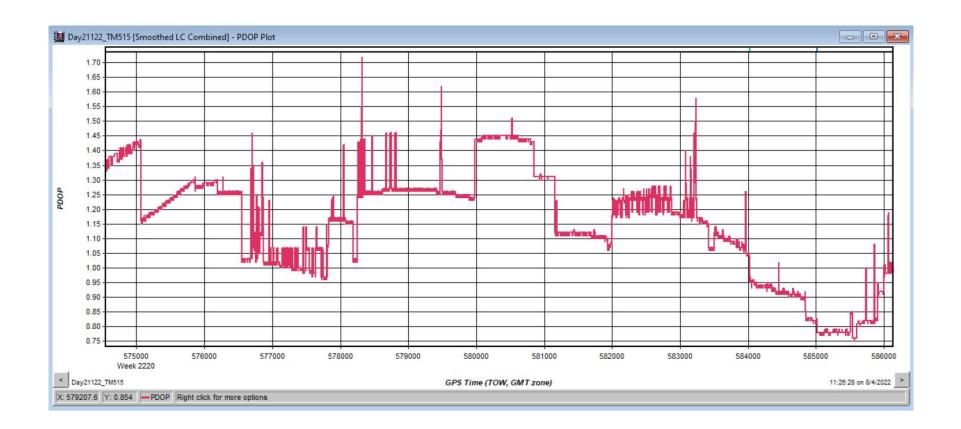
United States Geological Survey


140G0220F0199 - WY Yellowstone NP 1RF 2020 D20 Project ID 196958 - Work Unit 225074

Day21122_TM515 Trajectory

Day21122_TM515

Forward/Reverse or Combined Separation Plot



Day21122_TM515 Estimated

Position Accuracy

DayDay21122_TM515 PDOP Plot

