Check Point Survey Report "Western Tennessee LiDAR Quality Assurance" USACE, St. Louis Contract: W912P9-10-D-0534 Task Order Number: 0001

Prepared for: UNITED STATES ARMY CORPS OF ENGINEERS

Prepared By: **Dewberry & Davis, LLC** 10003 Derekwood Lane, Suite 204 Lanham, Maryland, 20706 Phone (301)364-1855 Fax (301)731-0188

TABLE OF CONTENTS

1.	Introduction							
	1.1	Project Summary						
	1.2	Points of Contact(s)						
	1.3	Project Area4-5						
2.	Proje	Project Details						
	2.1	Survey Equipment6						
	2.2	Survey Point Details6						
	2.3	Network Design6						
	2.4	Field Survey Procedures and Analysis7						
	2.5	Adjustment8						
	2.6	Data processing Procedures						
3.	Final	Coordinates9-10						
4.	GPS	Observation & Re-Observation Schedule11-12						
5.	Point	Comparison Report13						
6.	Deliv	verablesSent via Electronic Transfer						
	Including: a) Point Documentation Report & Photos of Survey Points							
		b) Final Coordinate List in Excel Format						
		c) NGS Data Sheets for Project Controls						

1. INTRODUCTION

1.1 *Project Summary*

Dewberry & Davis, LLC is under contract to the United States Army Corps of Engineers to provide 65 QA Check Points for portions of western Tennessee. Under the above referenced USACE Task Order, Dewberry is tasked to complete the quality assurance of high resolution LiDAR-derived elevation products. As part of this work Dewberry staff will complete checkpoint surveys that will be used to evaluate vertical accuracy on the bare-earth terrain derived from the LiDAR.

Existing NGS Control Points were located and surveyed to check the accuracy of the RTK/GPS survey equipment with the results shown in Section 2.4 of this Report.

As an internal QA/QC procedure and to verify that the Check Points meet the 95% confidence level approximately 50% of the points were re-observed and are shown in Section 5 of this report.

Final horizontal coordinates are referenced to UTM, Zone 16, NAD83 (NSRS 2007), in meters. Final Vertical elevations are referenced to NAVD 88 in meters, orthometric heights, using Geoid 09.

1.2 Points of Contact

Questions regarding the technical aspects of this report should be addressed to:

Dewberry & Davis, LLC

Gary Simpson, L.S. Associate 10003 Derekwood Lane Suite 204 Lanham, Maryland 20706 (301) 364-1855 direct (301) 731-0188 fax

PROJECT DETAILS

2.1 Survey Equipment

In performing the GPS observations, Trimble R-8 GNSS receiver/antenna attached to a two meter fixed height pole with a Trimble TSC2 Data Collector to collect GPS raw data were used to perform the field surveys.

2.2 Survey Point Detail

The 65 Check Points were well distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

A sketch was made for each location and a nail was set at the point where possible or at an identifiable point. The Check Point locations are detailed on the "Ground Control Point Documentation Report" sheets attached to this report.

2.3 Network Design

The GPS survey performed by Dewberry & Davis, Inc office located in Charlotte, NC was tied to a Real Time Network (RTN) managed by Earl Dudley, Inc. The network is a series of "real-time" continuously operating, high precision GPS reference stations. All of the reference stations have been linked together using Trimble GPSNet software, creating a Virtual Reference Station System (VRS).

The Trimble NetR5 Reference Station is a multi-channel, multi-frequency GNSS (Global Navigation Satellite System) receiver designed for use as a stand-alone reference station or as part of a GNSS infrastructure solution. Trimble R-Track technology in the NetR5 receiver supports the modernized GPS L2C and L5 signals as well as GLONASS L1/L2 signals.

2.4 Field Survey Procedures and Analysis

Dewberry & Davis, Inc used Trimble R-8 GNSS receivers, which is a geodetic quality dual frequency GPS receiver, to collect data at each surveyed location.

All locations were occupied once with approximately 50% of the locations being reobserved. All re-observations matched the initially derived station positions within the allowable tolerance of \pm 5cm or within the 95% confidence level. Each occupation which utilized the VRS network was occupied for approximately three (3) minutes in duration and measured to 180 epochs.

Each occupation which utilized OPUS (if used) was occupied between 18 and 20 minutes.

Field GPS observations are detailed on the "Ground Control Point Documentation Reports" submitted as part of this report.

Three (3) existing NGS monuments listed in the NSRS database were located as an additional QA/QC method to check the accuracy of the VRS network as well as being the primary project control monuments designated as PID GD1864, FE2743 and DF7952. The results are as follows:

	As Surveyed (m)			Published (m)			Differences (m)		
NGS PT. ID	Northing(m)	Easting(m)	Elev.(m)	Northing(m)	Easting(m)	Elev.(m)	ΔN	$\Delta \mathbf{E}$	Δ Elev.
GPS-16	4019915.117	341042.783	123.765	4019915.158	341042.843	123.810	0.041	0.044	0.045
GPS-31	3978322.256	358119.153	160.080	3978322.214	358119.138	160.060	0.042	0.015	0.020
GR35308830	3929542.576	364127.095	177.676	3929542.518	364127.066	177.760	0.045	0.029	0.045

The above results indicate that the VRS network is providing positional values within the 5cm parameters for this survey.

2.5 Adjustment

The survey data was collected using Virtual Reference Stations (VRS) methodology within a Virtual Reference System (VRS).

The system is designed to provide a true Network RTK performance, the RTKNet software enables high-accuracy positioning in real time across a geographic region. The RTKNet software package uses real-time data streams from the GPSNet system user and generates correction models for high-accuracy RTK GPS corrections throughout the network. Therefore, corrections were applied to the points as they were being collected, thus negating the need for a post process adjustment.

2.6 Data Processing Procedures

After field data is collected the information is downloaded from the data collectors into the office software. The Software program used is called TGO or Trimble Geomatics Office.

Downloaded data is run through the TGO program to obtain the following reports; points report, point comparison report and a point detail report. The reports are reviewed for point accuracy and precision.

After review of the point data an "ASCII" or "txt" file which is the industry standard is created. Point files are loaded into our CADD program (Carlson Survey 2010) to make a visual check of the point data (Pt. #, Coordinates, Elev. and Description). The data can now be imported into the final product.

3. FINAL COORDINATES

Western Tennessee LiDAR QA								
	UTM ZONE 16	COORDINATE	SYSTEM					
	NAD83 (m) NAVD88 (m)							
POINT ID	NORTHING (m)	EASTING (m)	ORTHO HEIGHT (m)					
	OPEN TERRAIN POINTS							
OT-1	4049907.640	289945.985	89.367					
OT-2	4047970.861	304368.957	112.505					
OT-3	4043755.984	343395.275	140.964					
OT-4	4048546.271	367641.024	168.794					
OT-5	4025330.811	329817.948	112.500					
OT-6	4030094.056	349375.762	130.389					
OT-7	4033900.306	373227.887	148.984					
OT-8	4024706.928	367001.532	159.809					
ОТ-9	4017452.144	346136.297	127.363					
OT-10	4002968.264	337927.239	129.605					
OT-11	4009951.131	354721.756	124.110					
OT-12 4006933.234		373346.052	160.290					
OT-13	3999895.003	345662.642	142.549					
OT-14	3993443.767	368027.546	147.250					
OT-15	3990261.868	377117.831	140.939					
OT-16	3983720.451	358096.711	128.291					
OT-17	3977871.976	373230.811	141.456					
OT-18	3969755.295	350225.878	167.648					
OT-19	3961394.052	361165.067	188.806					
OT-20	3946196.752	365675.288	159.277					
OT-21	3933866.487	361680.219	156.057					
OT-22	3913981.450	354538.651	138.286					
GRASS, WEEDS, CROPS POINTS								
GWC-1	4045825.528	296343.859	88.808					
GWC-2	4043378.797	330471.153	125.883					
GWC-3	4038288.650	346717.463	136.383					
GWC-4	4043417.818	361257.759	169.737					
GWC-5	4028824.765	379807.963	181.260					
GWC-6	4030264.404	365350.035	140.218					
GWC-7	4027056.977	342845.684	116.240					

GWC-8	4017493.661	333407.271	105.673
GWC-9	4017498.350	351847.313	161.613
GWC-10	4016738.674	375743.968	149.310
GWC-11	4008864.861	360744.771	144.852
GWC-12	4008620.615	343036.177	117.702
GWC-13	4001587.357	353748.495	112.081
GWC-14	3996648.848	379411.701	126.872
GWC-15	3995244.448	360206.428	110.044
GWC-16	3987469.150	370400.878	134.777
GWC-17	3981010.623	364344.798	128.661
GWC-18	3971245.356	357881.823	138.358
GWC-19	3955372.908	365960.522	153.563
GWC-20	3948127.949	358440.123	160.620
GWC-21	3941261.974	361687.862	129.442
GWC-22	3910737.871	359178.734	170.314
	FO	REST POINTS	
FO-1	3909569.952	351039.841	144.344
FO-2	3935149.828	366896.075	141.108
FO-3	3952500.611	357458.634	171.513
FO-4	3964501.654	351271.451	145.570
FO-5	3971479.694	365264.316	158.371
FO-6	3979015.464	356518.959	144.062
FO-7	3984265.939	376137.621	119.325
FO-8	3988908.528	362614.675	142.846
FO-9	3997503.242	371585.684	151.872
FO-10	4005535.554	360764.578	139.161
FO-11	4000595.381	340852.201	132.520
FO-12	4010663.085	328464.954	103.159
FO-13	4011902.706	346918.022	108.309
FO-14	4012460.756	366040.808	130.483
FO-15	4020196.111	379421.969	168.141
FO-16	4023638.692	356088.513	149.606
FO-17	4033164.195	341848.656	125.005
FO-18	4038132.403	365888.510	124.507
FO-19	4045860.741	353120.220	163.329
FO-20	4043733.057	322747.653	108.728
FO-21	4044818.368	299081.833	99.766

4. GPS OBSERVATION & RE-OBSERVATION SCHEDULE

					RE-OBSERV			
	OBSERV. DATE	IUI IAN DATE	TIME OF DAY	DATE	TIMF			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
01-1	2/15/2012	40	0:55		N/A			
01-2	2/15/2012	40	7:38	N/A	N/A			
01-3	2/15/2012	46	16:51	N/A	N/A			
01-4	2/1//2012	48	/:11	N/A	N/A			
01-5	2/16/2012	47	11:01	2/19/2012	12:09			
OT-6	2/17/2012	48	14:05	2/19/2012	13:17			
OT-7	2/16/2012	47	15:01	2/19/2012	15:05			
OT-8	2/16/2012	47	14:30	2/19/2012	14:40			
OT-9	2/16/2012	47	9:14	2/18/2012	13:56			
OT-10	2/19/2012	50	7:20	2/14/2012	8:50			
OT-11	2/16/2012	47	7:13	2/19/2012	9:49			
OT-12	2/16/2012	47	16:35	2/19/2012	16:13			
OT-13	2/19/2012	50	7:50	2/19/2012	15:55			
OT-14	2/17/2012	48	13:45	2/18/2012	16:25			
OT-15	2/17/2012	48	12:20	N/A	N/A			
OT-16	2/17/2012	48	15:05	2/18/2012	11:40			
OT-17	2/17/2012	48	10:00	N/A	N/A			
OT-18	2/16/2012	47	15:15	2/18/2012	6:20			
OT-19	2/16/2012	47	14:35	2/17/2012	7:20			
OT-20	2/15/2012	46	13:20	2/16/2012	12:15			
OT-21	2/15/2012	46	11:10	2/16/2012	10:44			
OT-22	2/15/2012	46	8:50	N/A	N/A			
GRASS, WEEDS, CROPS POINTS								
GWC-1	2/15/2012	46	9:53	N/A	N/A			
GWC-2	2/15/2012	46	15:54	N/A	N/A			
GWC-3	2/16/2012	47	13:15	N/A	N/A			
GWC-4	2/17/2012	48	8:35	N/A	N/A			
GWC-5	2/16/2012	47	15:29	2/19/2012	15:26:00			
GWC-6	2/16/2012	47	14:05	N/A	N/A			
GWC-7	2/16/2012	47	11:47	2/18/2012	16:46			
GWC-8	2/16/2012	47	10:04	2/18/2012	11:39			

Western Tennessee LiDAR QA

Dewberry

GWC-9	2/16/2012	47	8:42	N/A	N/A
GWC-10	2/16/2012	47	16:00	2/19/2012	15:50
GWC-11	2/16/2012	47	6:37	2/19/2012	9:26
GWC-12	2/16/2012	47	7:51	2/19/2012	10:19
GWC-13	2/19/2012	50	16:25	N/A	N/A
GWC-14	2/17/2012	48	12:45	2/19/2012	14:20
GWC-15	2/17/2012	48	14:30	N/A	N/A
GWC-16	2/17/2012	48	11:25	2/18/2012	14:00
GWC-17	2/17/2012	48	15:20	N/A	N/A
GWC-18	2/16/2012	47	15:45	2/18/2012	7:20
GWC-19	2/16/2012	47	14:00	N/A	N/A
GWC-20	2/15/2012	46	14:20	2/17/2012	6:40
GWC-21	2/15/2012	46	12:20	N/A	N/A
GWC-22	2/15/2012	46	7:30	N/A	N/A
		FORES			
FO-1	2/16/2012	47	8:30	N/A	N/A
FO-2	2/16/2012	47	11:30	N/A	N/A
FO-3	2/16/2012	47	13:15	N/A	N/A
FO-4	2/17/2012	48	8:00	2/19/2012	14:21
FO-5	2/18/2012	49	8:00	N/A	N/A
FO-6	2/17/2012	48	9:20	N/A	N/A
FO-7	2/18/2012	49	14:40	N/A	N/A
FO-8	2/18/2012	49	12:45	2/19/2012	9:45
FO-9	2/19/2012	50	13:20	N/A	N/A
FO-10	2/19/2012	50	12:30	N/A	N/A
FO-11	2/19/2012	50	9:45	N/A	N/A
FO-12	2/18/2012	49	12:49	N/A	N/A
FO-13	2/18/2012	49	9:00	2/19/2012	13:22
FO-14	2/18/2012	49	6:20	N/A	N/A
FO-15	2/18/2012	49	7:30	N/A	N/A
FO-16	2/18/2012	49	14:15	N/A	N/A
FO-17	2/17/2012	48	14:56	N/A	N/A
FO-18	2/17/2012	48	12:12	N/A	N/A
FO-19	2/17/2012	48	10:15	2/19/2012	16:44
FO-20	2/15/2012	46	14:10	N/A	N/A
FO-21	2/15/2012	46	10:31	N/A	N/A

5. <u>POINT COMPARISON REPORT</u>

Western Tennessee LiDAR OA							
POINT ID	POINT CK		~	VERT. DIFF			
NO.	NO.	DELTA NORTH (m)	DELTA EAST (m)	(m)			
OT-5	OT-5CK	0.029	0.032	0.041			
OT-6	OT-6CK	0.041	0.043	0.032			
OT-7	OT-7CK	0.005	0.000	0.020			
OT-8	OT-8CK	0.026	0.029	0.011			
OT-9	ОТ-9СК	0.032	0.035	0.010			
OT-10	ОТ-10СК	0.014	0.004	0.005			
OT-11	OT-11CK	0.011	0.043	0.043			
OT-12	OT-12CK	0.002	0.007	0.003			
OT-13	OT-13CK	0.022	0.002	0.008			
OT-14	OT-14CK	0.017	0.018	0.044			
OT-16	OT-16CK	0.044	0.013	0.044			
OT-18	OT-18CK	0.043	0.045	0.045			
OT-19	ОТ-19СК	0.038	0.022	0.045			
OT-20	ОТ-20СК	0.012	0.016	0.014			
OT-21	OT-21CK	0.025	0.027	0.045			
GWC-5	GWC-5CK	0.042	0.018	0.014			
GWC-7	GWC-7CK	0.046	0.045	0.045			
GWC-8	GWC-8CK	0.045	0.045	0.043			
GWC-10	GWC-10CK	0.022	0.000	0.018			
GWC-11	GWC-11CK	0.011	0.005	0.020			
GWC-12	GWC-12CK	0.025	0.045	0.044			
GWC-14	GWC-14CK	0.044	0.043	0.045			
GWC-16	GWC-16CK	0.007	0.008	0.006			
GWC-18	GWC-18CK	0.022	0.033	0.045			
GWC-20	GWC-20CK	0.003	0.030	0.045			
FO-4	FO-4CK	0.025	0.035	0.021			
FO-8	FO-8CK	0.012	0.019	0.009			
FO-13	FO-13CK	0.034	0.025	0.026			
FO-19	FO-19CK	0.029	0.038	0.022			