A					
			ľ	PA	
			RT)LPEI	
NR					
UNITED STA					
Т					

IRBORNE LIDAR PROJECT REPORT

NRCS AR-TN LIDAR TASK ORDER

UNITED STATES GEOLOGICAL SURVEY (USGS)

CONTRACT NUMBER: G10PC00057 TASK ORDER NUMBER: G10PD01063

WOOLPERT PROJECT #70452

SEPTEMBER 2010

PREPARED BY:

WOOLPERT, INC. 4454 Idea Center Boulevard Dayton, Ohio 45430-1500 AIRBORNE LIDAR PROJECT REPORT

NRCS AR-TN LIDAR TASK ORDER

UNITED STATES GEOLOGICAL SURVEY (USGS)

CONTRACT NUMBER: G10PC00057 TASK ORDER NUMBER: G10PD01063

WOOLPERT PROJECT #70452

SEPTEMBER 2010

TABLE OF CONTENTS

Section	1	Overview
Section	2	
	Equipment	
	Data Processing	
	Trajectory Quality	
	Flight Trajectory	
	Combined Separation	
	Estimated Positional Accuracy	
	Positional Dilution of Precision (PDOP)	
Section	3	Flight Logs
Section	4	LiDAR System Specifications
	Antenna Offsets	
	Base Station GPS Antenna	
	Calibration Results	
Section	5	
Section 1	LiDAR Data Processing	
Section	6	Data Analysis
Section	0	
	Accuracy Assessment	
Section	7	Hydro Flattening Processing and Quality Control
	Hydro Flattening of LiDAR Data	
	LiDAR Data Review and Processing	
	Data QA/QC	
	Final Deliverables	

Tables

Table 1.1: Airborne LiDAR Acquisition Flight Summary	.1-3
Table 2.1: Global Navigation Satellite System (GNSS) Base Station	.2-1
Table 4.1: ALS50-II MPiA LiDAR System Specifications	.4-1
Table 4.2: ALS50-II S/N 64	.4-2
Table 4.3: N27NW: Cessna 406 with ALS50-II S/N 64 installed	.4-2
Table 4.4: Base Station Global Navigation Satellite System (GNSS) Equipment	.4-2
Table 4.5: Final Calibration Parameters for ALS50-II S/N 64	.4-3
Table 6.1: Fundamental Vertical Accuracy Statistics for Area One	.6-1
Table 6.2: Fundamental Vertical Accuracy Statistics for Area Two	.6-1
Table 6.3: Consolidated Vertical Accuracy Statistics for Area One	.6-2
Table 6.4: Consolidated Vertical Accuracy Statistics for Area Two	.6-2

Figures

Figure 1.1: NRCS AR-TN LiDAR Task Order Area of Interest	.1-1
Figure 1.2: Airborne LiDAR Flight Line Diagram	.1-2

Figure 2.1: Example Graph 20100404 Cane 02 ALS LiDAR S/N64	2-2
Figure 2.2: Example Graph of Combined Separation	
Figure 2.3: Example Graph of Estimated Positional Accuracy	2-4
Figure 2.4: Example Graph of Positional Dilution of Precision (PDOP)	2-5
Figure 7.1: DEM generated from original LiDAR bare earth point data	7-2
Figure 7.2: DEM generated from LiDAR with breaklines	7-2

SECTION 1: OVERVIEW

Task Order Name: NRCS AR-TN LIDAR

Woolpert Project #70452

This report contains a comprehensive outline of the airborne LiDAR data acquisition for the NRCS AR-TN LiDAR Task Order; Contract Number G10PC00057; Task Order Number G10PD01063, for the United States Geological Survey (USGS). The task order consisted of LiDAR data acquisition, processing, hydrologic flattening of water bodies and production of derivative products of approximately 482 square miles in Arkansas and Tennessee. The LiDAR data was collected at a nominal pulse spacing (NPS) of 0.70 meters for Area 1 (395 sq. mi.) and at a nominal pulse spacing of 0.50 meters for Area 2 (87 sq. mi.).

Figure 1.1: NRCS AR-TN LiDAR Task Order Area of Interest

The data was collected using a Leica ALS50-II 150 kHz Multiple Pulses in Air (MPiA) LiDAR sensor installed in a Leica gyro-stabilized PAV30 mount. The ALS50-II 150 kHz sensor collects up to four returns per pulse, as well as intensity data, for the first three returns. If a fourth return was captured, the system does not record an associated intensity value.

The LiDAR data for the Area 1 (Sharkey) AOI was acquired at the following specifications:

Flying Height	
Aircraft Speed	
Scan Angle	
Number of Flights	
Side Lap (Average)	
Scan Frequency	51.8 Hz
Laser Pulse Rate	

The LiDAR data for the Area 2 (Cane Creek) AOI was acquired at the following specifications:

Figure 1.2: Airborne LiDAR Flight Line Diagram

The LiDAR data was collected in eleven (11) separate sorties, flown as close together as the weather permitted, to ensure consistent ground conditions across the project area.

An initial quality control process was performed immediately on the LiDAR data to review the data coverage, airborne GPS data, and trajectory solution. Any gaps found in the LiDAR data were relayed to the flight crew, and the area was re-flown.

During airborne operations, a Global Navigation Satellite System (GNSS) Base Station was deployed at the KHKA, Blytheville, Arkansas Municipal Airport, for the airborne GPS support.

Airborne LiDAR Acquisition Flight Summary													
Date of Mission	Lines Flown	Mission Time (UTC) Wheels Up/ Wheels Down	Mission Time (Local = CDT) Wheels Up/Wheels Down										
April 03, 2010 – Sensor 64	2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 67-76: Cane Creek	17:01 - 19:55	12:01 - 14:55										
April 04, 2010 – Sensor 64	25-60,65, 66, and 79: Cane Creek	11:53 - 17:42	06:53 - 12:42										
April 04, 2010 – Sensor 64	61-64, and 77: Cane Creek	22:10 - 23:40	17:10 - 18:40										
April 05, 2010 – Sensor 64	1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23: Cane Creek	11:47 - 13:30	06:47 - 08:30										
April 09, 2010 – Sensor 64	21-52: Middle Ditch	11:50 - 19:10	06:50 - 14:10										
April 09, 2010 – Sensor 64	1-20: Middle Ditch 1-7: Cold Creek	19:55 - 02:34	14:55 - 21:34										
April 10, 2010 – Sensor 64	8-43: Cold Creek	11:57 - 18:22	06:57 - 13:22										
April 10, 2010 – Sensor 64	1-5: Cane Creek Reflights	19:36 - 20:25	14:36 - 15:25										
April 13, 2010 – Sensor 64	17, 18, 20, 24, 34, 37, 42, 46, and 49: Middle Ditch Reflights	20:51 - 23:03	15:51 - 18:03										
April 14, 2010 – Sensor 64	48, 50, and 53: Middle Ditch Reflights	17:33 - 18:16	12:33 - 13:16										
April 15, 2010 – Sensor 64	45 and 47: Middle Ditch Reflights	19:29 - 20:42	14:29 - 15:42										

 Table 1.1: Airborne LiDAR Acquisition Flight Summary

Note, the task order AOIs were collected as three separate LiDAR acquisition blocks. They are listed above as Cane Creek, Cold Creek, and Middle Ditch. The Sharkey Area AOI in Arkansas was identified as Middle Ditch. The Sharkey Area AOI in Tennessee was identified as Cold Creek. The Cane Creek Watershed is the Cane Creek AOI in Tennessee.

SECTION 2: GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS)-INERTIAL MEASUREMENT UNIT (IMU) TRAJECTORY INFORMATION

Equipment

Flight navigation during the LiDAR acquisition mission is performed using IGI CCNS (Computer Controlled Navigation System). The pilots are highly skilled at maintaining their planned trajectory, while holding the aircraft steady and level. If atmospheric conditions were such that the trajectory, ground speed, roll, pitch and/or heading could not be properly maintained, the mission was aborted until suitable flying conditions occurred.

The LiDAR sensor was equipped with a NovAtel OEM-5 and Honeywell Laseref-V IRS embedded in the sensor IPAS system.

A base-station unit was deployed during each sortie. The base-station setup consisted of NovAtel DL5 GPS/GLONASS L1/L2 receiver, GG702 antenna with a tripod height of 1.75m. The data was collected at 1 Hz.

The base station was KHKA, located at Blytheville Municipal Airport in Arkansas.

Table 2.1: Global Navigation Satellite System (GNSS) Base Station

Station Name	Latitude (DMS)	Longitude (DMS)	Ellipsoid Height (L1 Phase Center) (Meters)
KHKA Primary	N 35° 56' 14.69524"	W 89° 49' 53.00479"	48.989
KHKA Secondary	N 35° 56' 14.82390"	W 89° 49' 52.97891"	48.962

Data Processing

All airborne Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) data was post-processed and quality controlled using Grafnav Waypoint software and either Applanix POSPac or Leica IPAS software. The Global Navigation Satellite System (GNSS) data was processed at 1 Hz data capture rate and the Inertial Measurement Unit (IMU) data was processed at 200 Hz.

Trajectory Quality

The Global Navigation Satellite System (GNSS) Trajectory, along with high quality Inertial Measurement Unit (IMU) data, is a key factor in determining the overall positional accuracy of the final sensor data.

Flight Trajectory

Figure 2.1: Example Graph 20100404_Cane_02 ALS LiDAR S/N64

Within the trajectory processing, there are many factors that affect the overall quality, but the most indicative are the Combined Separation, the Estimated Positional Accuracy, and the Positional Dilution of Precision (PDOP).

Combined Separation

The Combined Separation is a measure of the difference between the forward run and the backward run solution of the trajectory. The Kalman filter is run in both directions to remove directional specific anomalies. The closer these two solutions match; in general, the better is the overall reliability of the solution.

Figure 2.2: Example Graph of Combined Separation

20100404_CANE_02 [Combined] - Forward/Reverse or Combined Separation Plot

Estimated Positional Accuracy

The Estimated Positional Accuracy plots the standard deviations of the east, north, and vertical directions along a time scale of the trajectory. It illustrates loss of lock issues, as well as issues arising from long baselines, noise, and/or other interference.

Woolpert's goal is to maintain an Estimated Positional Accuracy of less than ten (10) centimeters, often achieving results well below this threshold.

Figure 2.3: Example Graph of Estimated Positional Accuracy

20100404_CANE_02 [Combined] - Estimated Position Accuracy Plot

Positional Dilution of Precision (PDOP)

The Positional Dilution of Precision (PDOP) is a factor that describes the effects of satellite geometry on the accuracy of the airborne Global Navigation Satellite System (GNSS) solution. The geometric distribution of the satellites is measured relative to the locations of the receivers on the ground and in the aircraft. Positional Dilution of Precision (PDOP) can be computed in advance, based on the approximate receiver locations and the predicted location of the satellite, which is called the satellite ephemeris.

Low Positional Dilution of Precision (PDOP) values are preferable; the higher the Positional Dilution of Precision (PDOP) value, the weaker the geometric quality of solution between the satellite, aircraft, and reference receivers.

Woolpert's goal is to maintain a final Positional Dilution of Precision (PDOP) of less than three (3) during data acquisition missions. Satellite geometry and the resultant Positional Dilution of Precision (PDOP) levels are dynamic, changing with the position of the aircraft. Occasionally, one satellite in the network will drop below the horizon, breaking its connection to the receiver, and the Positional Dilution

of Precision (PDOP) level will spike above three (3) momentarily. Small deviations of this type are accounted for during post-processing of the data through the use of Kalman filtering. If Positional Dilution of Precision (PDOP) value in the aircraft rises above three (3) for a significant time period, the survey is stopped until the geometry improves or the flight is marked for a re-flight, if post processing signifies a significant loss of accuracy due to the Positional Dilution of Precision (PDOP).

Figure 2.4: Example Graph of Positional Dilution of Precision (PDOP)

SECTION 3: FLIGHT LOGS

This section contains the Flight Logs for the task order. The Flight Logs list mission specific details such as crew members, airports, weather conditions, real time Positional Dilution of Precision (PDOP) values and document any issues encountered during the acquisition mission. The Flight Logs are filled out by the sensor operator during the acquisition mission.

The LiDAR data was collected in eleven (11) separate sorties, flown as close together as the weather permitted, to ensure consistent ground conditions across the project area.

Note, the task order AOIs were collected as three separate LiDAR acquisition blocks. They are listed in the flight logs as Cane Creek, Cold Creek, and Middle Ditch. The Sharkey Area AOI in Arkansas was identified as Middle Ditch. The Sharkey Area AOI in Tennessee was identified as Cold Creek. The Cane Creek Watershed is the Cane Creek AOI in Tennessee.

							ŀ	Aire	L	.iπ веди	l Hobbe	Airport		Hot	bbe	⊢∎ Duration	11 Hre	HODDS	Actuitu	Λ		2
	\subseteq		Y	¥Ø			1	KL	.IT	14:41	3 110003	KBYH	15:23	1100	003	0:42	0.7	1113	Transit		L	כ
							2	KB	YH	15:37	'	KHKA	15:43				0.1		Transit	Eliah	4 1	~ ~
NOR	Tŀ	1 W	'ES	ST	GRO	UP	3	KH	KA	17:01		KHKA	19:55			2:54	2.9		Production	Fligh	LL	.0g
Northwest Jo 10-702	ob #	Wool	Pro pert-	ject Na AR/1	me [N-LIDAR	Ope Roch	Roch Cherr		064		IMU 1070	мріа 2	Min Ra 144	nge' 0	Max	k Range' 2064	Ground 16.0	Temp*C	Shipping Tra	ick Number	Base ID	
Flight Date 3-Apr-1	3-Apr-10 10-093 1 ALS5			System	Pi Don		Su	n"	Solar Time	s (ராc)	Laser Po	ower c	Pu 12	Ise Rate	Flying	Temp °C	Data Logo	per Drive	1	nt Ht 75m		
Mission ID (D:	aySensor	JobLift)	FI	MS	Aircraft	Airport ID	UT	c	FOV	Altitud	e Speed	Scan Hz	SW1	SW2	12	mi / Wpt	Altm	Setting	Download Ex	ternal Drive	Re	ec ID
20100403_	CAN	NE_01	FC	MS	N27NW	KHKA			15	6,70) 135	70.7					3.00	3.00	Mini	G-1		
Area	Fli	ght# Client's	W	/pt To	Distance Begin: End	UT Start	TC Fn	d	Flt Dir	Altitude (feet)	e Speed (knots)	Scan Rate				Com	nments a	ind Cond	itions		SVs	PDOP
Cane Creek		o lo li c			bogin Lina	16:52:25	20:0	- 7:00		(1001)	(unote)	Thur				IPA	S STAR	T/END			11	1.4
Cane Creek						16:54:23	16:5	5:03									Bit Te	est#1			11	1.4
Cane Creek						16:55:46	16:5	6:15									Bit T	est #2			11	1.4
Cane Creek						17:08:35	17:13	3:00	00	6700	135	70.7					S-t	urns			11	1.5
Cane Creek	72		1	8		17:14:33	17:1	5:00	252	6700	135	70.7				Bo	orsite 1	-Good F	Run		11	1.4
Cane Creek	71		10	1		17:26:41	17:2	B:56	72	6700	135	70.7					SCRU	B-Spee	d		11	1.6
Cane Creek	71		10	1		17:26:41	17:2	B:56	252	6700	135	70.7				Bo	orsite 2	-Good F	Run		11	1.9
Cane Creek	71		10	1		17:33:39	17:3	6:13	72	6700	135	70.7					Borsi	te Bidir			11	1.9
Cane Creek	78		1	13		17:40:35	17:43	3:00	156	6700	135	70.7				Borsite P	arallel-	Tieline-	Good Run		11	1.9
Cane Creek	2		1	7		17:48:38	17:5	0:08	72	6700	135	70.7					Goo	d Run			11	1.8
Cane Creek	4		7	1		17:54:48	17:5	6:00	252	6700	135	70.7					Goo	d Run			11	1.8
Cane Creek	6		1	8		18:00:48	18:0	2:53	72	6700	135	70.7					G00	d Run			11	1.7
Cane Creek	8		8	1		18:08:05	18:10	0:10	252	6700	135	70.7					G00	d Run			11	1.6
Cane Creek	10		1	9		18:14:08	18:10	5:00	72	6700	135	70.7					G00	d Run			10	2.2
Cane Creek	12		8	1		18:20:55	18:23	3:00	252	6700	135	70.7					G00	d Run			10	2
Cane Creek	14		1	9		18:26:32	16:28	3:33	72	6700	135	70.7					G00	d Run			10	2
Cane Creek	16		9	1		18:32:44	18:34	4:47	252	6700	135	70.7					G00	d Run			10	1.9
Cane Creek	18		1	9		18:38:33	18:4	0:30	72	6700	135	70.7					G00	d Run			11	1.4
Cane Creek	20		9	1		18:45:03	18:4	7:15	252	6700	135	70.7					G00	d Run			12	1.3
Cane Creek	22		1	9		18:50:45	18:53	2:48	72	6700	135	70.7					G00	d Run			12	1.3
Cane Creek	24		11	1		18:57:00	18:59	9:43	252	6700	135	70.7					G00	d Run			12	1.3
Cane Creek	70		1	16		19:04:48	19:09	9:00	72	6700	135	70.7					G00	d Run			12	1.3
Cane Creek	69		17	1		19:13:13	19:1	7:20	252	6700	135	70.7					G00	d Run			11	1.4
Cane Creek	68		1	18		19:20:51	19:2	5:05	72	6700	135	70.7					G00	d Run			11	1.4
Cane Creek	67		18	1		19:29:33	19:33	3:53	252	6700	135	70.7				Check C	loud 11	l km in.	Complete		9	1.7
Cane Creek	73		1	1		19:37:29	19:3	7:39	72	6700	135	70.7					G00	d Run			9	1.5
Cane Creek	74		1	1		19:41:57	19:42	2:15	252	6700	135	70.7					Goo	d Run			9	1.5
Cane Creek	75		1	1		19:45:51	19:4	6:04	72	6700	135	70.7					Goo	d Run			9	1.5
Cane Creek	76		1	1		19:50:08	19:50	0:14	252	6700	135	70.7					Goo	d Run			9	1.5
Cane Creek						19:51:00	19:5	5:00	00	6700	135	70.7					S-t	urns			9	1.5

1									1	Lift Begin	Ushba	4. in a d	Lift End			Fit	Fit	Hobbs				
	$\langle \langle \rangle$	\sim	Y	Ý	$\mathbf{\mathbf{S}}$)		Air Ki	rport HKA	11:53	Hobbs	KHKA	17:42	Hobb	os D	5:49	Hrs 5.8	Hrs	Production		L	>
NOP	-	. 14		T				2												Fligh	nt I	od
Northwest J	ob #		Pro	ject Na	me	10	Operato	8 or	U	nit	IMU	MPiA	Min Rar	nge'	Max R	ange'	Ground	Temp°C	Shipping Tra	ack Number	Ba	ise ID
10-702	2	Wool	pert-	AR/T	N-LI	DAR	Roch Ch	erry	0	64	1070	2	144	0	20	64	13.0				<u> </u>	
4-Apr-1	e 10	10-0	bay) 94	2	ALS	stem 50-11	George F	erley	SI	in-	Solar Time	is (UTC)	Laser Po 79%	6 wer	120,	100	Flying 10.0	10.0	ALSS	ger Drive 500-3	1	75m
Mission ID (C	laySenso	rJobLift)	F	MS	Airo	craft	Airport ID	UTC	FOV	Altitude	Speed	Scan Hz	SW1	SW2	m	i / Wpt	Altm	Setting	Download E	kternal Drive	R	ec ID
20100404_	CAI	NE_02	FC	MS (ot	N2	(NW)			15 Fit	6,700 Altitude	135 Speed	70.7 Scan					7.00	12.00	Mini	G-1		
Area	NWG	Client's	From	То	Begin	End	Start	End	Dir	(feet)	(knots)	Rate				Con	nments a	nd Cond	itions		SVs	PDOP
Cane Creek							11:43:00 1	7:50:00								IPA	S STAR	T/END			9	1.6
Cane Creek							11:45:15 1	1:45:45									Bit Te	est#1			9	1.6
Cane Creek							11:46:18 1	1:46:45									Bit T	est #2			9	1.6
Cane Creek							12:01:00 1	2:03:00	00	6700	135	70.7					S-ti	urns			8	2.5
Cane Creek	66		18	1			12:04:57 12	2:09:00	252	6700	135	70.7				B	orsite 1-	-Good F	kun		8	2.4
Cane Creek	65		1	18			12:12:33	2.10.00	12	6700	135	70.7				В	Porcit	-GOOD F	kun		8	2.3
Cane Creek	05		9 10	1			12:21:05 1	2.23.00	160	6700	135	70.7			Bo	reito P	Dursil	Tieline-	Good Run		8	2
Cane Creek	26		10	1			12:20:33 1	2:30:00	252	6700	135	70.7				i oite i	Goo	d Run	Good IXull		9	1.4
Cane Creek	25		5	1			12:38:14 1	2:39:00	252	6700	135	70.7					Goo	d Run			8	1.0
Cane Creek	27		1	5			12:42:00 12	2:47:12	72	6700	135	70.7					Goo	d Run			8	1.9
Cane Creek	28		1	12			12:47:12 1	2:50:00	72	6700	135	70.7					Goo	d Run			8	1.9
Cane Creek	29		27	1			12:52:40 1	2:57:50	252	6700	135	70.7					Goo	d Run			8	2.1
Cane Creek	30		1	27			13:01:28 1	3:07:40	72	6700	135	70.7					Goo	d Run			8	2.1
Cane Creek	31		27	1			13:10:34 1	3:16:00	252	6700	135	70.7					Goo	d Run			9	2.3
Cane Creek	32		1	27			13:19:29 1	3:25:00	72	6700	135	70.7			G	ood Ru	.in-PDO	P out in	end turn.		9	2.1
Cane Creek	33		27	1			13:28:38 13	3:34:00	252	6700	135	70.7					Goo	d Run			10	2.1
Cane Creek	34		1	27			13:37:34 1	3:43:00	72	6700	135	70.7					Goo	d Run			10	2
Cane Creek	35		27	1			13:46:40 13	3:52:00	252	6700	135	70.7					Goo	d Run			10	2
Cane Creek	36		1	27			13:55:41 14	4:01:00	72	6700	135	70.7					Goo	d Run			9	1.8
Cane Creek	37		28	1			14:04:59 14	4:11:35	252	6700	135	70.7					Goo	d Run			9	1.8
Cane Creek	38		1	28			14:14:03 14	4:20:25	72	6700	135	70.7					Goo	d Run			10	1.8
Cane Creek	39		27	1			14:23:41 14	4:30:02	252	6700	135	70.7					Goo	d Run			10	1.6
Cane Creek	40		1	27			14:32:44 14	4:38:00	72	6700	135	70.7					GOO	d Run			10	1.6
Cane Creek	41		27	1			14:44:43 14	4:50:56	252	6700	135	70.7					GOO				10	1.5
Cane Creek	42		1	27			14:53:38 14	4.59.50	12	6700	135	70.7					Goo				10	1.5
Cane Creek	43		26	1			15:02:54 1	5:08:58	252	6700	135	70.7					GOO				10	1.5
Cane Creek	44		1	26			15:11:42 1	5:18:00	72	6700	135	70.7					Goo	d Run			10	2
Cane Creek	45		26	1			15:21:19 1	5:27:00	252	6700	135	70.7					G00	d Run			10	1.5
Cane Creek	46		1	26			15:30:12 1	5:35:56	72	6700	135	70.7					Goo	d Run			9	1.7
Cane Creek	47		25	1			15:39:04 1	5:44:00	252	6700	135	70.7					Goo	d Run			9	1.7
Cane Creek	48		1	25			15:47:22 1	5:53:00	72	6700	135	70.7					Goo	d Run			10	1.4
Cane Creek	49		24	1			15:56:05 1	5:01:40	252	6700	135	70.7					Goo	d Run			10	1.5
Cane Creek	50		1	24			16:04:19 1	5:10:00	72	6700	135	70.7					Goo	d Run			10	1.5
Cane Creek	51		24	1			16:12:49 1	6:18:00	252	6700	135	70.7					Goo	d Run			11	1.3
Cane Creek	52		1	24			16:21:07 1	5:26:00	72	6700	135	70.7					Goo	d Run			10	1.6
Cane Creek	53		24	1			16:29:38 1	6:35:16	252	6700	135	70.7					Goo	d Run			11	1.4
Cane Creek	54		1	23			16:37:54 1	5:43:18	72	6700	135	70.7					Goo	d Run			11	1.6
Cane Creek	55		24	1			16:46:18 1	6:51:45	252	6700	135	70.7					Goo	d Run			11	1.5
Cane Creek	56		1	23			16:54:21 1	6:59:45	72	6700	135	70.7					Goo	d Run			11	1.5
Cane Creek	57		23	1			17:02:56 1	7:08:20	252	6700	135	70.7					Goo	d Run			11	1.4
Cane Creek	58		1	23			17:11:11 1	7:16:00	72	6700	135	70.7	Good Run						11	1.4		
Cane Creek	59		22	1			17:19:58 1	7:25:00	252	6700	135	70.7					Goo	d Run			11	1.7
Cane Creek	60		1	22			17:27:59 1	7:33:15	72	6700	135	70.7					Goo	d Run			11	1.8
Cane Creek							17:33:25 1	7:35:33	00	6700	135	70.7					S-t	urns			10	1.9

										Lift Beain			Lift End		I Fit	I FIL	Hobbs					
	0	K)		A	irport	Chocks	Hobbs	Airport	Chocks	Hobbs	Duration	Hrs	Hrs	Actvity	Δ	5	5	
	~		Ĵ		\geq			1	НКА	11:53		KHKA	17:42		5:49	5.8		Production				
NOB	TH	1 M			G	80		2	НКА	22:10		KHKA	23:40		1:30	1.5			Fligh	t I	od	
Northwest J	ob#		Pro	ject Na	me		Ope	3 rator	1	nit	IMU	MPiA	Min Rar	nge' Ma	ax Range'	Ground	Temp°C	Shipping Tra	ick Number	Ba	se ID	
10-702	2	Wool	pert-	AR/1	N-LI	DAR	Roch	Cherry	0	64	1070	2	144	0	2064	23.0	23.0					
Flight Dat	e	GPS	Day	Lift #	Sys	stem	Pi	lot	S	un°	Solar Time	s (UTC)	Laser Po	ower Pi	ulse Rate	Flying	Temp °C	Data Logo	ger Drive	Ar	nt Ht	
4-Apr-I	U	10-0	194 FI	3	ALS	50-II	George	Herley	FOV	Altitude	Sneed	Scan Hz	79% SW1	6 I. ISW2	20,100 mi/Wnt	14.U	IU.U Setting	ALS500-3			/5m	
20100404_	04_CANE_03 FCMS N2					7NW	КНКА	010	15	6,700	135	70.7			in the	0.00	######	Mini	G-1			
	Fli	ght #	W	(pt	Dist	ance	U	TC	Fit	Altitude	Speed	Scan			Cor	nments a	nd Condi	tions				
Area	NWG	Client's	From	То	Begin	End	Start	End	Dir	(feet)	(knots)	Rate								SVs	PDOP	
Cane Creek							21:59:24								IPA	AS STAF	RT/END			8	1.8	
Cane Creek							22:03:05	22:03:4	0							Bit Te	est#1			8	1.8	
Cane Creek							22:04:11	22:04:4	0							Bit T	est #2			8	1.8	
Cane Creek							22:14:12	22:17:0	0 00	6700	135	70.7				S-t	urns			7	2.1	
Cane Creek	79		18	1			22:21:11		160	6700	135	70.7			Borsite F	Parallel-	Tieline-(Good Run		7	2.1	
Cane Creek	61		22	1			22:27:45	22:32:5	7 252	6700	135	70.7			В	orsite 1	-Good R	tun		7	2.1	
Cane Creek	62		1	21			22:37:20	22:42:0	0 72	6700	135	70.7			В	orsite 2	-Good R	tun		7	2.1	
Cane Creek	62		10	1			22:47:22	22:49:0	0 252	6700	135	70.7				Borsi	te Bidir			7	2.3	
Cane Creek	63		1	21			22:56:01	23:00:5	4 252	6700	135	70.7				Goo	d Run			7	2.1	
Cane Creek	64		19	1			23:04:47	23:09:0	0 72	6700	135	70.7				Goo	d Run			7	2.3	
Cane Creek	77		18	1			23:15:11	23:20:0	0 198	6700	135	70.7				Goo	d Run			7	2.4	
Cane Creek	1									6700	135	70.7				SC	RUB			7	2.4	
Cane Creek	23									6700	135	70.7				SC	RUB			7	2.4	
Cane Creek							23:30:00	23:33:0	0	6700	135	70.7				S-t	urns			10	1.3	
																					$\left \right $	

	_				_			F		L	.ift Begin			Lift End		Fit	Fit	Hobbs				~
	$\langle \rangle$	\sim	\checkmark	V/,		>			Airpo	ort	Chocks	Hobbs	Airport	Chocks	Hobb	s Duration	Hrs	Hrs	Actvity	A	L	5
		\sim						1	KHK	A A			KHKA			_			Production			
NOR	TH	1 W	'ES	5 T	Gł	70	UP	2	NHN	~			KHKA			-				Fligh	nt L	_0
Northwest J	ob #		Proj	ect Na	me		Ope	rator		U	nit	IMU	MPiA	Min Rar	nge'	Max Range'	Ground 1	emp°C	Shipping Tra	ck Number	Ba	ase ID
10-702	2	Woo	pert-	AR/1	N-LII	DAR	Roch	Cherr	y	00	54	1070	2	144	0	2064	19.0	10	Data Law	Drive		-4.114
5-Apr-1	e 0	GPS 10-0	Day 195	Liff #	ALS	stem 50-11	George	e Ferl	ev	Su	in- i	Solar Time	s (UTC)	Laser Po 799	6	120 100	12 0	emp °C	ALS5	00-3	1	75m
Mission ID (D	laySensor	rJobLift)	FI	/S	Airo	craft	Airport ID	UTC	- , F	٥v	Altitude	Speed	Scan Hz	SW1	SW2	mi / Wpt	Altm S	etting	Download Ex	ternal Drive	R	lec ID
20100405_		NE_04	FC	MS	N27	/NW	КНКА		_	15	6,700	135	70.7				9.00		Mini	G-1		_
Area	Fli	ght# Client's	From	pt To	Dista Begin	ance End	U' Start	TC Enc		Fit Dir	Altitude (feet)	Speed (knots)	Scan Rate			Cor	nments an	d Cond	itions		SVs	s PDO
Cane Creek							11:42:50				((-	IPA	S START	/END			8	2.3
Cane Creek							11:46:46	11:47	:16								Bit Tes	st #1			8	2.3
Cane Creek							11:47:51	11:48	:30								Bit Te	st#2			8	2.3
Cane Creek							11:59:04	12:02	2:00 (00	6700	135	70.7				S-tu	rns			8	2.3
Cane Creek	79		15	10			12:04:34	12:05	:51 1	160	6700	135	70.7			Bo	rsite Para	allel-Ti	eline		8	2.3
Cane Creek	69		13	17			12:09:13	12:10	:23 2	252	6700	135	70.7				Bors	ite 1			8	2.3
Cane Creek	68		13	17			12:16:30	12:18	:00	72	6700	135	70.7				SCR	UB			8	2.3
Cane Creek	68		13	17			12:16:30	12:18	:00	72	6700	135	70.7				Bors	ite 2			8	2.3
Cane Creek	68		17	13			12:23:27	12:24	:00 2	252	6700	135	70.7				Borsite	Bidir			8	2.1
Cane Creek	23		4	1			12:29:02	12:30	:00 2	252	6700	135	70.7				Good	Run			8	1.8
Cane Creek	21		1	4			12:32:41	12:33	:00	72	6700	135	70.7				SCRUB	Spee	d		8	1.8
Cane Creek	21		4	1			12:38:35	12:39	:00 2	252	6700	135	70.7				Good	Run			8	2.1
Cane Creek	19		1	4			12:43:03	12:43	:50	72	6700	135	70.7				Good	Run			8	1.9
Cane Creek	17		4	1			12:48:06	12:48	:57 2	252	6700	135	70.7				Good	Run			8	2
Cane Creek	15		1	5			12:52:47	12:53	3:41	72	6700	135	70.7				Good	Run			8	2.1
Cane Creek	13		4	1			12:57:34	12:58	:35 2	252	6700	135	70.7				Good	Run			8	2.1
Cane Creek	11		1	5			13:02:00	13:03	:00	72	6700	135	70.7				Good	Run			9	1.6
Cane Creek	9		4	1			13:07:01	13:07	:54 2	252	6700	135	70.7			PDOP	13:04 in f	turn. G	ood Run		9	1.6
Cane Creek	7		2	1			13:11:22	13:11	:38	72	6700	135	70.7			PDOP	13:09 in f	turn. G	ood Run		9	2.3
Cane Creek	5		1	1			13:14:12	13:15	:22 2	252	6700	135	70.7				Good	Run			9	2.3
Cane Creek	3		1	1			13:18:57	13:19	:07	72	6700	135	70.7				Good	Run			9	2.1
Cane Creek	1		1	1			13:22:48	13:22	2:58 2	252	6700	135	70.7				Good	Run			9	2.1
Cane Creek	21		1	4					_	72	6700	135	70.7			Good Run	-Reflight	from f	irst attempt.		9	2.1
							13:30:00	13:35	i:00 (00	6700	135	70.7				S-tu	rns				

								⊢	1	Lift Begin			Lift End		_	۲tt	⊢π	Hobbs	I I	•		
	$\langle \langle \rangle$	\sim	\checkmark	V/		>	1	1 K	irport HKA	AB 11:50	Hobbs	Airport KHKA	Land	Hobt	bs	Duration 7.20	Hrs 7.3	Hrs	Actvity	Α	L	5
								2		11.50		NIINA	13.10		-	1.20	1.5		Froduction	Eliab	+ 1	~~
NOR		1 W	'ES	ST inct Na	Gl	70	UP	3		o#	IMIT	MDiA	Min Day	0.00	Мах	Pange'	Ground	Tomp ^o C	Shipping Trac	Fiigh		.og
10-702	2 2	Woo	lper	E-AR/	me TN-Li	idar	Stew Fi	reeman	0	64	1070	2 2	141	5	Max 2	2016	5.0	19.0	Shipping Trac	x number	K	-IKA
Flight Dat	te	GPS	Day	Lift	Sys	stem	Pi	lot	S	'n°	Solar Time	s (итс)	Laser Po	ower	Puls	se Rate	Flying 1	Cemp °C	Data Logge	er Drive	Ar	nt Ht
9-Apr-1 Mission ID ro	10 JauSensoi	10-0	199 Fi	6 MS	ALS	craft	Airport ID	e Ferley	FOV	Altitude	Speed	Scan Hz	SW1	6 ISW2	12	2,500 km/WPT	1.0 Altm S	7.0 Setting	ALS50 Download Exte	00-4 ernal Drive	1.4 Re	/5M ec ID
2010040	9_ M [D_06	FC	MS	N27	7NW	КНКА	-5	30	6,700	135	51.8	12	2			30.09	30.16	mini G06:	BU 02		2
Area	Fli	ght # Client's	W From	(pt To	Dist	ance End	U	TC End	Flt	Altitude (feet)	Speed (knots)	Scan Rate	Lidar	#1 DL5	5 000	2 Cor	nments a	nd Cond	itions Lidar #2 I	DL5 0004	SVs	PDOP
Middle Ditch							11:40:16	11:45:00)	()	(Static i	pas or	n	10040	9_1438	15				
							11:43:00						bit test #	1								
							11:44:00						bit test #	2								
							11:55:00						S-turns	SKC	: Ha	aze 3						
	51				8	0	12:02:00	12:03:50	223	6335	142										7	2.4
	52				9	9	12:07:37	12:09:50	223	6335	130										7	1.8
	50				0		12:11:00	12:13:00	043	6335	142		abort du	e spd,	go a	arnd. So	crub first	data			7	1.8
	50				0	11	12:18:45	12:22:00	043	6360	136										7	1.8
	49				0	8	12:25:00	12:27:00	043	6360	139										7	2.1
	47				8	0	12:29:00	12:31:00	223	6350	135										7	2.1
	48				13	0	12:35:00	12:38:00	223	6350	136										7	2.1
	46				0	15	12:40:00	12:44:00	043	6350	139											2.2
	45				0	9	12:47:00	12:49:00	043	6250	137										7	1.0
	44				3/	20	12:02:00	13:11:3	7 042	6390	130										-	2.4
	43				22	0	13:14:28	13:23:3	3 223	6390	140										0	2.2
	41				0	39	13:25:50	13:34:50	0 043	6350	139										9	2.1
	40				39	0	13:41:45	13:52:00	223	6400	127		miss @	13:37	qo a	around.	Scrub fi	rst data	1		9	1.9
	38				0	51	13:53:29	14:05:1	5 043	6385	140				-						9	1.6
	39				40	0	14:10:00	14:19:40	223	6360	130										9	1.6
	37				0	51	14:23:10	14:34:50	043	6360	137										9	1.6
	36				51	0	14:38:00	14:50:00	223	6370	140										9	1.5
	35				0	52	14:52:40	15:05:00	043	6430	143										9	2.1
	34				52	0	15:07:40	15:20:00	223	6350	134										9	1.7
	33				0	52	15:22:40	15:35:00	043	6380	136										10	1.4
	32				53	0	15:37:50	15:50:30	223	6380	136										10	1.8
	31				0	53	15:52:50	16:05:2	5 043	6390	137										10	1.5
	30				53	0	16:08:20	16:20:5	7 223	6330	141										11	1.6
	29				0	54	16:24:50	16:37:20	043	6350	136										11	1.6
	28				54	0	16:40:00	16:53:00	223	6340	136										11	1.4
	27				0	55	16:55:15	17:08:20	043	6360	140		O huma								10	1.8
	20				54		17:09:00	17.10.00	5 000	6220	124										11	1.8
TI	29				14	44	17.11.15	17:13:4) 223	6310	134		X-line								11	1.0
	33				14	•	17:22:00	17:24:00	00	6320	140		Sturns								11	2
	26				56	0	17:25:20	17:38:00	223	6350	135		0 101110								11	13
	25				0	57	17:41:00	17:55:00	0 043	6340	134										11	1.7
	24				57	0	17:57:00	18:11:00	223	6340	135										10	2.1
	23				0	58	18:16:00	18:30:00	043	6350	137		18:13 m	iss go	arou	und. Sci	rub 1st o	lata			10	1.9
	22				59	0	18:32:15	18:46:20	223	6330	136			-							12	1.3
	21				0	59	18:48:35	19:02:3	5 043	6360	133										11	2
							19:03:00	19:05:00	00				S turns								11	1.4
							19:11:00	19:16:00	D I				static									
							19:17:00						ipas off									
											Ï											

								I		L	Lift Begin		I	Lift End		_	Fit	Fit	Hobbs	s			_
	$\langle \langle \rangle$	K	\checkmark	VC.	R	>	1	4	Airp	ort	Chocks	Hobbs	Airport	Chocks	Hobt	bs	Duration	Hrs	Hrs	Actvity	A	Ľ۶	5
	-			\mathbb{Z}	>			2	KHI KH	KA KA	19:55	<u> </u>	KHKA	2:34		\dashv	6:39	6.7		Production	L.,		-
NOR	Tŀ	<u>1 W</u>	'E\$	5 T	GI	RO	UP	3	KH	KA			КНКА							Production	Fligh	t L	.og
Northwest J	ob#	Woo	Proj	ject Nar	me CN-LL	DAR	Oper	rator Cher	~	Ur	ait 64	IMU 1070	MPiA 2	Min Ran 141	ige'	Max	k Range' 2016	Ground	Temp°C	Shipping Tra	ick Number	Bas	se ID
Flight Dat	ie	GPS	Day	Lift #	Sy	stem	Pi	ilot	<u>,</u>	Su	in° /	Solar Time	es (UTC)	Laser Pr	ower	Pul	lse Rate	Flying	Temp °C	Data Logo	ger Drive	Ar	at Ht
9-Apr-1	0	10-0)99	7	ALS	50-II	Don	Bell	_					77%	6	12	2.500	5.0	12.0	ALS5	00-3	1.7	75m
Mission ID (D 20100409	aySensor MD (JobLift)	FC FC	∦s ∣ ∶MS	Airc N2	praft 7NW	Airport ID KHKA	UT		50V 30	Altitude 6.700	Speed 135	Scan Hz	5W1	SW2		mi / Wpt	Altm : 16.00	Setting 6.00	Download Ex	ternal Drive.	Re	CID
_	Fli	ight #	W	/pt	Dist	ance	U	rc		Fit	Altitude	Speed	Scan				Com	ments a	and Cond	litions			
Area	NWG	Client's	From	То	Begin	End	Start	End	1	Dir	(feet)	(knots)	Rate				IDA	OPTAE	TEND	ALC: NO		SVs	PDOP
Middle Ditch	<u> </u> '	\vdash	\vdash	\vdash	<u>+'</u>	+'	19.47.50	19:5	1:40		'	──	+'	──			11.7%	Bit Tr					1.0
Middle Ditch	<u> </u>	<u> </u>	\vdash	\vdash	+'	+'	10:52:17	19:5	2:50	-+	'	<u> </u>	'	<u> </u>				Bit T	est #2				1.0
Middle Ditch	<u> </u> '	<u>├</u>	\vdash	\vdash	<u>+</u> _'	+'	20:00:00	20:0	4:00	00	6350	135	51.8	<u> </u>				S-t	urns				1.9
Middle Ditch	55	\vdash	0	8	+'	+'	20:12:46	20:1	4:44	131	6350	135	51.8	<u> </u>			Borsit	te 1-Go	od Run	Tieline		8	1.9
Middle Ditch	20	 	0	60	\vdash	\vdash	20:19:38	20:3	4:00	222	6350	135	51.8				Bo	orsite 2	-Good F	Run		8	1.9
Middle Ditch	19	+	60	0	\vdash	\vdash	20:37:40	20:5	2:00	42	6350	135	51.8				Bo	orsite 2	-Good I	Run		8	1.9
Middle Ditch	19		0	8		+	20 55:46	20:5	7:00	222	6350	135	51.8					Borsi	ite Bidir			8	1.9
Middle Ditch	18		0	60			21:03:21	21:1/	8:00	222	6350	135	51.8					Goo	d Run			9	1.5
Middle Ditch	17		61	0	· · ·		21:24:33	21:3	9:00	42	6350	135	51.8	(Good F	Run	-Check fo	or a cou	ple of g	japs north half o	of line.	8	1.9
Middle Ditch	16		0	61			21:42:50	21:58	3:00	222	6350	135	51.8					Goo	d Run			8	1.8
Middle Ditch	15		61	0			22:01:22	22:16	6:00	42	6350	135	51.8					Goo	d Run			9	1.5
Middle Ditch	14		0	61			22:19:49	22:3/	4:28	222	6350	135	51.8			_		Goo	d Run			8	2.0
Middle Ditch	13		60	0	'		22:37:56	22:53	3:00	42	6350	135	51.8					Goo	d Run			8	2.0
Middle Ditch	12	Ē	0	49	Ĺ_'		22:57:05	23:09	ð:00	222	6350	135	51.8					Goo	d Run			9	1.8
Middle Ditch	11		49	0	<u> </u>		23:13:15	23:24	4:57	42	6350	135	51.8			Good Run Good Run					9	1.8	
Middle Ditch	10	<u> </u>	0	36	<u> </u>	<u> </u>	23:28:01	23:36	3:00	222	6350	135	51.8			Good Run Good Run					10	1.4	
Middle Ditch	9	ļ'	35	0	<u> </u>	<u> </u> '	23:38:46	23:47	7:00	42	6350	135	51.8	<u> </u>				Goo	d Run			9	1.6
Middle Ditch	8	ļ!	0	30	<u> </u>	ļ!	23:49:45	23:57	7:00	222	6350	135	51.8	<u> </u>				Goo	d Run			9	1.9
Middle Ditch	7	<u> </u>	29	0	<u> </u> '	<u> </u>	00:00:30	00:07	7:00	42	6350	135	51.8	<u> </u>				Goo	d Run			8	2.2
Middle Ditch	6	ļ!	0	26	<u> '</u>	<u> </u>	00:10:32	00:16	3:00	222	6350	135	51.8	 				Goo	d Run			9	1.7
Middle Ditch	5	ļ!	25	0	 '	<u> </u>	00:20:03	00:25	5:50	42	6350	135	51.8					Goo	d Run			10	1.6
Middle Ditch	4	ļ!	0	17	 '	<u> </u>	00:29:28	00:3:	3:15	222	6350	135	51.8	──					d Run			10	1.7
Middle Ditch	3	<u> </u>	14	0	⊢_'	<u> </u> '	00:36:26	00:39	3:40	42	6350	135	51.8	<u> </u>				Goo	d Run			10	1.7
Middle Ditch	2	<u> </u>	0	12	 '	<u> </u>	00:42:46	00:4:	5:32	222	6350	135	51.8	 				Goo	d Run			10	1.7
Middle Ditch	1	'	10		 '	<u> </u> '	00:48:50	00:51	1:00	42	6350	135	51.8	──				Goo	d Run			10	1.7
Middle Ditch	54	ļ!	0	21	<u> '</u>	<u> </u>	00:54:44	01:00):00	129	6350	135	51.8	 				Goo	d Run			10	1.7
Middle Ditch	53	<u> </u>	25	0	<u> </u>	<u> </u>	01:04:45	01:1():30	271	6350	135	51.8	 		Go	od Run- I	Block fl	own to	Completion.		10	1.6
Cold Creek		<u> </u>		<u> </u>	<u> </u>	<u> </u>			$ \rightarrow$			ļ	'				Change	to Col	d Creel	k Project		8	2.1
Cold Creek	44	<u> </u>	17	1	<u> </u>		1:23:15AM	01:27	7:13	133	6350	135	51.8					Goo	d Run			8	2
Cold Creek	1		0	12	<u> </u>		01:32:18	01:3	5: 00	49	6350	135	51.8					Goo	d Run			8	2
Cold Creek	2		14	0	'		01:38:49	01:42	2:00	133	6350	135	51.8					Goo	d Run			8	1.8
Cold Creek	3		0	17			01:46:30	01:50	J:25	49	6350	135	51.8					Goo	d Run			8	1.8
Cold Creek	4		17	0			01:53:55	01:56	ð:47	133	6350	135	51.8					Goo	d Run			9	1.7
Cold Creek	5		0	18	[]		02:01:44	02:0	5:57	49	6350	135	51.8					Goo	d Run			9	2.1
Cold Creek	6		19	0			02:09:33	02:1/	4:00	133	6350	135	51.8					Goo	d Run			9	2.3
Cold Creek	7		0	29			02:17:13	02:2/	4:00	49	6350	135	51.8					Goo	d Run			9	2.2
Cold Creek			\square	\square			02:24:00	02:2	7:00	00	6350	135	51.8		-			S-t	urns			9	2.2
	\vdash	—		—		\square			\neg			-										\square	
	<u> </u>		\vdash	\square	\vdash	\square	+		\neg	\neg			+									+	\vdash
	\vdash	—	\vdash	<u> </u>	\vdash			—	\neg				+	<u> </u>								┝	\vdash
	<u> </u>		\vdash	\square	\vdash	+'	++	<u> </u>	\neg	-+			+'	<u> </u>								┢	$\left \right $
	<u> </u>	\vdash	\vdash	\vdash	\vdash	+	├ ──┤	<u> </u>	\dashv	-+				<u> </u>								┢┥	$\left - \right $
	<u> </u> '	<u> </u>	\vdash	\vdash	<u> </u>	+'		<u> </u>	\rightarrow	-+	'		+'	<u> </u>								┝─┤	$\left - \right $
		1	1'	1 '	<u> </u>			1															

								L		Lift Begin			Lift End		_	Fit	Fit	Hobbs	I			
	$\langle \langle \rangle$	\sim	\checkmark	V/		>		1 4	irport 'HKA	AB	Hobbs	Airport	Land	Hobbs	s C	Ouration 6:25	Hrs 6.4	Hrs	Actvity	- A	L٤	5
								2		11.57		NHNA	10.22		+	0.20	0.4		Froduction	- Eliab	41	~~
NOR	TH	1 W	'ES	3 T	Gł	70	UP	3		- *		MDIA	Min Day		May	lee ee'	Ground	Tamaic	Chinaiae T	Filgn		.og
10-702	00#	Woo	proj Ipert	-AR/	me TN-Li	idar	Stew Fi	rator reeman	0	64	1070	2	141	5 5	Max H 20	kange [*]	11.0	22.0	Snipping I	rack Number	K	IKA
Flight Dat	e	GPS I	Day	Lift	Sys	stem	Pi	lot	S	un° :	Solar Time	s (UTC)	Laser Po	wer	Pulse	Rate	Flying	emp °C	Data Log	gger Drive	Ar	nt Ht
10-Apr- Mission ID rp	10 auSensoi	10-1	FI	8 //S	ALS	50-II craft	Airport ID	UTC	FOV	Altitude	N/ Speed	Scan Hz	SW1	SW2	122,	.500 m/WPT	5.0 Altm S	4.0 Setting	ALS Download E	500-4 External Drive	Re	/5M ec ID
20100410	_col	d_08	FC	MS	N27	NW	КНКА	-5	30	6,350	135	51.8	12	2			30.27	30.28	Mini G-04	4: Bup 02		2
Area	Fli	ght # Client's	W	pt To	Dista	ance End	U Start	FC End	- Fit	Altitude (feet)	Speed (knots)	Scan Rate	Lidar	#1 DL5	0002	Com	nments a	nd Cond	itions Lidar a	#2 DL5 0004	SVs	PDOP
Cold Creek	mo	Giorra	TIOM	10	bogin	LIIU	11:47:40	End	Dil.	(1001)	(knots)	Nuto	Static i	pas on		-	-	-			573	1001
							11:50:00						Bit #1 te	st								
							11:51:00						Bit # 2 te	st							+	
							12:03:00	12:05:0	0 00				S turns	SKC	Hz 2	2					8	2.2
TL	45				0	15	12:08:53	12:12:1	8 326	6385	136		12:06 Z	miss, g	go ar	ound					8	1.8
TL	46				11	0	12:15:28	12:18:1	1 129	6390	130		X-line								8	1.9
	10				35	0	12:21:15	12:29:3	5 229	6410	138										8	1.9
	9				0	31	12:32:35	12:39:5	0 049	6380	137										8	2.2
	8				30	0	12:42:55	12:49:5	0 229	6360	136										9	22.2
	11				0	41	12:52:29	13:02:1	6 049	6370	131										8	2.3
	12				41	0	13:04:56	13:14:4	4 229	6360	134										9	2.1
	13				0	41	13:17:38	13:27:1	3 049	6357	138										9	2
	13				41	31	13:30:32	13:33:0	0 229	6330	136		BIDIR								10	1.9
	14				41	0	13:38:15	13:47:4	0 229	6400	133										10	1.7
	15				0	41	13:50:46	14:00:1	3 049	6360	140										10	1.6
	16				41	0	14:03:24	14:12:3	8 229	6380	130										10	1.5
	17				0	41	14:15:38	14:25:1	7 049	6380	137										10	1.7
	18				42	0	14:26:04	14:37:4	0 229	6360	138										10	1.5
	19				0	43	14:40:33	14:50:3	8 049	6365	137										10	1.5
	20				44	0	14:53:26	15:03:3	0 229	6340	133										10	1.5
	21				0	44	15:06:33	15:16:4	5 049	6360	137										9	1.7
	22				45	0	15:19:51	15:30:0	0 229	6360	133										9	1.7
	23				0	45	15:33:06	15:43:3	0 049	6360	138										10	1.5
	24				45	0	15:46:31	15:57:0	5 229	6330	132										10	1.5
	25				0	45	15:59:51	16:10:2	0 049	6360	137										11	1.4
	26				45	0	16:13:16	16:23:3	5 229	6340	135										11	1.5
	27				0	45	16:27:43	16:38:2	1 049	6350	132										11	1.5
	29				19	0	16:41:12	16:45:2	2 229	6330	134										11	1.4
	31				0	18	16:48:11	16:52:1	5 049	6330	138										11	1.4
	33				18	0	16:55:19	16:59:0	0 229	6330	140										10	1.8
	35				0	17	17:02:36	17:06:2	0 049	6340	140										11	1.8
	37				16	0	17:09:24	17:13:0	0 229	6340	130										11	1.8
	39				0	15	17:15:58	17:19:2	0 049	6340	138										11	1.8
	41				8	0	17:22:38	17:24:4	5 229	6320	136										11	1.8
	43				0	7	17:27:06	17:28:2	049	6340	139										11	1.7
	28				13	0	17:36:09	17:39:0	0 229	6320	138										11	1.7
	30				0	13	17:41:56	17:44:3	7 049	6330	135										11	1.7
	32				12	0	17:48:00	17:50:3	7 229	6360	139										11	1.6
	34				0	11	17:53:32	17:55:4	6 049	6330	140										10	2.2
	36				9	0	17:59:04	18:01:1	2 229	6330	136										10	2
	38				0	7	18:04:02	18:05:2	2 049	6340	136										10	1.9
	40				6	0	18:08:28	18:09:4	4 229	6330	135										12	1.3
	42				0	6	18:12:53	18:35:0	0 049	6330	135										12	1.3
							18:14:00	18:16:0	00				S turns									
							18:24:00	18:29:0	0				Static									
							18:30:00						ipas off									

										I	Lift Begi	n	1	L	Ift End			Fit	Fit	Hobbs				
	$\langle \rangle$	\sim	\checkmark	V/,		>			Air	port	Chock	s Hobb	s Airpo	rt Ch	hocks	Hobl	bs	Duration	Hrs	Hrs	Actvity	– A	L	5
								1	K	нка	19:36	,	КНКА	2	0:25			0:49	0.8		Production	-L		
NOR	TH	1 W	'ES	5 T	GI	70	UP	2				_		+								-Fligh	t L	.og
Northwest J	ob #		Pro	ject Na	me		Ope	rator		U	nit	IMU	MPia	h	Min Ran	ge'	Ма	x Range'	Ground	Temp°C	Shipping Ti	ack Number	Ba	se ID
10-702	2	Wool	pert	AR/1	N-LI	DAR	Roch	Che	rry 🛛	0	64	1070	2		144(D		2064	23.0					
Flight Dat	e 10	GPS I	Day	Lift #	Sys		Pi	lot Rol		Su	'n°	Solar Tin	IES (UTC)	La	aser Po	wer	Pu	Ilse Rate	Flying	Temp °C	Data Log	ger Drive		at Ht
Mission ID (D	IU Senco	loblift)	FI	J MS	ALS	craft	Airport ID	Dei	TC.	FOV	Altitud	e Speer	Scan H	7	SW1	SW2			Altm :	4.0 Setting	Download F	xternal Drive	Re	/om ec ID
20100410_		NE_09	FC	MS	N27	NW	КНКА			15	6,70	0 135	70.7						28.00	12.00	Mir	ni G-	1 "	
A	Fli	ght #	W	/pt	Dist	ance	U	TC		Flt	Altitud	e Speed	Scan					Con	nments a	nd Cond	itions			PDOD
Cane Creek	NVVG	Clients	From	10	begin	End	5tart 10:20:30	201	10 16:00	Dir	(leel)	(KHOLS	Rate				-	IPA	S STAR	T/END			10	1.4
Cano Crook							10:21:45	10-1	2:15					-					Bit Te	et#1			10	1.4
Cane Creek							10:22:40	10.3	2:15					+					Bit T	oct #2			10	1.4
Cane Creek							19.32.40	19.3	10.00	00	6700	125	70.7	-					9.1	urne			10	1.4
Cane Creek	5		0	5			10:40:47	10.4	50:47	72	6700	135	70.7	+				B	oreite 1.	-Cood F	Pun		0	1.4
Cane Creek	3		0	0			10:52:52	10.	6:00	252	6700	135	70.7	+-					Goo	d Run	Cum		0	1.7
Cane Creek	4		0	3			20:00:05	20:0	11:35	72	6700	135	70.7	+					Goo	d Run			9	1.7
Cane Creek	2		5	0			20:05:10	20:0	1:00	252	6700	135	70.7	+				B	oreite 2	-Good F	Run		0	1.0
Cane Creek	1		0	2			20:10:16	20:1	0:40	72	6700	135	70.7	-					Goo	d Run	Cum		0	1.0
Cane Creek	5		5	0			20:15:06	20:1	6:05	252	6700	135	70.7	-					Borsi	e Bidir			0	1.0
Cane Creek	77		0	7			20.15.00	20:	2:00	72	6700	135	70.7	+-					Borsite	Tieline			0	1.0
Cane Creek			•	'			20:22:00	20:2	2:00	72	6700	135	70.7	+-					9.1	urne	, 		0	1.7
Calle Creek							20.22.00	20.1		12	0,00	100	10.1	-				Cane	Creek P	llock Co	mnelte		-	1.7
														-				oune	OTCOL	nock oc	impene.			
														-										
														-										
														+										
														-										
												_		+									-	
														+-										$\left - \right $
														+-										$\left - \right $
					<u> </u>									_										$\left - \right $
														-									-	\vdash
														+-									-	
					<u> </u>					_		_		_										$\left - \right $
														_										

											.ift Begin			Lift End			FIt	Fit	Hobbs				
	0	K			5)			Airp	oort	Chocks	Hobbs	Airport	Chocks	Hob	obs	Duration	Hrs	Hrs	Actvity		5	5
	~		Ĵ					1	KH	KA	20:51		KHKA	23:03			2:12	2.2		Production	_ ^ `		
NOR	TH	1 W	ES.	sτ	Gł	30	UP	2	KH	KA KA			KHKA							Production	-Fliah	t L	.od
Northwest J	ob #		Pro	ject Na	me		Ope	rator	NI	U	nit	IMU	MPiA	Min Rar	nge'	Ма	x Range'	Ground	Temp°C	Shipping Tr	ack Number	Ba	se ID
10-702	2	Wool	pert-	AR/T	N-LI	DAR	Roch	Cher	y	00	64	1070	2	141	5		2016	26.0					
Flight Dat	e 10	GPS I	Day	Lift #	Sys	stem	Pi	lot D-U		Su	in° :	Solar Time	s (итс)	Laser Po	ower	PL	ulse Rate	Flying	Temp °C	Data Log	iger Drive	Ar	nt Ht
Mission ID (n	IU auSensor	lobLift)	FI	MS	ALS	SU-II craft	Airport ID	UT		FOV	Altitude	Speed	Scan Hz	ISW1	SW2	- 14	22,500 mi/Wot	Altm:	Setting	Download E	xternal Drive	Re	20 D
2010041	0_ME	D_10	FC	MS	N27	NW	КНКА			30	6,700	135	51.8	12	2			23.00	23.00	Min	G-2		
	Fli	ght #	W	(pt	Dista	ance	U	гс		Fit	Altitude	Speed	Scan				Cor	nments a	ind Cond	itions			
Area	NWG	Client's	From	То	Begin	End	Start	End	1	Dir	(feet)	(knots)	Rate									SVs	PDOP
Middle Ditch							20:32:15		_								IPA	SSIAH	(I/END			8	1.8
Middle Ditch							20:37:21	20:38	8:10									Bit Te	est#1			8	1.8
Middle Ditch							20:39:14	20:40):25									Bit T	est#2			8	1.8
Middle Ditch							20:56:00	21:04	:00	00	6350	135	51.8					S-t	urns			8	1.9
Middle Ditch	24		40	57			21:01:44			42	6350	135	51.8					SC	RUB			8	1.9
Middle Ditch	17		61	40						222	6350	135	51.8					SC	RUB			8	1.9
Middle Ditch	24		40	57			21:18:29	21:22	2:00	42	6350	135	51.8		Good Run					8	1.9		
Middle Ditch	17		61	40			21:26:31	21:31	:45	222	6350	135	51.8		Good Run Good Run					8	1.9		
Middle Ditch	20		45	0			21:37:39	21:50	00:00	42	6350	135	51.8				В	orsite 1	Good F	lun		9	1.5
Middle Ditch	18		0	10			21:52:33	21:58	5:00	222	6350	135	51.8				В	orsite 2	Good F	lun		7	1.8
Middle Ditch	18		10	0			21:59:13	22:03	3:00	42	6350	135	51.8					В	idir			7	1.8
Middle Ditch	53		25	0			22:06:00	22:13	3:00	222	6350	135	51.8					Х-Т	rack			9	1.5
Middle Ditch	49		0	8			22:17:00	22:19	0:00	42	6350	135	51.8				Goo	d Run-C	Complet	e line		8	2.0
Middle Ditch	46		14	1			22:24:46	22:29	0:00	222	6350	135	51.8			(Good Rur	n. Flew a	addition	al to RF list.		8	2.0
Middle Ditch	42		0	26			22:32:28	22:39	0:00	42	6350	135	51.8				Goo	d Run la	ast third	water		9	1.8
Middle Ditch	37		13	0			22:44:09	22:47	:00	222	6350	135	51.8					Goo	d Run			9	1.8
Middle Ditch	34		0	13			22:51:29	22:54	:00	42	6350	135	51.8					Goo	d Run			10	1.4
Middle Ditch							22:54:00	22:57	:00	00	6350	135	51.8					S-t	urns			9	1.6
									_			1										-	

			-								itt Hegin			Litt End			F.M.	L FR	Hobbe				
	1					_			Air	nort	Chocks	Hobbs	Airport	Chocks	Hobb	bs	Duration	Hrs	Hrs	Actvity	Λ		2
	\leq	$\langle \mathbf{X} \rangle$	<u> </u>	YL.	5			1	K	IKA	17:33		КНКА	18:16			0.43	0.7		Production	A		
								2	KH	IKA			КНКА			-	0.10	0.1		Production	en n		
NOR	TH	1 W	'ES	5 T	GI	70	UP	3	KH	IKA			КНКА			-				Production	Fligh	tL	.og
Northwest J	ob #		Pro	ject Na	me		Ope	rator		U	nit	IMU	MPiA	Min Ra	nge'	Max	Range'	Ground	Temp°C	Shipping Tr	ack Number	Ba	se ID
10-702	2	Wool	pert-	AR/1	N-LI	DAR	Roch	Che	rry	0	64	1070	2	141	5	2	016	27.0	28.0				
Flight Dat	е	GPS	Day	Lift #	Sys	stem	Pi	ilot		Su	ın°	Solar Time	s (பாc)	Laser Po	ower	Puls	e Rate	Flying	Temp °C	Data Log	ger Drive	A	nt Ht
14-Apr-	10	10-1	04	10	ALS	50-II	George	Fe	rley					779	6	122	2,500	10.0	10.0	ALS5	00-04	1.3	75m
Mission ID (D	aySensoi	JobLift)	FI	MS	Aire	craft	Airport ID	U	тс	FOV	Altitude	Speed	Scan Hz	SW1	SW2		mi / Wpt	Altm 9	Setting	Download E	xternal Drive	Re	ec ID
2010041	4_MC	0_11	FC	MS	N2/	/NW	KHKA			30	6,700	135	51.8	12	2			35.00	34.00	Mini	G-5	<u> </u>	
	Fli	ght #	N	/pt	Dist	ance	U	TC		Fit	Altitude	Speed	Scan				Con	nments a	ind Cond	itions		0.4	
Area	NWG	Clients	From	10	begin	End	Start	E		Dir	(leet)	(KHOUS)	Rate				10.4	0.0740	TIENID			SVS	PUOP
Middle Ditch							17:25:40	18:	25:00								IPA	SSTAR	(I/END			11	2.0
Middle Ditch							17:27:00	17:	27:30									Bit Te	est#1			11	1.9
Middle Ditch							17:28:03	17:	29:00									Bit T	est #2			11	1.9
Middle Ditch							17:39:22	17:4	43:00	00	6350	135	51.8					S-t	urns			11	1.9
Middle Ditch	50		0	11			17:45:01	17:4	47:00	222	6350	135	51.8				B	orsite 1	Good R	tun		11	1.9
Middle Ditch	50		11	0			17:50:54	17:	53:26	42	6350	135	51.8					В	idir			12	1.3
Middle Ditch	48		0	13			17:56:24	17:	59:00	222	6350	135	51.8				B	orsite 2	Good R	tun		12	1.3
Middle Ditch	53		10	0			18:05:18	18:0	07:00	222	6350	135	51.8					X-T	rack			12	1.3
Middle Ditch							18:07:00	18:	10:00	00	6350	135	51.8					S-t	urns			12	1.3
				1																		+	
<u> </u>																							

1			~13					ī		LIII Degili						E.L.	, г и		ı			_
	0	K			5)		1	Airport	Chocks	Hobbs	Airport	Chocks	Hob	bs	Duration	Hrs	Hrs	Actvity	Δ	5	5
	~		Ĵ_	Ð	X			1	KHKA	19:29		KHKA	20:42			1:13	1.2		Production			
				~-	~			2	KHKA			KHKA							Production	Fligh	ŧΤ	od
NOH		1 ~~~	E	> /	GI	40	UP	3		-		KHKA	Min Day		Max	Deser	Orever	Tamaio	Production	<u>i iigii</u>		.ug
10-702)	Wool	nert-		me F N-I I	DAR	Boch	Cherry		64	1070	2	141	5	max	016	28.0	Temp C	Shipping m	ICK NUMber	Da	seib
Flight Date	e	GPS	Day	Lift #	Sys	stem	Pi	lot	s	un°	Solar Time		Laser Po	ower	Pul	se Rate	Flying	Temp °C	Data Log	er Drive	A	nt Ht
15-Apr-1	10	10-1	105	12	ALS	50-II	George	Ferle	,			,	779	6	12	2,500	10.0	10.0	ALS5	00-04	1.	75m
Mission ID (D	aySenso	rJobLift)	FI	IS	Air	craft	Airport ID	UTC	FOV	Altitude	Speed	Scan Hz	SW1	SW2		mi / Wpt	Altm	Setting	Download Ex	ternal Drive	Re	ec ID
2010041	5_ M I)_12	FC	MS	N27	7NW	KHKA		30	6,700	135	51.8	12	2			30.00	30.00	Mini	G-2		
	Fli	ght #	W	pt	Dist	ance	U	C	Flt	Altitude	Speed	Scan				Cor	nments a	ind Cond	itions			
Area	NWG	Client's	From	То	Begin	End	Start	End	Dir	(feet)	(knots)	Rate									SVs	PDOP
Middle Ditch							19:19:57	20:50:3	1	<u> </u>	<u> </u>					IPA	S STAR	RT/END			8	1.9
Middle Ditch							19:25:31	19:26:0	0		Į						Bit Te	est#1			8	1.9
Middle Ditch							19:26:30	19:27:0	5		ï						Bit T	est#2			8	1.9
Middle Ditch							19:35:00	19:38:0	0 00	6350	135	51.8					S-t	urns			8	1.9
Middle Ditch	20		47	0			19:42:09	19:54:0	0 222	6350	135	51.8				В	orsite 1	Good F	tun		8	2.1
Middle Ditch	20		0	0			19:57:18		42	6350	135	51.8					SC	RUB			8	2.1
Middle Ditch	20		47	10			20:11:04	20:23:0	0 42	6350	135	51.8					В	idir			8	2.1
Middle Ditch	19		45	37			20:27:13	20:29:0	0 222	6350	135	51.8				В	orsite 2	Good F	lun		8	2.1
Middle Ditch	54						20:34:22	20:36:0	0 129	6350	135	51.8					X-1	rack			8	1.5
							20:36:00		00								S-t	urns				
									_													
									_												+	
									_													
									-												+	
					<u> </u>				-												+	
									_												+	$\left - \right $
					-				+	-											+	\vdash
									+												+	
									-												+	$\left - \right $
																					+	
									-												-	\vdash
					-				+	+											+	

SECTION 4: LIDAR SYSTEM SPECIFICATIONS

The LiDAR data was acquired using a Leica ALS50-II 150 kHz Multiple Pulses in Air (MPiA) LiDAR sensor system, on board a Cessna 406. The ALS50-II MPiA LiDAR system, developed by Leica Geosystems of Heerbrugg, Switzerland, includes the simultaneous first, intermediate and last pulse data capture module, the extended altitude range module, and the target signal intensity capture module. The system software is operated on an OC50 Operation Controller aboard the aircraft.

The ALS50-II 150 kHz MPiA LiDAR System has the following specifications:

	Specification
Operating Altitude	200 - 6,000 meters
Scan Angle	0 to 75° (variable)
Swath Width	0 to 1.5 X altitude (variable)
Scan Frequency	0 – 90 Hz (variable based on scan angle)
Maximum Pulse Rate	150 kHz
Range Resolution	Better than 1 cm
Elevation Accuracy	8 – 24 cm single shot (one standard deviation)
Horizontal Accuracy	7 – 64 cm (one standard deviation)
Number of Returns per Pulse	4 (first, second, third, last)
Number of Intensities	3 (first, second, third)
Intensity Digitization	8 bit intensity + 8 bit AGC (Automatic Gain Control) level
MPiA (Multiple Pulses in Air)	8 bits @ 1nsec interval @ 50kHz
Laser Beam Divergence	0.22 mrad @ 1/e ² (~0.15 mrad @ 1/e)
Laser Classification	Class IV laser product (FDA CFR 21)
Eye Safe Range	400m single shot depending on laser repetition rate
Roll Stabilization	Automatic adaptive, range = 75 degrees minus current FOV
Power Requirements	28 VDC @ 25A
Operating Temperature	0-40°C
Humidity	0-95% non-condensing
Supported GNSS Receivers	Ashtech Z12, Trimble 7400, NovAtel Millenium

Table 4.1: ALS50-II MPiA LiDAR System Specifications

Antenna Offsets

Aircraft GPS Antenna

The following measurements were calculated for North West's aircraft N27NW Cessna Caravan-II F406 equipped with the Leica ALS50-II MPiA LiDAR system. The POS/AV and ALS50-II processing numbers were calculated from internal measurements completed in Leica's lab.

The following measurements were calculated in the lab at Leica and will remain constant.

Table 4.2: ALS50-II S/N 64

User	to IMU Lever Arm (POS/AV)
Х	-0.269 m
Y	0.207 m
Z	-0.004 m

The positioning of the GPS antenna on the aircraft was field surveyed using a total station.

Table 4.3: N27NW: Cessna 406 with ALS50-II S/N 64 installed

Refe	erence Point to GPS Antenna								
Х	1.069 m								
Y	-0.016 m								
Z	Z -1.177 m								

Base Station GPS Antenna

Table 4.4: Base Station Global Navigation Satellite System (GNSS) Equipment

	Monument Description									
GPS Receiver Type:	Epoch Interval: 0.5 sec									
NovAtel DL5 GPS/GLONASS	Elevation Mask: 10 degrees									
L1/L2 Receiver Observation Type: Static										
Antenna Type:										
NovAtel GG702 Antenna										
Station Names used in processing	the acceptance data:									
-										
<u>#1: KHKA Primary</u> N 35 56 14.69534 Lat. W 89 49 53.00499 Long. 48.946 m Ellipsoidal Height										
#2: KHKA Secondary N 35 56 14.82390 Lat. W 89 49 52.97891 Long. 48.962 m Ellipsoidal Height										

<u>#3: CORS EDM2</u> N 35 26 57.18172 Lat. W 89 46 52.30460 Long. 108.446 m Ellipsoidal Height

Calibration Results

Final Calibration Parameters

The following numbers were derived by Leica through lab calibration, as well as from data acquired over the project site. These are the latest pertinent values for the respective sensor and project.

Parameter	Value	Format
Lab fixed parameters		
Range 1 Correction	1.979/1.979 m	0.000
Range 2 Correction	2.000/1.958 m	0.000
Range 3 Correction	1.996/2.009 m	0.000
Range 4 Correction	1.977/1.951 m	0.000
Encoder Latency	0.00 mcr sec	0.00
Ticks Per Revolution	150000 ticks	0000000
Attitude		-
*Roll (radian)	-0.00122	0.000000000
*Pitch (radian)	0.00893	0.000000000
*Heading (radian)	-0.00155	0.000000000
*Scan angle correct	-10200 ticks	00000
Mechanic		
*Torsion (no unit)	-70000	00000

Table 4.5: Final Calibration Parameters for ALS50-II S/N 64

*Value calibrated on site from calibration data *Values from lift 20100413_MD_10

SECTION 5: DATA PROCESSING AND QUALITY CONTROL

LiDAR Data Processing

In this process, Woolpert employed GPS differential processing and Kalman filtering techniques to derive an aircraft trajectory solution at one or half-second intervals for each base station within the project limits. Statistics for each solution (base station) were generated and studied for quality. The goal for each solution is to have:

- maintained satellite lock throughout the session
- position standard deviation of less than 10 centimeters
- low ionospheric noise
- few or no cycle slips
- a fixed integer ambiguity solution throughout the trajectory
- a maximum number of satellites for a given constellation
- a low (3.0 or less) Position Dilution of Precision (PDOP)

Often times a solution for a given base station will meet all of the above parameters in certain portions of the trajectory while the other base station might meet the above conditions in different portions of the trajectory solution. In this case, further processing was done to form different combinations of base station solutions and/or satellites to arrive at the optimal trajectory.

When the calibration, data acquisition, and GPS processing phases were complete, the formal data reduction processes by Woolpert LiDAR specialists include:

- Processed individual flight lines to derive the "Point Cloud."
- Given the airborne GPS aircraft trajectory and the raw LiDAR data subdivided by flight lines, we used manufacturer software to reduce raw information to a LiDAR point cloud on the ground. Woolpert has developed proprietary software to generate parameter files, allowing the manufacturer's software to process a block; which allows us to batch process any number of flight lines. As part of this process, outliers in the data are removed.
- Examined the individual flight lines and how these lines match adjacent flight lines to ensure the accuracy meets expectations.
- Overlap match individual flight lines, generated statistics on the fit, and make the necessary adjustments.
- Identified and removed systematic error locally (by flight) which is not possible if the lines are combined into a block. This is sometimes the case when a satellite loss of lock occurs during a flight and the GPS solution fixes on the wrong integer ambiguity.
- Adjusted any small residual error (due to system noise) between flight lines and across all flight lines to survey ground control (or existing mapping if available).
- Clipped the outer edges of the swath to remove less accurate points.
- Adjust for vertical offsets.
- If all flights are consistent within the mapping specifications, cross flights and ground control data is imported and studied for fit. As a QA/QC measure, Woolpert has developed a routine to generate accuracy statistical reports by comparison among LiDAR points, ground control, and TINs generated by LiDAR points. The absolute accuracy is determined by comparison with ground control. Statistical analysis is then performed on the fit between the LiDAR data and the

ground control. Based on the statistical analysis, the LiDAR data is then adjusted in relation to the ground control.

- All final delivery data was determined to meet and or exceed the project specifications.
- The LiDAR LAS files have been classified into the following classifications:
 - Class 1 Processed, but unclassified
 - Class 2 Bare-earth ground
 - Class 7 Noise
- At the completion of the hydrographic flattening process, the LiDAR data will be further classified to include:
 - Class 9 Water
 - Class 10 Ignored ground (breakline proximity)

SECTION 6: DATA ANALYSIS

Accuracy Assessment

The vertical accuracy statistics were calculated by evaluating the LiDAR bare earth to the ground control quality check points. Comparisons were also made between the checkpoints and the LiDAR derived terrain surface. The ground control survey data was collected in accordance with the FEMA "Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix A". This data analysis was accomplished by comparing the ground control quality check points with the edited LiDAR points.

In bare earth areas, the Fundamental Vertical Accuracy (FVA) of the TIN for Project Area One (Sharkey) was required to meet a vertical accuracy of 30 cm at a 95% confidence level, based on NSSDA RMSE of 15 cm or better; using assessment procedures that comply with FEMA guidelines.

In bare earth areas, the Fundamental Vertical Accuracy (FVA) of the TIN for Project Area Two (Cane Creek) was required to meet a vertical accuracy of 18.5 cm at a 95% confidence level, based on NSSDA RMSE of 9.25 cm or better; using assessment procedures that comply with FEMA guidelines.

The FVA was calculated based on the analysis of ground control quality check points with the edited LiDAR points in the "open terrain" (bare earth) land cover category.

Fundamental Vertical Accuracy of the TIN for Project Area One (Sharkey) tested at 24.6 cm vertical accuracy at 95% percent confidence level. The RMSE for Project Area One (Sharkey) tested at 12.6 cm.

Bare Earth and Low Grass (meter)		
Root mean square	0.126	
Minimum Error	0.010	
Maximum Error	0.280	
Average Error	0.105	
Count	25	

Table 6.1: Fundamental Vertical Accuracy Statistics for Area One

Fundamental Vertical Accuracy of the TIN for Project Area Two (Cane Creek) tested at 15.8 cm vertical accuracy at 95% percent confidence level. The RMSE for Project Area Two (Sharkey) tested at 8.1 cm.

Table 6.2 Fundamental Vertical Accuracy Statistics for Area Two

Bare Earth and Low Grass (meter)		
Root mean square	0.081	
Minimum Error	0.010	
Maximum Error	0.170	
Average Error	0.066	
Count	13	

The Consolidated Vertical Accuracy (CVA) of the TIN for Project Area One (Sharkey) was required to meet a vertical accuracy of 30 cm at a 95% confidence level, according to ASPRS Guidelines, Vertical Accuracy Reporting for LiDAR Data, i.e. based on the 95th percentile error in all land cover categories combined.

The Consolidated Vertical Accuracy (CVA) of the TIN for Project Area One (Sharkey) was required to meet a vertical accuracy of 18.5 cm at a 95% confidence level, according to ASPRS Guidelines, Vertical Accuracy Reporting for LiDAR Data, i.e. based on the 95th percentile error in all land cover categories combined.

Consolidated Vertical Accuracy of the TIN for Project Area One (Sharkey) tested at 25.6 cm vertical accuracy at 95% percent confidence level. The RMSE for Project Area One (Sharkey) tested at 13.1 cm.

Table 6.3: Consolidated Vertical Accuracy Statistics for Area One

All Land Classes (meter)		
Root mean square	0.131	
Minimum Error	0.010	
Maximum Error	0.310	
Average Error	0.107	
Count	39	

Consolidated Vertical Accuracy of the TIN for Project Area Two (Cane Creek) tested at 17.3 cm vertical accuracy at 95% percent confidence level. The RMSE for Project Area One (Sharkey) tested at 8.8 cm.

Table 6.4: Consolidated Vertical Accuracy Statistics for Area Two

All Land Classes (meter)		
Root mean square	0.088	
Minimum Error	0.010	
Maximum Error	0.190	
Average Error	0.071	
Count	22	

SECTION 7: HYDRO FLATTENING PROCESSING AND QUALITY CONTROL

Hydro Flattening of LiDAR Data

This task required the compilation of breaklines defining water bodies and streams. The breaklines were used to perform the hydrologic flattening of water bodies, and gradient hydrologic flattening of double line streams. Lakes, reservoirs and ponds, at a nominal minimum size of two (2) acres or greater, were compiled as closed polygons. The closed water bodies were collected at a constant elevation. Rivers and streams, at a nominal minimum width of 100-feet, were compiled in the direction of flow with both sides of the stream maintaining an equal gradient elevation. The hydrologic flattening of the LiDAR data was performed for inclusion in the National Elevation Dataset (NED).

LiDAR Data Review and Processing

Woolpert utilized the following steps to hydrologically flatten the water bodies and for gradient hydrologic flattening of the double line streams within the existing LiDAR data.

- 1. Woolpert utilized an integrated LiDAR and photogrammetric mapping approach for this task order. Coined "LiDARgrammetry", this process integrates LiDAR surface model data with the intensity values to produce stereo models. This 3D LiDAR stereo model was viewed in stereo at a digital softcopy photogrammetric work station. Once this stereo 3D view is achieved, the photogrammetric technicians collect the 3D breaklines in a manner similar to conventional softcopy photogrammetric workflows.
- 2. Lakes, reservoirs and ponds, at a nominal minimum size of two (2) acres or greater, were compiled as closed polygons. The breaklines that defined the closed water bodies maintained a constant elevation. During the LiDAR data review, the technical staff used a program that displayed the polygon measurement area as a reference to identify lakes larger than two (2) acres. If the lake was larger than two (2) acres in width and/or length, the lake was defined with a breakline to be hydrologically flattened.
- 3. The breaklines defining rivers, creeks, and streams, at a nominal minimum width of 100-

feet, were compiled in the direction of flow with both sides of the stream maintaining an equal gradient elevation. The image to the right, illustrates a good example of rivers at a nominal

minimum width of at least 100-feet, compiled in the direction of flow with both sides of the river maintaining an equal gradient elevation.

- 4. All DEM points were reclassified from inside the hydrologic feature polygons.
- 5. All DEM points were reclassified from within a five (5) foot buffer along the hydrologic feature breaklines.
- 6. The LiDAR mass points and hydrologic feature breaklines were used to generate a new digital elevation model.
- 7. The new hydrologically flattened DEM was delivered in ArcGRID format.

The horizontal datum used for the project was referenced to UTM Coordinate System, Zone 16, and North American Datum of 1983, 2007 Datum. Coordinate positions were specified in units of meters. The vertical datum used for the project was referenced to NAVD 1988, Geoid03, in meters.

Figure 1

Figure 2

Figure 1 reflects a DEM generated from an original LiDAR bare earth point data prior to the hydrologic flattening process. Note the "tinning" across the water.

Figure 2 reflects a DEM generated from LiDAR with breaklines compiled to define the hydrologic features. This figure illustrates the results of adding the breaklines to hydrologically flatten the DEM data. Note the smooth appearance of the water in the DEM.

The hydrologically flattened DEM data was provided to USGS in ArcGRID format at a 1-meter posting, in 1,000 x 1,000 meter tiles.

Terrascan was used to add the hydrologic breakline vertices and export lattice models.

A batch script was developed to process the blocks of ArcGRIDs. A representation of a batch script is listed below:

Asciitoraster_conversion <path of input file in .asc format> <path of output file in GRID format> float

A batch file resembled the script below when finished:

Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE350530.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE350530 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE350540.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE350550 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE350550.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE350550 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE350550.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE350550 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE350550.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE350550 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE360520.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE360520 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE360520.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE360530.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE360530 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE360540.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE360540 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE360540.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE360540 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE360550.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE360540 float Asciitoraster_conversion I:\PH\70452_Arkansas_Tenn_USGS\Carto\Lattice_TN_NEW1\TN16SBE360550.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE360550.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE360550.asc I:\PH\70452_Arkansas_Tenn_USGS\Carto\GRIDS_TN_NEW1\TN16SBE360550.asc I:\P

In ArcCatalog, the command line window was used. The entire batch file was copied and pasted into the command line window. The batch file was processed, creating the ArcGRID DEM files.

The hydrologic breaklines compiled as part of the flattening process were provided to the USGS as a shapefile deliverable. The breaklines defining the water bodies greater than two (2) acres in each block were provided as a Polygon Z file. The breaklines compiled for the gradient flattening of all rivers, creeks and streams at a nominal minimum width of 100-feet in each block were provided as a Polyline Z file.

Woolpert tested and refined our processes during production. Woolpert found that this process would yield virtually error-free results in a very efficient manner.

Data QA/QC

QA/QC for this task order was performed in Global Mapper, by reviewing the grids and hydrologic breakline features.

Edits and corrections found during the QA/QC process were addressed individually by tile. If a water body breakline needed to be lowered or adjusted to improve the flattening of the ArcGRID DEM, the area was cross referenced to the tile number, fixed, regenerated by individual tile and reviewed in GlobalMapper.

Final Deliverables

- One set of hydrologically flattened LiDAR data bare earth 1,000 x 1,000 meter tiles in ArcGRID format.
- LAS v1.2 classified point cloud and bare earth point files in tile format.
- LAS v1.2 raw unclassified flightline strips no greater than 2GB.
- Intensity Images as tiles in ArcGRID FLOAT format.
- Breaklines compiled as part of the hydrologic flattening process were provided as ESRI Polyline Z or PolygonZ shape files.
- FGDC compliant metadata by file in XML format.
- The project data was delivered on external USB 2.0 hard drives.

The DEMs produced under this task order met the following specifications:

- The water body hydrologic flattening and gradient hydrologic flattening of double line streams was completed using the methodology described in this report and Woolpert's original proposal in response to the task order.
- The DEMs were edge joined.
- All characters in the DEM header are in upper case.
- The hydrologically flattened bare earth data was delivered in ArcGRID FLOAT format at a 1-meter posting.