Central Michigan University LiDAR Mapping Report

Portions of Bay, Arenac and Iosco Counties, Michigan

Prepared for:

Mr. Tao Zheng
Dow Science 281
Department of Geography Central Michigan University
Mount Pleasant, MI, 48858
Phone: 989-774-2675
Fax: 989-774-2907
zheng1t@cmich.edu

Prepared by:

Merrick \& Company
GeoSpatial Solutions
2450 South Peoria Street
Aurora, CO 80014
Office: 303-751-0741
Fax: 303-745-0964
http://www.merrick.com/index.php/services/geospatial-solutions

Merrick \& Company Job Number: 02016602

EXECUTIVE SUMMARY

In the spring of 2010, Merrick \& Company (Merrick) was contracted by Central Michigan University (CMU) to execute a LiDAR (Light Detection And Ranging) survey for portions of Bay, Arenac and Losco Counties, located in east central Michigan west of lake Huron. Please note that Charity Island and Little Charity Island are not included in the project area. The purpose of the project is to produce accurate, high-resolution data for research and analysis. Merrick obtained LiDAR data over approximately 1,400 square miles. The LiDAR was post-processed to meet a relative accuracy for the LiDAR point cloud data of $<=7 \mathrm{~cm}$ RMSEZ within individual swaths; <=10cm RMSEz within swath overlap (between adjacent swaths). Vertical accuracy of NSSDA RMSE ${ }_{z}=15 \mathrm{~cm}$ (NSSDA Accuracy $95 \%=30 \mathrm{~cm}$) or better; assessment procedures to comply with FEMA guidelines.

CONTRACT INFORMATION

Questions regarding this report should be addressed to:
Mr. Doug Jacoby, CMS, GISP
Director of Projects
Merrick \& Company
2450 South Peoria Street
Aurora, CO 80014
Office: 303-353-3903
Fax: 303-745-0964
Cell: 303-521-6522
doug.jacoby@merrick.com

Project Completion

The contents of this report summarize the methods used to establish the GPS ground base station network, perform the LiDAR data collection and post-processing as well as the results of these methods.

LiDAR FLIGHT and SYSTEM REPORT

Project Location

The project location for Central Michigan University is defined by the shapefiles "county_069v9b (Iosco County), county_011v9b (Arenac County) and county_017v9b (Bay County)".

Duration/Time Period

One LiDAR aircraft a Cessna 421C (13RF) was used to collect LiDAR Data. The LiDAR data was collected between May $9^{\text {th }}$ and May $25^{\text {th }}, 2010$. The airports of operation were losco County Airport (ECA) East Tawas, Michigan and the James Clements Municipal Airport (3CM) in Bay City, Michigan. This project was flown and LiDAR data was collected by Digital Aerial Solutions, LLC (DAS) using a Leica ALS60 sensor.

Mission Parameters for Project flown at Altitude 4,333 Meters

LiDAR Sensor	Leica Geosystems ALS60
Nominal Ground Sample Distance	1.78 meters
Field of View (scan angle)	30 deg.
Average Airspeed	170 Knots
Laser Pulse Rate	$62,100 \mathrm{Hertz}$
Scan Rate	24.5 Hz
Average Altitude (MSL)	4,333 Meters

Flight mission Date and Times

Mission	Date	Plane	Start Time GPS sec.	End Time GPS sec.	Length Time GPS sec.	Number of GNSS Solution Records
100509_A	May 9, 2010	N13RF	48810.5	64739.5	15929.0	31858.0
100510_A	May 10, 2010	N13RF	91200.0	105834.5	14634.5	29269.0
100510_B	May 10, 2010	N13RF	137912.0	153677.5	15765.5	31531.0
100510_C	May 10, 2010	N13RF	155757.0	167734.5	11977.5	23955.0
100510_D	May 10, 2010	N13RF	169768.5	175555.0	5786.5	11573.0
100525_A	May 25, 2010	N13RF	258874.5	263999.5	5125.0	10250.0

Field Work / Procedures

A total of four (4) ground GPS Base Stations were set up up at the airports of operation in support of the LiDAR data collection. The main GPS Base Stations were Base_Tawaport and Base_Clemport. The auxiliary GPS Base Stations were Base_Tawaport_Az_Mark and Base_Clemport_Az_Mark). The auxillary Base Stations were used for backup should there be any problems with the main GPS Base Stations.

Pre-flight checks such as cleaning the sensor head glass are performed. A five minute INS initialization is conducted on the ground, with the aircraft engines running, prior to the flight mission. To establish fine-alignment of the INS GPS, ambiguities are resolved by flying within ten kilometers of the GPS base stations. During the data collection, the operator recorded information on log sheets which includes weather conditions, LiDAR operation parameters, and flight line statistics. Near the end of the mission, GPS ambiguities were again resolved by flying within ten kilometers of the GPS base stations to aid in post-processing. Data was sent back to the main office and preliminary data processing was performed for quality control of GPS data and to ensure sufficient overlap between flight lines. Any problematic data could then be reflown immediately as required. Final data processing was completed in the Aurora, Colorado office.

Planned Flight Line Diagram

Central Michigan University
LiDAR Mapping Report

Actual Flight Lines Showing Base Station Location

Mission 100509_A = Blue
Mission 100510_A = Red
Mission 100010_B = Yellow
Mission 100510_C = Magenta
Mission 100510_D = White
Mission 100525_A = Cyan

Central Michigan University
LiDAR Mapping Report

Base Station Locations

Base Station Locations

Central Michigan University
LiDAR Mapping Report

Ground Control LiDAR Points

The following graphs show the mission by mission GPS PDOP (Positional Dilution Of Precision) Plot, Number of Satellites Plot.

PDOP (Positional Dilution Of Precision) Plot for missions 100509 A

Number of Satellites Plot for missions 100509 A

Central Michigan University LiDAR Mapping Report

PDOP (Positional Dilution Of Precision) Plot for missions 100510 A

Number of Satellites Plot for missions 100510 A

Central Michigan University
LiDAR Mapping Report
PDOP (Positional Dilution Of Precision) Plot for missions 100510 B

Number of Satellites Plot for missions 100510 B

Central Michigan University LiDAR Mapping Report

PDOP (Positional Dilution Of Precision) Plot for missions 100510 C

Number of Satellites Plot for missions 100510 C

Central Michigan University
LiDAR Mapping Report
PDOP (Positional Dilution Of Precision) Plot for missions 100510 D

Number of Satellites Plot for missions 100510 D

Central Michigan University LiDAR Mapping Report

PDOP (Positional Dilution Of Precision) Plot for missions 100525 A

Number of Satellites Plot for missions 100525 A

LiDAR Data Processing

The airborne GPS data was post-processed using Leica IPAS Pro version 1.35 and Novatel GrafNav version 8.1. A fixed-bias carrier phase solution was computed in both the forward and reverse chronological directions. Whenever practical, LiDAR acquisition was limited to periods when the PDOP (Positional Dilution Of Precision) was less than 4.0. PDOP indicates satellite geometry relating to position. Generally PDOP's of 4.0 or less result in a good quality solution, however PDOP's between 4.0 and 5.0 can still yield good results most of the time. PDOP's over 6.0 are of questionable results and PDOP's of over 7.0 usually result in a poor solution. Usually as the number of satellites increase the PDOP decreases. Other quality control checks used for the GPS include analyzing the combined separation of the forward and reverse GPS processing from one base station and the results of the combined separation when processed from two different base stations. Basically this is the difference between the two trajectories. An analysis of the number of satellites, present during the flight and data collection times, is also performed.

The GPS trajectory was combined with the raw IMU data and post-processed using Leica IPAS Pro version 1.35. The Smoothed Best Estimated Trajectory (SBET) and refined attitude data are then utilized in the ALS Post Processor to compute the laser point-positions - the trajectory is combined with the attitude data and laser range measurements to produce the 3-dimensional coordinates of the mass points. Up to four return values are produced within the ALS Post Processor software for each pulse which ensures the greatest chance of ground returns in a heavily forested area.

Laser point classification was completed using Merrick Advanced Remote Sensing (MARS®) LiDAR processing and modeling software. Several algorithms are used when comparing points to determine the best automatic ground solution. Each filter is built based on the projects terrain and land cover to provide a surface that is 90% free of anomalies and artifacts. After the auto filter has been completed the data sets are then reviewed by an operator utilizing MARS® to remove any other anomalies or artifacts not resolved by the automated filter process. During these final steps the operator also verifies that the datasets are consistent and complete with no data voids.

GPS Controls

A total of four (4) ground GPS Base Stations were set up up at the airports of operation in support of the LiDAR data collection. The main GPS Base Stations were Base_Tawaport and Base_Clemport. The auxiliary GPS Base Stations were Base_Tawaport_Az_Mark and Base_Clemport_Az_Mark). The auxillary Base Stations were used for backup should there be any problems with the main GPS Base Stations. Leica GPS receivers (500 and 1200 series) were used for the Base Stations, and were checked with OPUS solutions from NGS (National Geodetic Survey).

See Below for NGS Airborne GPS Base Station information.

OJ1097	DESIGNATION -	CLEMPORT		
$0 J 1097$	PID	$0 J 1097$		
$0 J 1097$	STATE/COUNTY-	MI/BAY		
$0 J 1097$	USGS QUAD	BAY CITY (1973)		
$0 J 1097$				
$0 J 1097$		*CURRENT SURVEY CONTROL		
$0 J 1097$				
0J1097*	NAD 83(2007)-	$433251.65848(\mathrm{~N}) \quad 08$	53 42.86988(W)	NO CHECK
0J1097*	NAVD 88	177.2 (meters)	581. (feet)	GPS OBS
$0 J 1097$				
$0 J 1097$	EPOCH DATE	2002.00		
OJ1097	X	492,421.942 (meters)		COMP
$0 J 1097$	Y	-4,604, 089.312 (meters)		COMP
OJ1097	Z	4,371,901.404 (meters)		COMP
$0 J 1097$	LAPLACE CORR-	-1.27 (seconds)		DEFLEC09
$0 J 1097$	ELLIP HEIGHT-	142.727 (meters)	(02/10/07)	NO CHECK
$0 J 1097$	GEOID HEIGHT-	-34.44 (meters)		GEOID09

```
OJ1097
OJ1097 ------ Accuracy Estimates (at 95% Confidence Level in cm) --------
0J1097 Type PID Designation North East Ellip
OJ1097 --------------------------------------------------------------------
OJ1097 NETWORK OJ1097 CLEMPORT 2.08 1.37 6.39
OJ1097 ----------------------------------------------------------------------
OJ1097
OJ1097.This mark is at James Clement Municipal Airport (3CM)
OJ1097
0J1097.The horizontal coordinates were established by GPS observations
OJ1097.and adjusted by the National Geodetic Survey in February 2007.
OJ1097
OJ1097.The datum tag of NAD 83(2007) is equivalent to NAD 83(NSRS2007).
0J1097.See National Readjustment for more information.
0J1097.No horizontal observational check was made to the station.
0J1097.The horizontal coordinates are valid at the epoch date displayed above.
OJ1097.The epoch date for horizontal control is a decimal equivalence
0J1097.of Year/Month/Day.
OJ1097
0J1097.The orthometric height was determined by GPS observations and a
OJ1097.high-resolution geoid model.
OJ1097
0J1097.The X, Y, and Z were computed from the position and the ellipsoidal ht.
OJ1097
OJ1097.The Laplace correction was computed from DEFLEC09 derived deflections.
OJ1097
OJ1097.The ellipsoidal height was determined by GPS observations
0J1097.and is referenced to NAD 83.
OJ1097
0J1097.The geoid height was determined by GEOID09.
OJ1097
0J1097; North East Units Scale Factor Converg.
0J1097;SPC MI S - 227,565.697 4,038,096.074 MT 0.99997376 +0 19 14.9
0J1097;SPC MI S - 746,606.62 13,248,346.70 iFT 0.99997376 +0 19 14.9
0J1097;UTM 17 - 4,825,710.004 266,115.225 MT 1.00027291 -1 59 44.2
```



```
OJ1098.The orthometric height was determined by GPS observations and a
OJ1098.high-resolution geoid model.
OJ1098
0J1098.The X, Y, and Z were computed from the position and the ellipsoidal ht.
OJ1098
OJ1098.The Laplace correction was computed from DEFLEC09 derived deflections.
OJ1098
0J1098.The ellipsoidal height was determined by GPS observations
0J1098.and is referenced to NAD 83.
OJ1098
0J1098.The geoid height was determined by GEOID09.
OJ1098
0J1098; North East Units Scale Factor Converg.
OJ1098;SPC MI S - 227,174.834 4,037,725.756 MT 0.99997306 +0 19 03.7
0J1098;SPC MI S - 745,324.26 13,247,131.75 iFT 0.99997306 +0 19 03.7
OJ1098;UTM 17 - 4,825,334.316 265,729.296 MT 1.00027514 -1 59 55.2
```


Ground Control Parameters

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 (NAD83).
Coordinate System: UTM Zone 17
Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)
Geiod Model: Geoid 2009 (Geoid 09 used to convert ellipsoid heights to orthometric heights).
Units: Horizontal units are in Meters, Vertical units are in Meters.

GROUND CONTROL REPORT / CHECK POINT SURVEY RESULTS

Ground Survey Control Report

The following listing shows the ground control, collected for LiDAR check points. The existing ground control points (checkpoints) were surveyed in April 2010 by Atwell, LLC.

Ground Control
Project: Central Michigan University
Job\#: 02016602
Date: May 2010

Coordinate System: UTM17
Zone: 17N
Horizontal Datum: NAD83
Vertical Datum(Geoid09): NAVD88
Units: Meters

Pt\#	Geodetic		Ellipsoid	UTM17		NAVD88
Name	Latitude	Longitude	Height	Northing	Easting	Elevation
	North	West	Geoid	Y	X	Z
	Deg Min Sec	Deg Min Sec	Meters	Meters	Meters	Meters
601	44 $30 \cdot 32.82999 \mathrm{~N}$	830 $53 ' 16.94873 \mathrm{~W}$	275.562	4932479.69	270441.21	310.645
602	$44^{\circ} 30 \cdot 26.44630 \mathrm{~N}$	83 $19 ' 48.37517 \mathrm{~W}$	150.405	4930866.01	314784.26	185.863
603	$44^{\circ} 20^{\prime} 24.66019 \mathrm{~N}$	83${ }^{\circ} 20^{\prime} 27.45257 \mathrm{~W}$	143.439	4912322.56	313390.11	178.627
604	440 $0{ }^{\prime} 47.19855 \mathrm{~N}$	83 $36{ }^{\prime} 18.64709 \mathrm{~W}$	145.646	4882182.50	291351.10	180.674
605	4359'30.49570N	$83^{\circ} 40 \cdot 44.97781 \mathrm{~W}$	144.067	4874452.48	285168.25	179.036
606	$43^{\circ} 55^{\prime} 44.63462 \mathrm{~N}$	830 $53 ' 45.09019 \mathrm{~W}$	142.731	4868071.53	267546.85	177.666
607	$43^{\circ} 45{ }^{\prime} 36.51943 \mathrm{~N}$	83 $57{ }^{\circ} 30.26965 \mathrm{~W}$	142.636	4849487.45	261854.08	177.324
608	$43^{\circ} 37{ }^{\prime} 54.21480 \mathrm{~N}$	830 50'09.37292W	143.763	4834879.20	271225.03	178.347
609	$43^{\circ} 36{ }^{\prime} 06.93523 \mathrm{~N}$	$83^{\circ} 43^{\prime} 11.32855 \mathrm{~W}$	142.986	4831255.79	280484.59	177.513
610	$43^{\circ} 28^{\prime} 43.87289 \mathrm{~N}$	$83^{\circ} 41 ' 52.13322 \mathrm{~W}$	150.171	4817528.73	281816.47	184.570
611	$43^{\circ} 28^{\prime} 44.90650 \mathrm{~N}$	$83^{\circ} 49^{\prime} 05.56168 \mathrm{~W}$	144.850	4817883.39	272080.14	179.271
612	$43^{\circ} 31{ }^{\prime} 20.91153 \mathrm{~N}$	$83^{\circ} 49^{\prime} 03.73983 \mathrm{~W}$	145.825	4822694.99	272284.14	180.290
613	$43^{\circ} 31{ }^{\prime} 27.05325 \mathrm{~N}$	$84^{\circ} 03^{\prime} 01.35558 \mathrm{~W}$	158.246	4823548.18	253486.63	192.540
614	$43^{\circ} 34{ }^{\prime} 01.75442 \mathrm{~N}$	$84^{\circ} 03{ }^{\prime} 03.34223 \mathrm{~W}$	156.285	4828322.65	253617.29	190.644
615	$43^{\circ} 34{ }^{\prime} 08.35611 \mathrm{~N}$	$84^{\circ} 10^{\prime} 05.21013 \mathrm{~W}$	156.020	4828880.67	244161.07	190.242
616	$43^{\circ} 52{ }^{\prime} 09.72629 \mathrm{~N}$	$84^{\circ} 10 \cdot 00.27857 \mathrm{~W}$	182.217	4862239.75	245547.43	216.876
617	$43^{\circ} 43^{\prime} 35.35264 \mathrm{~N}$	$84^{\circ} 10 \cdot 01.10150 \mathrm{~W}$	164.276	4846370.44	244921.32	198.753
618	$44^{\circ} 00^{\prime} 41.09885 \mathrm{~N}$	$84^{\circ} 07{ }^{\prime} 30.99506 \mathrm{~W}$	204.325	4877890.51	249477.34	239.198
619	$44^{\circ} 09^{\prime} 41.98157 \mathrm{~N}$	8409'32.59927W	215.704	4894682.28	247410.35	250.640
620	$44^{\circ} 09^{\prime} 45.37352 \mathrm{~N}$	$83^{\circ} 52 ' 41.60792 \mathrm{~W}$	202.425	4893961.96	269869.11	237.539
621	$44^{\circ} 30^{\prime} 37.28242 \mathrm{~N}$	$83^{\circ} 41^{\prime} 45.61642 \mathrm{~W}$	225.016	4932095.21	285710.18	260.242
622	$44^{\circ} 30 \cdot 38.70339 \mathrm{~N}$	$83^{\circ} 31{ }^{\prime} 21.69013 \mathrm{~W}$	212.308	4931698.94	299487.34	247.645
623	$44^{\circ} 16{ }^{\prime} 54.23773 \mathrm{~N}$	83${ }^{\circ} 28^{\prime} 28.59383 \mathrm{~W}$	144.130	4906143.17	302539.99	179.308

Central Michigan University LiDAR Mapping Report

624	44¹1'29.35718N	83³3'23.46753W	145.051	4896319.69	295691.74	180.194
625	44¹3'36.31418N	8352'59.22604W	209.802	4901101.20	269727.96	244.921
626	$44^{\circ} 27{ }^{\prime} 02.80344 \mathrm{~N}$	835 $53 ' 02.93877 \mathrm{~W}$	239.580	4925988.28	270521.78	274.661
627	$44^{\circ} 09{ }^{\prime} 39.96511 \mathrm{~N}$	$84^{\circ} 00^{\prime} 25.51422 \mathrm{~W}$	208.241	4894164.09	259559.38	243.299
628	$44^{\circ} 24^{\prime} 56.16981 \mathrm{~N}$	83¹9'48.12547W	143.285	4920675.11	314499.34	178.562
629	430 $0^{\prime} 19.52895 \mathrm{~N}$	83 $55^{\prime} 37.66002 \mathrm{~W}$	143.221	4858129.56	264681.22	178.022
630	$44^{\circ} 00^{\prime} 16.31131 \mathrm{~N}$	83²48'24.05378W	143.686	4876206.32	274990.67	178.711
631	$44^{\circ} 27{ }^{\prime} 06.38237 \mathrm{~N}$	83 $49{ }^{\circ} 03.44888 \mathrm{~W}$	247.917	4925914.12	275818.76	283.037
632	$44^{\circ} 23 \cdot 30.68052 \mathrm{~N}$	83041'06.94693W	215.927	4918904.15	286131.64	251.096
633	$44^{\circ} 26{ }^{\prime} 15.65174 \mathrm{~N}$	83³5'59.34050W	214.434	4923774.63	293098.89	249.659
634	$44^{\circ} 23{ }^{\prime} 48.04206 \mathrm{~N}$	83²0'19.82949W	156.646	4918905.12	303119.52	191.884
635	$44^{\circ} 26{ }^{\prime} 48.83942 \mathrm{~N}$	$83^{\circ} 26{ }^{\prime} 28.76132 \mathrm{~W}$	183.304	4924409.88	305743.06	218.599
636	$44^{\circ} 20^{\prime} 04.10462 \mathrm{~N}$	83047'03.36020W	219.418	4912793.75	278029.59	254.557
637	44¹6'42.86647N	83041'01.19771W	183.609	4906316.96	285846.65	218.777
638	$44^{\circ} 20^{\prime} 16.30477 \mathrm{~N}$	$83^{\circ} 34{ }^{\prime} 42.23624 \mathrm{~W}$	204.667	4912633.02	294454.14	239.857
639	44¹3'09.79273N	83 46 '59.47446W	173.043	4900007.39	277681.79	208.195
640	44¹1'15.08416N	83* 40 '20.96845W	154.419	4896174.32	286409.09	189.573
641	$44^{\circ} 05{ }^{\prime} 55.35623 \mathrm{~N}$	83²4'59.94201W	151.337	4886558.58	278551.50	186.443
642	$44^{\circ} 06{ }^{\prime} 27.76073 \mathrm{~N}$	83 $36{ }^{\circ} 21.98476 \mathrm{~W}$	149.308	4887138.78	291433.72	184.387
643	$44^{\circ} 05{ }^{\prime} 01.90381 \mathrm{~N}$	83 $57{ }^{\circ} 06.53034 \mathrm{~W}$	172.043	4885424.49	263671.05	207.107
644	$44^{\circ} 04{ }^{\prime} 12.49709 \mathrm{~N}$	84003'23.25463W	208.253	4884206.00	255236.00	243.243
645	$44^{\circ} 04{ }^{\prime} 11.83158 \mathrm{~N}$	83²4'47.86860W	144.142	4883178.36	284051.55	179.210
646	$44^{\circ} 01{ }^{\prime} 07.56546 \mathrm{~N}$	84*00'23.62660W	174.247	4878352.95	259023.55	209.239
647	$44^{\circ} 03{ }^{\prime} 00.79240 \mathrm{~N}$	8351'41.77540W	154.908	4881432.60	270763.74	189.981
648	$43^{\circ} 57{ }^{\prime} 16.64227 \mathrm{~N}$	84003'53.55680W	170.537	4871400.37	254084.58	205.415
649	$43^{\circ} 57{ }^{\prime} 13.70939 \mathrm{~N}$	83055'35.70940W	151.642	4870906.81	265177.74	186.602
650	$43^{\circ} 53{ }^{\prime} 48.67926 \mathrm{~N}$	83 $59{ }^{\circ} 08.56199 \mathrm{~W}$	153.039	4864750.99	260204.58	187.896
651	$43^{\circ} 51{ }^{\prime} 16.14339 \mathrm{~N}$	8403'53.27892W	161.759	4860277.52	253677.80	196.495
652	43* $47{ }^{\prime} 49.68205 \mathrm{~N}$	$84^{\circ} 05^{\prime} 11.28767 \mathrm{~W}$	161.660	4853972.39	251698.30	196.300
653	$43^{\circ} 48{ }^{\prime} 39.27280 \mathrm{~N}$	$84^{\circ} 00{ }^{\prime} 23.84341 \mathrm{~W}$	150.779	4855265.78	258177.65	185.501
654	$43^{\circ} 43{ }^{\prime} 29.84421 \mathrm{~N}$	8401'40.18602W	153.916	4845781.28	256122.65	188.515
655	43²0'05.97777N	840 $05^{\prime} 16.44019 \mathrm{~W}$	151.107	4839670.13	251049.63	185.580
656	$43^{\circ} 41{ }^{\prime} 14.00941 \mathrm{~N}$	83 $55^{\prime} 16.37076 \mathrm{~W}$	143.476	4841282.01	264562.59	178.096
657	$43^{\circ} 38^{\prime} 42.70687 \mathrm{~N}$	83 $59{ }^{\prime} 26.10841 \mathrm{~W}$	147.879	4836813.39	258802.92	182.403
658	$43^{\circ} 34{ }^{\prime} 49.72739 \mathrm{~N}$	83 $54 ' 58.31004 \mathrm{~W}$	145.777	4829411.85	264550.19	180.272
659	$43^{\circ} 31{ }^{\prime} 34.07284 \mathrm{~N}$	83 $56{ }^{\prime} 04.71444 \mathrm{~W}$	143.609	4823428.02	262847.63	178.027
660	$43^{\circ} 34{ }^{\prime} 44.87056 \mathrm{~N}$	83 $47{ }^{\circ} 21.48402 \mathrm{~W}$	144.718	4828910.04	274791.00	179.243
661	44*18'43.09799N	83 $23{ }^{\prime} 41.85946 \mathrm{~W}$	146.341	4909313.31	308993.70	181.515
662	44*14'59.58836N	83 $32{ }^{\circ} 30.53775 \mathrm{~W}$	146.003	4902769.74	297067.57	181.176
663	$43^{\circ} 32 \cdot 12.46981 \mathrm{~N}$	830 ${ }^{\circ} 1{ }^{\prime} 56.56334 \mathrm{~W}$	145.028	4823967.45	281925.81	179.479
664	$43^{\circ} 38^{\prime} 28.59927 \mathrm{~N}$	84¹0'02.02959W	164.684	4836907.07	244538.84	199.034
665	43²48'08.29209N	84¹0'00.94320W	166.089	4854791.29	245247.14	200.662
666	$43^{\circ} 56{ }^{\prime} 27.34048 \mathrm{~N}$	$84^{\circ} 09^{\prime} 57.54577 \mathrm{~W}$	201.142	4870185.71	245913.31	235.894
667	$44^{\circ} 03{ }^{\prime} 46.52227 \mathrm{~N}$	8409'46.10000W	200.867	4883726.38	246688.64	235.751
668	$44^{\circ} 30^{\prime} 42.04335 \mathrm{~N}$	83²2 ${ }^{\circ} 18.31951 \mathrm{~W}$	152.862	4931559.16	307513.27	188.270
669	$44^{\circ} 30^{\prime} 40.19697 \mathrm{~N}$	83 $36{ }^{\circ} 13.08761 \mathrm{~W}$	218.212	4931946.93	293055.03	253.497
670	$44^{\circ} 30^{\prime} 26.78771 \mathrm{~N}$	83 $48^{\prime} 26.06629 \mathrm{~W}$	231.625	4932069.30	276857.41	266.784

Page 22 of 33

Central Michigan University
LiDAR Mapping Report

671	$44^{\circ} 20^{\prime} 04.69641 \mathrm{~N}$	$83^{\circ} 53^{\prime} 00.70285 \mathrm{~W}$	230.413	4913085.77	270116.61	265.516
672	$44^{\circ} 23^{\prime} 58.42684 \mathrm{~N}$	$83^{\circ} 53^{\prime} 01.72292 \mathrm{~W}$	241.332	4920298.34	270348.05	276.421
673	$44^{\circ} 16^{\prime} 36.49773 \mathrm{~N}$	$83^{\circ} 53^{\prime} 00.38488 \mathrm{~W}$	203.064	4906661.60	269897.65	238.178
674	$44^{\circ} 09^{\prime} 42.62905 \mathrm{~N}$	$84^{\circ} 05^{\prime} 14.15920 \mathrm{~W}$	208.347	4894484.05	253151.32	243.351
675	$44^{\circ} 09^{\prime} 42.57011 \mathrm{~N}$	$83^{\circ} 56^{\prime} 32.29967 \mathrm{~W}$	216.494	4894056.94	264742.22	251.582
676	$44^{\circ} 23^{\prime} 32.63414 \mathrm{~N}$	$83^{\circ} 477^{\prime} 05.15071 \mathrm{~W}$	223.147	4919229.28	278208.77	258.277
677	$44^{\circ} 21^{\prime} 08.95351 \mathrm{~N}$	$83^{\circ} 28^{\prime} 52.61140 \mathrm{~W}$	148.972	4914018.41	302245.56	184.181
678	$44^{\circ} 27^{\prime} 12.28432 \mathrm{~N}$	$83^{\circ} 42^{\prime} 06.20309 \mathrm{~W}$	221.634	4925784.93	285046.50	256.821
679	$44^{\circ} 20^{\prime} 00.92422 \mathrm{~N}$	$83^{\circ} 40^{\prime} 51.56538 \mathrm{~W}$	205.981	4912420.98	286260.04	241.148
680	$44^{\circ} 06^{\prime} 46.07680 \mathrm{~N}$	$83^{\circ} 50^{\prime} 52.54870 \mathrm{~W}$	164.563	4888345.52	272099.72	199.671

LiDAR Control Report

The following listing shows the results of the LiDAR data compared to the GPS ground survey control data. The listing is sorted by the Z Error column showing, in ascending order, the vertical difference between the LiDAR points and the surveyed ground control points.

Control Report

Project File: Central Michigan University
Project Unit: Meter
Date: Wednesday: June 02: 2010
Vertical Accuracy Objective Requirement Type: RMSE(z)
RMSE(z) Objective: 0.15
Control Points in Report: 80
Elevation Calculation Method: Interpolated from TIN
Control Points with LiDAR Coverage: $\mathbf{8 0}$
Average Control Error Reported: 0.00
Maximum (highest) Control Error Reported: 0.28
Median Control Error Reported: 0.01
Minimum (lowest) Control Error Reported: -0.2
Standard deviation (sigma) of Z for sample: 0.10
RMSE of Z for sample (RMSE(z)): 0.10: PASS
NSSDA Achievable Contour Interval: 0.4
ASPRS Class 1 Achievable Contour Interval: 0.4
NMAS Achievable Contour Interval: 0.4

Control	Control Pt.	Control Pt.	Coverage	Control Pt.	from LiDAR	Z Error	Min Z	Median Z	Max Z
Point Id	X(East)	Y(North)		Z(Elev)	Z(Elev)				
	Meter	Meter		Meter	Meter	Meter	Meter	Meter	Meter
664	244538.84	4836907.07	Yes	199.03	198.83	$\mathbf{- 0 . 2 0}$	198.79	198.83	198.84
644	255236.00	4884206.00	Yes	243.24	243.05	$\mathbf{- 0 . 1 9}$	243.03	243.07	243.09
616	245547.43	4862239.75	Yes	216.88	216.69	$\mathbf{- 0 . 1 9}$	216.68	216.68	216.69
615	244161.07	4828880.67	Yes	190.24	190.07	$\mathbf{- 0 . 1 7}$	190.02	190.06	190.10
666	245913.31	4870185.71	Yes	235.89	235.73	$\mathbf{- 0 . 1 6}$	235.68	235.78	235.81
618	249477.34	4877890.51	Yes	239.20	239.04	$\mathbf{- 0 . 1 6}$	239.03	239.04	239.08
646	259023.55	4878352.95	Yes	209.24	209.10	$\mathbf{- 0 . 1 4}$	209.10	209.12	209.13
653	258177.65	4855265.78	Yes	185.50	185.37	$\mathbf{- 0 . 1 3}$	185.36	185.37	185.38
667	246688.64	4883726.38	Yes	235.75	235.63	$\mathbf{- 0 . 1 2}$	235.61	235.67	235.67

Central Michigan University LiDAR Mapping Report

655	251049.63	4839670.13	Yes	185.58	185.47	-0.11	185.46	185.47	185.49
652	251698.30	4853972.39	Yes	196.30	196.19	-0.11	196.10	196.22	196.23
665	245247.14	4854791.29	Yes	200.66	200.55	-0.11	200.49	200.55	200.55
651	253677.80	4860277.52	Yes	196.50	196.40	-0.10	196.35	196.41	196.41
617	244921.32	4846370.44	Yes	198.75	198.66	-0.09	198.63	198.67	198.72
658	264550.19	4829411.85	Yes	180.27	180.18	-0.09	180.14	180.19	180.21
654	256122.65	4845781.28	Yes	188.52	188.44	-0.08	188.40	188.42	188.48
650	260204.58	4864750.99	Yes	187.90	187.82	-0.08	187.79	187.86	187.88
678	285046.50	4925784.93	Yes	256.82	256.74	-0.08	256.68	256.81	256.87
657	258802.92	4836813.39	Yes	182.40	182.32	-0.08	182.27	182.32	182.34
648	254084.58	4871400.37	Yes	205.42	205.34	-0.08	205.32	205.33	205.40
627	259559.38	4894164.09	Yes	243.30	243.22	-0.08	243.19	243.21	243.25
636	278029.59	4912793.75	Yes	254.56	254.49	-0.07	254.44	254.61	254.62
670	276857.41	4932069.30	Yes	266.79	266.72	-0.07	266.68	266.71	266.76
639	277681.79	4900007.39	Yes	208.20	208.14	-0.06	208.06	208.18	208.20
607	261854.08	4849487.45	Yes	177.32	177.26	-0.06	177.24	177.26	177.28
659	262847.63	4823428.02	Yes	178.03	177.97	-0.06	177.87	177.93	177.98
629	264681.22	4858129.56	Yes	178.02	177.97	-0.05	177.93	177.98	178.00
611	272080.14	4817883.39	Yes	179.27	179.23	-0.04	179.17	179.25	179.25
645	284051.55	4883178.36	Yes	179.21	179.17	-0.04	179.17	179.17	179.29
677	302245.56	4914018.41	Yes	184.18	184.14	-0.04	184.13	184.14	184.16
668	307513.27	4931559.16	Yes	188.27	188.24	-0.03	188.15	188.27	188.32
619	247410.35	4894682.28	Yes	250.64	250.61	-0.03	250.60	250.60	250.62
624	295691.74	4896319.69	Yes	180.19	180.16	-0.03	180.12	180.16	180.17
621	285710.18	4932095.21	Yes	260.24	260.21	-0.03	260.21	260.22	260.23
609	280484.59	4831255.79	Yes	177.51	177.48	-0.03	177.45	177.47	177.49
614	253617.29	4828322.65	Yes	190.64	190.62	-0.02	190.55	190.65	190.65
674	253151.32	4894484.05	Yes	243.35	243.33	-0.02	243.15	243.31	243.35
613	253486.63	4823548.18	Yes	192.54	192.54	0.00	192.53	192.54	192.56
660	274791.00	4828910.04	Yes	179.24	179.24	0.00	179.22	179.24	179.25
641	278551.50	4886558.58	Yes	186.44	186.44	0.00	186.41	186.43	186.50
630	274990.67	4876206.32	Yes	178.71	178.72	0.01	178.68	178.74	178.77
676	278208.77	4919229.28	Yes	258.28	258.30	0.02	258.19	258.30	258.31
612	272284.14	4822694.99	Yes	180.29	180.31	0.02	180.29	180.30	180.34
608	271225.03	4834879.20	Yes	178.35	178.37	0.02	178.28	178.38	178.41
632	286131.64	4918904.15	Yes	251.10	251.13	0.03	251.12	251.14	251.17
640	286409.09	4896174.32	Yes	189.57	189.60	0.03	189.55	189.60	189.62
663	281925.81	4823967.45	Yes	179.48	179.51	0.03	179.48	179.50	179.56
638	294454.14	4912633.02	Yes	239.86	239.89	0.03	239.88	239.89	239.93
656	264562.59	4841282.01	Yes	178.09	178.13	0.04	178.09	178.10	178.13

Central Michigan University LiDAR Mapping Report

642	291433.72	4887138.78	Yes	184.39	184.43	0.04	184.30	184.32	184.44
669	293055.03	4931946.93	Yes	253.50	253.54	0.04	253.47	253.51	253.58
649	265177.74	4870906.81	Yes	186.60	186.64	0.04	186.64	186.64	186.66
679	286260.04	4912420.98	Yes	241.15	241.20	0.05	241.17	241.24	241.27
610	281816.47	4817528.73	Yes	184.57	184.62	0.05	184.62	184.63	184.66
662	297067.57	4902769.74	Yes	181.18	181.23	0.05	181.20	181.30	181.40
605	285168.25	4874452.48	Yes	179.04	179.11	0.07	179.04	179.11	179.17
643	263671.05	4885424.49	Yes	207.11	207.18	0.07	207.14	207.15	207.20
623	302539.99	4906143.17	Yes	179.31	179.38	0.07	179.36	179.38	179.40
634	303119.52	4918905.12	Yes	191.88	191.95	0.07	191.93	191.96	191.99
626	270521.78	4925988.28	Yes	274.66	274.73	0.07	274.71	274.74	274.80
633	293098.89	4923774.63	Yes	249.66	249.73	0.07	249.68	249.76	249.79
606	267546.85	4868071.53	Yes	177.66	177.74	0.08	177.72	177.76	177.82
637	285846.65	4906316.96	Yes	218.78	218.87	0.09	218.84	218.84	218.94
622	299487.34	4931698.94	Yes	247.64	247.73	0.09	247.71	247.73	247.84
602	314784.26	4930866.01	Yes	185.86	185.96	0.10	185.91	185.97	185.99
601	270441.21	4932479.69	Yes	310.65	310.76	0.11	310.71	310.74	310.81
672	270348.05	4920298.34	Yes	276.42	276.53	0.11	276.52	276.56	276.61
603	313390.11	4912322.56	Yes	178.63	178.75	0.12	178.72	178.73	178.76
628	314499.34	4920675.11	Yes	178.56	178.68	0.12	178.63	178.65	178.73
661	308993.70	4909313.31	Yes	181.51	181.64	0.13	181.59	181.62	181.67
604	291351.10	4882182.50	Yes	180.67	180.81	0.14	180.77	180.77	180.83
647	270763.74	4881432.60	Yes	189.98	190.12	0.14	190.06	190.10	190.18
675	264742.22	4894056.94	Yes	251.58	251.72	0.14	251.68	251.72	251.72
680	272099.72	4888345.52	Yes	199.67	199.82	0.15	199.74	199.76	199.86
671	270116.61	4913085.77	Yes	265.52	265.67	0.15	265.64	265.69	265.75
631	275818.76	4925914.12	Yes	283.04	283.20	0.16	283.14	283.17	283.21
625	269727.96	4901101.20	Yes	244.92	245.09	0.17	245.05	245.11	245.12
673	269897.65	4906661.60	Yes	238.18	238.37	0.19	238.35	238.37	238.48
620	269869.11	4893961.96	Yes	237.54	237.76	0.22	237.65	237.67	237.77
635	305743.06	4924409.88	Yes	218.60	218.88	0.28	218.87	218.88	218.92

LiDAR CALIBRATION

Note: All figures represented on the following pages are for general illustration purposes, and are not examples derived from actual CMU data.

Introduction

A LiDAR calibration or 'boresight' is performed on every mission to determine and eliminate systemic biases that occur within the hardware of the Leica ALS50 laser scanning system, the inertial measurement unit (IMU), and because of environmental conditions which affect the refraction of light. The systemic biases that are corrected for include roll, pitch, and heading.

Calibration Procedures

In order to correct the error in the data, misalignments of features in the overlap areas of the LiDAR flightlines must be detected and measured. At some point within the mission, a specific flight pattern must be flown which shows all the misalignments that can be present. Typically, Merrick flies a pattern of at least three opposing direction and overlapping lines, three of which provide all the information required to calibrate the system.

Figure 1: Flight pattern required for calibration

Correcting for Pitch and Heading Biases

There are many settings in the ALS40/50 post processor that can be used to manipulate the data; six are used for boresighting. They are roll, pitch, heading, torsion, range and atmospheric correction. The order in which each is evaluated is not very important and may be left to the discretion of the operator. For this discussion, pitch and heading will be evaluated first. It is important to remember that combinations of error can be very confusing, and this is especially true with pitch and heading. They affect the data in similar ways, so error attributed to pitch may be better blamed on heading and vice versa. To see a pitch/heading error, one must use the profile tool to cut along the flight path at a pitched roof or any elevation feature that is perpendicular to the flight path. View the data by elevation to locate these scenarios.

Figure 2: Orthographic view with profile line

Figure 3: Profile view of misalignment
The profile line in Figures 2 and 3 has an additional thin line perpendicular to the cut that shows the direction of the view. In this case, the line is pointing to the right, or east. In the profile window, we are looking through two separate TINs, so there are two lines showing the location of the same building. The yellow line is from the flight line on the left (flown north); the light blue line is from the flight line in the middle (flown south).

Figure 4: Adjusting pitch
The top arrows represent each respective flight direction. We are looking east, the yellow flight line was flown north, and the blue line is flown south. Adjusting pitch changes the relationship between the pitch from the IMU and the actual pitch of the plane. Increasing pitch sends the nose of the plane up and the data ahead in the flight direction. Lowering pitch does the opposite. In this example, pitch needs to decrease in order to bring these two roof lines together. The angle theta must be expressed in radians. The formula to arrive at this angle is...
$\theta=\frac{\arctan \left(\frac{d}{A G L}\right)}{57.2958}$
where d is the distance from nadir (directly under the plane) to the peak of the roof and AGL is the 'above ground level' of the plane. The conversion from degrees to radians is one radian equals 57.2958 degrees. This number is then subtracted from the pitch value that was used to create the data.

The next issue to resolve, before actually changing the pitch value, is to determine if this shift is at all due to an incorrect heading value, since heading will move data in the direction of flight also. The difference is that heading rotates the data, meaning that when heading is changed, objects on opposite sides of the swath move in opposite directions.

Figures 5 and 6: Pitch and Heading movement.

Pitch increases, objects throughout the data move forward.

Heading increases, objects move clockwise.

Flight line extent
When heading changes, objects on the sides of the flight line move in opposite directions. If heading is increased, objects in the flight line move in a clockwise direction. If heading is decreased, objects move in a counter-clockwise direction.

To find out if heading is correct, a similar profile line must be made in the overlap area between the middle flight line and the one to the east, or right side. If the distance d (see Figure 4) is different on the right verses the left, then heading is partially responsible for the error. If the distance d is the same on both sides then heading or pitch is fully responsible.

Correcting for the Roll Bias

Figure 7: The truth survey
Each pair of flight lines was flown in opposite directions, and in this case the red and blue lines were flown east and the green and magenta lines were flown west. The first step is to make a profile line across the survey. Once the profile is created, exaggeration of the elevation by 100 times is necessary to see the pattern. (Figure 8)

Figure 8: Profile view of calibration flight lines

Even without zooming in, a pattern is already apparent. The two east flown lines, red and blue, are high on the left compared to the west flown lines, and low on the right. Since the profile line was created with the view eastward, it is easiest to think about what the east lines are doing. The east lines are low on the right, which means the relationship between the IMU and the right wing of the plane must be adjusted up. As in heading adjustments, sending the data in a clockwise direction is positive. If the axis of the clock is the tail/nose axis of the plane, then it is obvious this data must go in a counter clock-wise, or negative direction. The method for determining the magnitude of the adjustment is similar to determining the magnitude of the adjustment for the pitch. The only difference is how the triangles are drawn in relationship to the data. (Figures 9 and 10)

Figure 9: Half of calibration profile

Figure 10: Differences in average roll trends
The important measurements for this formula are the distance from nadir to the edge of the swath, or $1 / 2$ swath width, and d, the distance from the two average trend lines for each group. Since any adjustments made to roll effect both east and west lines, we are really interested in $1 / 2 \mathrm{~d}$; this will give the value that will bring both sets of lines together. The formula is:

$$
\theta=\frac{\arctan \left(\frac{d / 2}{\text { EdgeToNadir }}\right)}{57.2958}
$$

Correcting the Final Elevation

The next step is to ensure that all missions have the same vertical offset. Two techniques are used to achieve this. The first is to compare all calibration flight lines and shift the missions appropriately. The second is to fly an extra 'cross flight' which touches all flight lines in the project. Each mission's vertical differences can then be analyzed and corrected. However, the result of this exercise is only proof of a high level of relative accuracy. Since many of the calibration techniques affect elevation, project wide GPS control must be utilized to place the surface in the correct location. This can be achieved by utilizing the elevation offset control in the post processor or by shifting the data appropriately in MARS®. The control network may be pre-existing or collected by a licensed surveyor. This is always the last step and is the only way to achieve the high absolute accuracy that is the overall goal.

LIDAR CLASSIFICATION

Per contract requirements, Merrick did NOT perfrom any LiDAR classification.

DIGITAL ELEVATION MODEL (DEM)

Per contract requirements, Merrick did NOT perfrom any DEM development.

BREAKLINE COLLECTION

Per contract requirements, Merrick did NOT perfrom any breakline collection.

