Project Report FEMA VI – Upper Black Watershed LiDAR LiDAR Survey

PREPARED FOR: UNITED STATES GEOLOGICAL SURVEY & FEDERAL EMERGENCY MANAGEMENT AGENCY

PREPARED BY: NORTHROP GRUMMAN CORPORATION

FEMA VI – Upper Black Watershed LIDAR

CONTRACT # G10PC00150

NGC INTERNAL #G12PD00034

DATE: 20 APRIL 2012

Project Summary

This report documents the performance of GPS ground control surveys, airborne acquisition, and subsequent calibration and production processing of Light Detection and Ranging (LiDAR) data for the LiDAR project. The Light Detection and Ranging (LiDAR) dataset is a survey of the Upper Black Watershed project area, totaling approximately 154 square miles. The Upper Black Watershed LiDAR project, ordered by the United States Geological Survey, provides precise elevations acquired with the Optech ALTM213 airborne LiDAR sensor. The LiDAR point cloud is acquired at a nominal point spacing of 2.0 meters. The full study area is approximately 154 square miles, with derivative products consisting of high accuracy multiple return LiDAR data, both raw and separated into several classes, along with hydro flattening breaklines, bare earth DEM tiles, control points, and FGDC compliant XML metadata.

The classified point cloud and bare earth DEM data are tiled into 1500 meter by 1500 meter tiles, stored in LAS format version 1.2 (point format 1), and LiDAR returns coded into 6 separate ASPRS classes. The LiDAR data and derivative products produced are in compliance with the *U.S. Geological Survey National Geospatial Program Guidelines and Base Specifications, Version 13-ILMF 2010.* The LiDAR data was acquired by Northrop Grumman Advanced GEOINT Solutions Unit, which was flown over one mission on January 29, 2012. The Northrop Grumman AGSOU implements a variety of quality assurance and quality control procedures throughout the processing phases in order to provide a product that meets or exceeds the requirements specified in the USGS contract G10PC00150.

This LiDAR data set meets vertical accuracy requirements and is validated to be an accurate representation of the ground at the time of survey.

Table of Contents

1	COL	LECTION REPORT	6
	1.1	Mission Planning and Acquisition	6
	1.2	Flight Parameters	7
	1.3	Dates Flown	7
	1.4	GPS Collection Parameters	7
	1.5	Projection / Datum	7
	1.6	Base Stations Used	8
	1.7	Flight Logs	8
2	PRO	CESSING REPORT	9
	2.1	Airborne Survey Processing	9
	2.2	Swath LAS File Naming Scheme	9
	2.3	Flight line Calibration	10
	2.4	Point Classification	11
	2.5	Methodology for Breakline Collection and Hydro-flattening	12
	2.6	Product Generation - Raw Point Cloud Data, LAS format	13
	2.7	Product Generation - Classified Point Cloud Tiles, LAS format	13
	2.8	Product Generation - Bare Earth DEM Tiles	13
	2.9	Product Generation - Breaklines, ESRI Shapefile format	14
	2.10 ESRI SI	Product Generation - Digital Spatial Representation of Precise Extents of Raw Point Cloud d	
3	QA/	QC REPORT	15
	3.1	Post Data Collection QC	15
	3.2	Data Calibration QC	16
	3.3	Calibrated LiDAR Flightline Data Testing	16
	3.4	Horizontal Accuracy QC	17
	3.5	Vertical Accuracy QC	18
	3.6	Classified Point Cloud Tiles QC	18
	3.7	Tiled and Classified LiDAR Products Testing	20
	3.8	Bare Earth DEM QC	20
	3.9	DEM Products Testing	21
	3.10	Breakline QC	21
	3.11	Swath Extent QC	21
	3.12	Metadata QC	22
4	Con	clusion	22

Appendix A – Final Deliverables QA/QC Checklist	23
Raw Point Cloud Data	23
Classified Point Cloud Tiles	23
Bare Earth DEM tiles	23
Breaklines	23
Control	24
Digital spatial representation of precise extents of Raw Point Cloud data	24
Digital spatial representation of precise extents of Classified Point Cloud data	24
Digital spatial representation of precise extents of Bare Earth DEM data	24
Tile Index	24
Metadata	24
Reports	25
Flight Logs	25
Appendix B – Testing of Relative Accuracy of Calibrated Swaths	26

1 COLLECTION REPORT

1.1 Mission Planning and Acquisition

Flight lines are planned and structured such that there would be sufficient LiDAR point density, overlap, and accuracy. The flight lines were flown at approximately 7,500 feet Above Ground Level (AGL). The LiDAR for the Upper Black Watershed LiDAR survey is captured at a average Nominal Pulse Spacing (NPS) of 2.0 meters (6.56 feet), and with an overlap of approximately 32% between adjacent flight lines. The Optech ALTM 213 airborne LiDAR sensor is configured to collect multiple echoes per pulse, with a minimum of first return, last return, and at least one additional intermediate return. Figure 1 shows the planned flight lines and outlines the project area of interest.

Figure 1

1.2 Flight Parameters

Detailed project planning is performed for this project. This planning is based on project specific requirements and the characteristics of the project site. The basis of this planning includes the required accuracies, type of development, amount and type of vegetation within the project area, the required data posting, and potential altitude restrictions for flights in the general area. A brief summary of the aerial acquisition parameters for this project are shown in the table below:

Parameter	Value
Flying Height (AGL)	7,500 feet
Nominal ground speed	150 knots
Field of View	17°
Laser Rate	50 KHz
Scan Rate	26 Hz
Maximum Cross Track	1.5 meters (4.92 feet)
Posting	
Maximum Along Track	1.5 meters (4.92 feet)
Posting	
Nominal Side lap	50%

These collection parameters resulted in a nominal swath width of 1396.0 meters (4580.0 feet) and an average point distribution of 2 points per square meter.

1.3 Dates Flown

The Upper Black Watershed LiDAR project consists of one mission, which was flown on January 29, 2012.

1.4 GPS Collection Parameters

Collection parameters for this project included the following:

Parameter	Value
Maximum PDOP	2.5
Minimum number of SVs	6
Ground collection epoch	2 Hz (0.5 sec)

1.5 Projection / Datum

The spatial reference systems used are UTM Zone 15N, NAD83, meters with elevations in NAVD88, meters for the full study area. Geoid09 is used in the translation of elevations from ellipsoid to orthometric heights.

1.6 Base Stations Used

The Airborne Global Positioning System (ABGPS) used is the Novatel GPS-702 data collection unit, logging at 2 Hertz, paired with a Novatel DL-4+L1/L2 antenna, which is a fixed height antenna.

1.7 Flight Logs

The LiDAR flight team keeps daily logs throughout the survey acquisition, as seen in Figure 2. These flight logs contain various information, such as flying conditions, sensor setup, date, project, lines flown, start and stop times for each line, and any other additional comments and attributes that may be relevant for that particular mission.

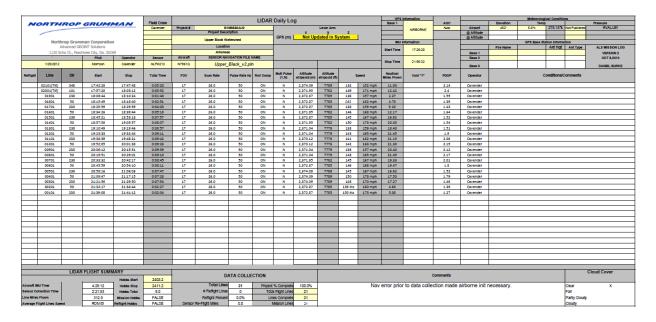


Figure 2

2 PROCESSING REPORT

2.1 Airborne Survey Processing

Beginning the LiDAR data processing, the Airborne GPS is extracted and computed to give the best possible positional accuracies. The IMU data is then analyzed and the lever arms corrected to achieve consistent airborne data. Upon the creation of the SBET file, the LAS files are computed using Optech's proprietary post-processing software.

The Quality Assurance (QA) analyst does a thorough review for any quality issues with the data. This could include data voids, high and low points, and data gaps. The data voids or high points could be the result of any high elevation point returns, including clouds, steam from industrial plants, flocks of birds, or any other anomaly.

The LiDAR data is reviewed at the flight line level in order to verify sufficient flight line overlap as required to ensure there are no data gaps between usable portions of the swath. Each line is also assessed to fully address the data's overall accuracy and quality. Within this Quality Assurance/Quality Control (QA/QC) process, four fundamental questions are addressed:

Does the LiDAR system perform to specifications?

Does the data have any discrepancies or anomalies?

If there are any discrepancies or anomalies, are they addressed accordingly?

Is the data complete?

2.2 Swath LAS File Naming Scheme

Two distinct file name encoding schemes were developed for the swath LAS files which are compatible with the allowable range of values for the LAS File Source ID (header record) and Point Source ID (point records) fields. These fields are stored within the LAS files as a 2-byte unsigned integer (unsigned short) value, which can range from 0 to 65535. The 5-digits supported by this range are subdivided into two or three groups based on the type of swath the file would contain.

In the case of bore sight (for calibration) and tie line swaths, two groups of digits are used. The grouping consists of first, a three digit flight line number (left padded with zeros if necessary) then, a two digit version number. The flight line number reflects the unique number assigned to the flight path as designated in the project flight plan. Initial acquisition of a planned calibration or tie line is designated as version one. Upon subsequent re-flight or re-acquisition, should such be necessary, the version number is incremented relative to the most recent prior acquisition. For example, a file name of "03102.las" would indicate that the file contains the swath from planned flight line number 31, and is the 2nd version (i.e. the line was flown 1 time previously).

In the case of project data swaths, three groups of digits are used. These groups consist of a three digit flight line number (as above), a single digit revision number, and a one digit part number. The initial acquisition of a project data line is designated as revision zero. (It should be noted that this is in contrast to the use of a *version* number as for the bore sight and tie lines above. The primary reason for this difference is to allow the full numeric range, from 0 to 9, to be used for this single digit value.) For the current project, the part number will have a value of either 1 or 2 due to the requirement to split

swath files that are larger than two gigabytes in size. As an example, a file named "04711.las" indicates flight line number 47, revision number 1 (i.e. the line was flown once before), and part number 1.

2.3 Flight line Calibration

Next, the LiDAR data set is calibrated using suitable test sites identified throughout the project area within the raw point cloud. The sensor misalignment angles (heading, roll, and pitch) and mirror scale are then adjusted based on measurements taken between adjacent flight swaths within the point cloud at the test site locations. The Figures 3A and 3B below demonstrate the pre- and post-calibration data.

Figure 3A, shows a predominantly horizontal offset of 1.246 meter in the overlapping region between two swaths.

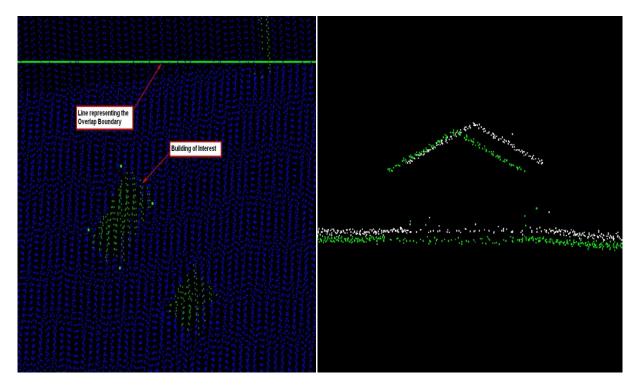


Figure 3A

Below is Figure 3B, showing the offset as corrected after calibration values are applied.

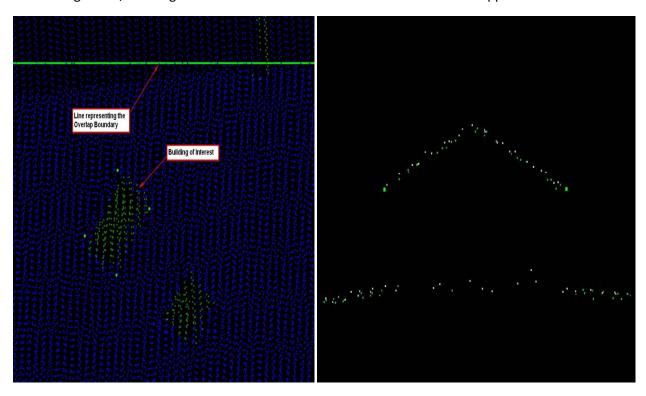


Figure 3B

Once the misalignment angle adjustments are applied to the point cloud, it is compared to the ellipsoidal heights of the surveyed ground control points. Based on the Z-bias given, the data is adjusted to an average delta-Z value to meet or exceed the specified requirements. A geoid model is then created and applied to the point cloud. These final datasets are now quality checked against the orthometric heights of the surveyed ground control points to ensure that they are fully compliant with Statement of Work accuracy specs.

The raw point cloud data is then tiled into 1500 meter by 1500 meter tiles which are stored in LAS format version 1.2, with point format 1, and named according to the US National Grid convention. The populated tiles are then quality checked to ensure that tiles which lie completely within the project area are complete to tile edges and that tiles which lie partially outside the project boundary are complete to the project boundary and include enough overlap beyond the project boundary to ensure that no parts of the project are omitted.

2.4 Point Classification

After calibration, the data is cut into 1500 meter by 1500 meter tiles, per the Statement of Work. The tiles are contiguous, do not overlap, and are suitable for seamless topographic data mosaics that include no "no data" areas. The names of the tiles include numeric column and row. Ground classification algorithms are then applied. The data is automatically classified into the following classes:

- Class 1 Processed, but unclassified
- Class 2 Bare Earth Ground
- Class 11 Withheld

 This class includes: outliers, blunders, noise points, geometrically unreliable points near the extreme edge of the swath, and other points deemed unusable that are identified during pre-processing or though the ground classification algorithms

The following classes are also used during the task of point classification Quality Control (QC), manual edits and breakline creation:

- Class 7 Noise (low or high, manually identified)
- Class 9 Water
- Class 10 Ignored Ground (Breakline Proximity)

Class 7, Noise, is used for points subsequently identified during manual edits and QC. False, extreme high, and extreme low returns are put in this class if found erroneously classified as Ground. Class 10, Ignored Ground, is used for points previously classified as Bare-Earth/Ground, but whose proximity to a subsequently added breakline required that it be excluded during DEM generation. This proximity is 1 meter (3.28 feet).

Each tile is reviewed by an experienced LiDAR analyst to verify the results of the automated ground filters. Points are manually reclassified when necessary. Hydro flattening breaklines are collected, per the project specification, which results in the point classifications for Classes 9 (Water) and 10 (Ignored Ground).

2.5 Methodology for Breakline Collection and Hydro-flattening

Breaklines are collected manually, based on the LiDAR surface model in TerraModeler version 011. The classification of points as either water or ground is determined based on a combination of factors in the data: point density, voids in data returns, and flatness of the surface. Auxiliary information, such as publically available imagery, as well as ESRI's Hydro layer is used as an additional aid in decision making.

When an area has sufficient voids in returns, i.e. the point density is sparse due to absorption, and the area when viewed in cross-section appears to be flat with no apparent vegetation growth, then it is determined to be water. There are cases where a significantly sized body of water has returns on the surface of the water, but based on it being completely flat in cross-section and existing point return voids in close proximity within the bounds of the feature, the area is classified as water.

Along smaller streams and lakes, if there are sufficient point returns that are similar in density to the surrounding ground data, those points are determined to be likely ground returns as well. It is not possible to verify or determine with 100% certainty whether dense point returns within water bodies are actual ground or floating plant debris/algae mats on the water surface. If there are sufficiently dense returns, then it is classified as ground.

Inland ponds and lakes are given a single, constant elevation via hydro flattening breaklines. This elevation value is determined by reviewing multiple cross sectional views of the point data at various locations around the feature in order to identify the elevation of point returns on the surface of the water.

Sloped inland stream and river breaklines have a gradient longitudinally and are flat and level, bank-to-bank, perpendicular to the apparent flow centerline. This is accomplished by setting benchmark heights along the breakline feature at each endpoint and at intervals as needed. These heights are determined by viewing cross sections at each benchmark, identifying the elevation. The feature is then sloped using

linear interpolation to set the vertex heights between the benchmarks. The sloped feature is then checked at multiple places to verify the fit to the point data. At any given point along the sloped breakline, the water surface should be at or just below the adjacent ground data.

After the manual point classification edits and breakline collection process, the tiles go through a final round of QC by our most experienced analysts. Point classifications, breakline collection, and breakline heights are verified. After all data passes the final round of QC, the Bare Earth LiDAR products are generated from the classified LAS tiles.

2.6 Product Generation - Raw Point Cloud Data, LAS format

Following calibration, all raw swaths are evaluated to ensure that the data meets all deliverable requirements. The point cloud is verified to the extent of the AOI and that all points meet LAS 1.2 requirements. GPS times are set to 'Adjusted GPS Time' to allow each return to have a unique timestamp.

Long swaths resulting in a LAS file larger than 2GB are split into segments no greater than 2GB each, without splitting point "families" (i.e. groups of returns belonging to a single source laser pulse). Each segment is subsequently regarded as a unique swath and is assigned a unique File Source ID and each point given a Point Source ID equal to its File Source ID. Georeference information is added and verified. Intensity values are in native radiometric resolution. All swaths, including cross-ties and calibration sites, are included in this deliverable.

Following calibration and correct naming convention application, the raw point cloud is organized and structured per swath as the first deliverable.

2.7 Product Generation - Classified Point Cloud Tiles, LAS format

Following calibration, the data is cut into 1500 meter by 1500 meter tiles, named according to the US National Grid convention, and ground classification algorithms are applied. The data is reviewed by experienced LiDAR analysts, on a tile by tile basis, and ground classifications are manually corrected, as needed. The classified tiles go through one round of quality control and point classification edits, using experienced LiDAR analysts. A second round of QC is performed by our most experienced analysts, which sometimes involves minor edits to the point classifications.

After the point data classifications are verified to meet the standards of the project specification and the U.S. Geological Survey National Geospatial Program LiDAR Guidelines and Base Specification, Version 13 – ILMF 2010, the LAS tiles are clipped to the Area of Interest polygon.

Breakline collection dictates the classification of "Ignored Ground", class 10. Bare earth LiDAR points in close proximity to breaklines are classified to "Ignored Ground", in order to exclude the data from the DEM creation process. The distance threshold used for this reclassification is 1 meter (3.28 feet).

The "Ground" class for all classified point cloud tiles is loaded into TerraScan version 011 to verify completeness of the dataset.

2.8 Product Generation - Bare Earth DEM Tiles

After a satisfactory review of the classified point cloud tiles, these tiles are used to create the Bare Earth DEM raster tiles. Using TerraModeler version 011, the classified point cloud tiles and hydro flattened

breaklines are combined to create triangulated surface models and exported as lattice files, in ArcInfo ASCII raster format, with a cell size of 2.0 meters. The Digital Elevation Model (DEM) naming convention matches the classified LAS tiling scheme. The ASCII raster files are verified to contain no NODATA pixels, within the Area of Interest.

The ASCII raster files are converted to ESRI Float Grid format and clipped to the project coverage area. The bare earth Grid tiles are reviewed to ensure that there is a seamless data set, with no edge artifacts or mismatches between tiles. Any areas outside the Area of Interest, but within the tiling scheme, are coded with a unique NODATA value. The projection for this data set is UTM Zone 15N, NAD83, meters.

2.9 Product Generation - Breaklines, ESRI Shapefile format

All breaklines are collected in MicroStation v8 DGN format then combined into a single master DGN file. Breakline collection adheres to the project specification for feature size and hydro flattening requirements. Breaklines are collected alongside the Quality Control and manual point classification of the LiDAR point data while viewing a surface model of a single tile of data.

Inland ponds and lakes are given a single, constant elevation via hydro flattening breaklines. Inland stream and river breaklines are sloped using a proprietary macro, which interpolates the vertex heights between the established benchmark heights.

The master DGN is then converted to ESRI Shapefile format, as 3D polylines. All breaklines used to modify the surface for the purpose of DEM creation are considered a data deliverable. The projection for this data set is UTM Zone 15N, NAD83, meters.

2.10 Product Generation - Digital Spatial Representation of Precise Extents of Raw Point Cloud data, ESRI Shapefile format

Swath extents for each flight line are computed and combined to form one Shapefile which contains individual swath polygons per acquired line. Since the mission lines are very large, a thinning method is used to decrease overall file size. The thinning method involves placing a uniform grid with a specified cell size and keeping only one point per grid cell.

The thinned LAS file is triangulated into a Triangulated Irregular Network (TIN) and the boundary extracted using a concave approach. Triangles with edges that exceed 50 meters (164 feet) on the outer regions of the TIN are excluded. The domain of the resulting TIN is calculated and polygons are produced which represent each swath's extents. This method calculates the actual extents of the LiDAR source data, exclusive of TIN artifacts or raster NODATA areas.

The resulting Shapefile presents an accurate representation of each swath without being overly complex. The swath polygons are then dissolved, to form a single polygon for each swath, and combined with the other mission lines in the Shapefile format.

3 QA/QC REPORT

3.1 Post Data Collection QC

After extraction of the o-files, SIS Topo Analyst LiDAR Testing Extension is used to test for complete coverage of the project area, and also verification that the required flightline overlap, point spacing, and point density specs were met or exceeded. 'Holes' boundaries polygons are created based on the raw swath LAS files in order to check for data voids. 'No holes' boundary polygons are created based on the raw swath LAS files. These are used to:

- Evaluate full coverage of the project area
- Estimate the pulse density
- Compute swath overlaps

Each swath also undergoes a visual QC for void regions within the swath itself, and in the overlapping regions of the adjacent swaths as well. All data voids in question are examined and verified as being the result of water bodies or areas of low reflectivity.

Figure 4

3.2 Data Calibration QC

The data posting is a function of flight altitude, airspeed, scan angle, scan rate, laser pulse rates, and terrain relief. The above functions are taken into consideration at the time of flight planning. Data acquisition procedures play a role in the success of this method. Many parameters are considered in order to achieve the maximum possible GPS positioning accuracy, such as the separation between the airborne and base station GPS receivers, satellite geometry as reflected by the Position Dilution of Precision (PDOP), signal multipath, and many other factors.

The post-flight data processing software maximizes detection probability while minimizing false alarms. It corrects for several unavoidable, but predictable, biases from the environment as well as removing effects inherent to the hardware configuration. Monitoring the data during collection is only part of the process done to assure proper operation of equipment and ultimately, data quality. However, all subsystems may indicate correct operating parameters (precision), but that does not mean that together they are providing correct solutions (accuracy). In order to validate the collection process, calibration checks are performed. These procedures allow the operator to know if the subsystems are set up properly and if there are any inherent biases in the instrumentation.

Prior to the calibration process, the GPS base stations, which are correlated to NGS CORS network stations, are processed in conjunction with the airborne GPS raw observables to determine the aircraft's positions. The processed GPS positions are combined with the inertial data, measured by the Inertial Measurement Unit (IMU), using the Applanix POSPac ™ software in a closed loop fashion (forward and backward solution with Kalman filter option) to compute the solution parameters, namely position, velocity, and attitude. The resulting SBET file and the LiDAR data are used in the post-processing software as input to compute the calibration parameters.

3.3 Calibrated LiDAR Flightline Data Testing

SIS Topo Analyst LiDAR Testing Extension is used to test relative accuracy of the calibrated flightline LAS data. The software checks for:

- Point Density estimates
- Overlap
- Relative error testing, by computing RMSE Z for the overlapping LAS files

Specifically, each swath boundary polygon is overlaid and the resulting overlap polygons are produced. These swath overlap polygons are divided randomly into 100 subdivisions along each overlap polygon. The subdivisions centroids are then used as random sample sites for computing the DZ value between overlapping LiDAR swaths. The RMSE Z is calculated for each overlapping file and the results are analyzed to ensure the calibration meets the project specifications.

3.4 Horizontal Accuracy QC

Figure 5 depicts the horizontal accuracy with lines digitized by a Northrop Grumman analyst between the LiDAR and horizontal check points acquired by the field crew. These sites are randomly spaced throughout the project area. Method used to calculate horizontal accuracy assessment was the FGDC-STD-007.3-1998.

FGDC-STD-007.3-1998

RMSEnorthing = $\sqrt{\left[\sum (CONTROLnorthing - MEASUREDnorthing)^2/n\right]}$ RMSEeasting = $\sqrt{\left[\sum (CONTROLeasting - MEASUREDeasting)^2/n\right]}$

 $RMSEr = \sqrt{[RMSEeasting^2 + RMSEnorthing^2]}$

RMSE accuracy = 1.7308 * RMSEr

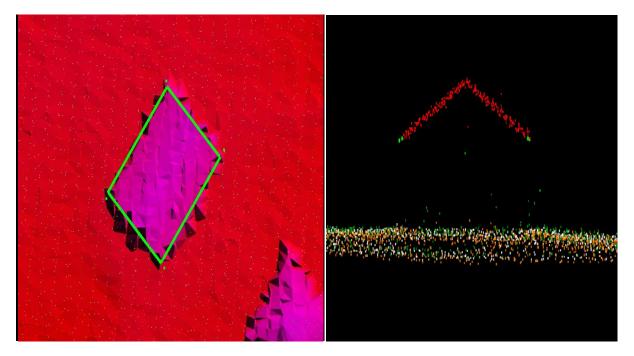


Figure 5

There is not a systematic method of testing when testing horizontal accuracy in LiDAR. The horizontal accuracy is checked by collecting building corners during the survey. Lines are then digitized representing the building outline and the differences are measure from each individual survey point to the corner of the building outline. Stats are calculated to ensure horizontal tolerances are met. These measurements resulted in an RMSEr of 0.25 meters and equal a RMSE accuracy 0.44 meter horizontal accuracy at the 95 % confidence level.

RMSEr * 1.73 = Horizontal Accuracy at the 95% confidence interval.

3.5 Vertical Accuracy QC

Vertical accuracy requirements follow the NSSDA specifications based on RMSE of 12.5 cm in open terrain land cover category. This assessment verifies the vertical accuracy of the LiDAR derived DEM shall be calculated and reported in three ways. 1.FVA 2.SVA 3.CVA. Additionally the FVA points were assessed against the TIN derived from the LAS LiDAR point cloud controlled and calibrated swath data to ensure they met the required accuracy of 12.5cm RMSEz and 24.5cm at the 95% confidence interval.

Table 1- shows the complete results from the RMSE calculations. The required accuracies of the FVA and the CVA are within the required specifications.

Land Cover Category Calculated against the DEM	# of Points	FVA Required 24.5	SVA Target 36.3	CVA Required 36.3	FVA Calculated Against the TIN derived from the Swath Data Required 24.5
Consolidated All Classes	100			0.29	
Bare earth (Open Terrain)	20	0.06			0.07
Urban	20		0.08		
Tall Weeds Crops	20		0.25		
Brush Low Trees	20		0.36		
Trees	20		0.30		

3.6 Classified Point Cloud Tiles QC

The classified point cloud tiles are delivered in fully compliant LAS v1.2 format, with point format 1 and geo-reference information included in the LAS header. GPS times are recorded as Adjusted GPS Time and Intensity values are in native radiometric resolution.

The calibrated data is cut into tiles and then processed using proprietary ground filter macros. The data is reviewed, on a tile by tile basis, and ground classifications are corrected manually, when needed. The point classification scheme is consistent across the entire project and adheres to the project specification.

It is worth noting that the ground returns are not necessarily smooth in a surface model. Due to the excellent ground penetration by the sensor, there is much detail to the terrain and "Ground" point class, as seen in Figure 6.

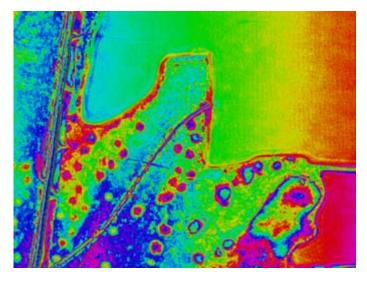


Figure 6

The apparent roughness of the ground point class does appear to accurately represent the ground returns by the sensor. As a result, there are bumps and ridges in the ground class that may initially appear as noise, but are determined to be actual ground returns.

Hydro flattening breaklines are manually collected based on the LiDAR surface model, adhering to the project specification. These breaklines are used to classify ground to "Water" and "Ignored Ground" as needed. The proximity to breaklines threshold for reclassification of ground points to "Ignored Ground" is 1 meter.

Figure 7 shows the classified point data for a typical breakline area, with the classified ground points (orange), water points (red), and the ignored ground points (white):

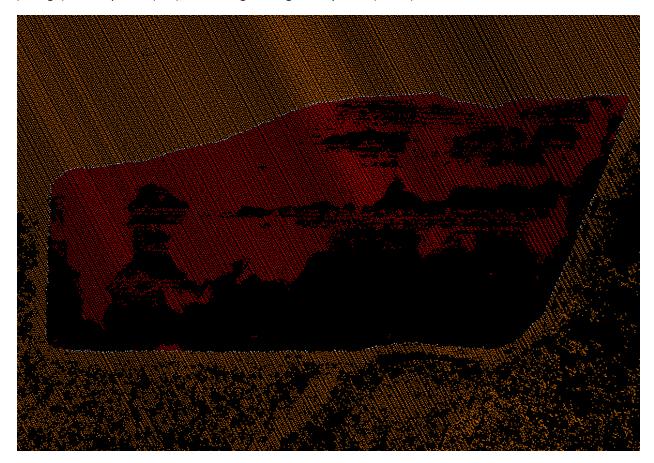


Figure 7

The classified tiles go through one round of Quality Control (QC), point classification edits and breakline collection using experienced LiDAR analysts. A second round of QC is performed by our most experienced analysts, which sometimes involved minor edits to the point classifications and breaklines. If a major problem is found with an analyst's work, issues are identified and submitted back to the analyst for correction. These corrections are then reviewed by the final QC analyst to ensure that the correction is made and that the data meets the project specification.

While the classified point cloud tiles are reviewed by viewing surface models on a tile by tile basis, the point classifications are also checked in a DEM mosaic, a surface analysis hillshade view, for any noticeable anomalies.

As a visual check for completeness of data, the ground class for all LAS tiles is loaded into TerraScan version 011 to verify that no data is missing from the delivery, as seen in Figure 8.

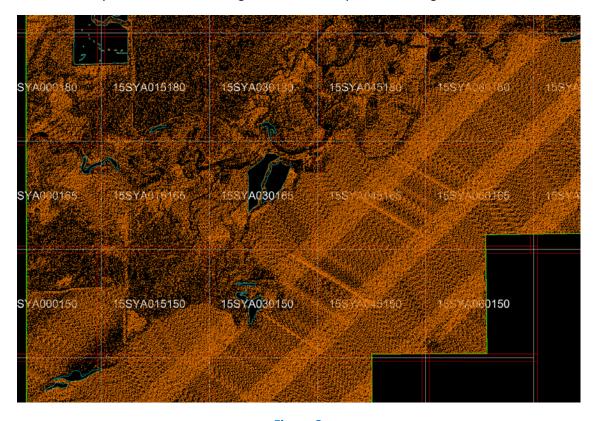
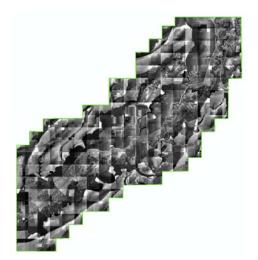


Figure 8

3.7 Tiled and Classified LiDAR Products Testing

SIS Topo Analyst LiDAR Testing Extension is used to test:

- Absolute accuracy of tiled and classified LAS files
- Naming
- Existence
- Extent of all files for conformance to the tile index


The absolute accuracy of the classified LAS files is tested against the ground control data. At each surveyed location, the LiDAR data is transformed into a triangulated irregular network (TIN) and the height is derived at an XY coordinate equal to each control point. The DZ between the TIN and the survey site is computed and the resulting statistics are analyzed.

3.8 Bare Earth DEM QC

After the classified point cloud tiles passes all QC procedures, the ESRI Float GRID files are created and clipped to the deliverable area. These GRID files are then combined to create a mosaic of the entire project area, and used only for internal review.

All DEM tiles are 32-bit floating point, ESRI GRID format with a 2.0 meter cell size. The extent of the dataset is verified to cover the deliverable project area, with no gaps, as seen in Figure 9. The bare earth

DEM dataset is verified to be free of no-data pixel issues, data voids, and high/false returns. Depressions (sinks), whether natural or man-made, are not filled in.

All DEM tiles are carefully reviewed, ensuring that there are no edge artifacts or mismatches between tiles. These DEM tiles can be combined into a truly seamless dataset.

Vertical accuracy requirements of the bare earth data are met, adhering to the project specification. Georeference information is included in all of the raster files and files are verified to utilize a consistent naming convention. The data is then verified to load correctly in the native software.

Figure 9

3.9 DEM Products Testing

SIS Topo Analyst LiDAR Testing Extension is used to test:

- Accuracy of DEM products
- Naming
- Existence
- Extent of all files for conformance to the tile index

For each ground control site the DEM value is extracted and the DZ is computed. Statistics are then ran to ensure the digital elevation models meet the required accuracy relative to the surveyed control sites.

3.10 Breakline QC

All breakline elements are manually collected, using MicroStation v8, in DGN format. All breaklines go through the QC process multiple times alongside the classified point cloud tiles. The breaklines are collected, meeting the requirements for surface area and stream or river width, per the project specifications. The breakline features are seamless between tiles. The breakline height, at any given point, is determined to be at, or just below the immediately surrounding terrain, representing the level of the water surface. All breakline areas are flat and level bank-to-bank and are perpendicular to the apparent flow centerline.

3.11 Swath Extent QC

The swath extent Shapefile is analyzed for numerical accuracy as well as correct spatial representation. This involves loading the LAS files and visually checking the boundaries that were created. It also requires checks throughout the attribute table to verify the correct file naming is applied to each swath's polygon.

3.12 Metadata QC

Metadata templates for each product are created by an experienced analyst. Each section of the metadata is analyzed for accuracy and inclusion of all requirements. Upon completion of the metadata templates, the templates are modified slightly to adhere to each products requirements specifically referring to processing steps, product format, and methodology. Finally, the USGS metadata parser is used to validate the metadata against the FGDC Content Standard for Digital Geospatial Metadata.

4 Conclusion

From the precise flight planning around various environmental and project specific requirements to the rigorous QA/QC process at Northrop Grumman, these LiDAR survey products are produced to meet or exceed the required specifications according to the statement of work. Great care is taken to ensure the surveyed data flown on January 29, 2012 is an accurate representation of the ground during these dates.

Appendix A – Final Deliverables QA/QC Checklist

Raw Point Cloud Data □ LAS files loaded and dataset extent verified to cover Area of Interest ☐ Data loads correctly in native software ☐ Georeference information is included in LAS header ☐ Fully compliant - LAS v1.2 format ☐ A unique File Source ID has been assigned to each swath ☐ The Point Source ID field for each point within each LAS swath file has been set equal to the File Source ID, prior to processing of the data ☐ All collected swaths, including calibration and cross-tie swaths, are included in this deliverable □ Naming convention - flightline.LAS, all caps - ex: "00101.LAS" **Classified Point Cloud Tiles** ■ LAS files loaded and dataset extent verified to Area of Interest ☐ Data loads correctly in native software ☐ Georeference information is included in LAS header (specifics above in checklist) ☐ Fully compliant - LAS v1.2 format ☐ Tiled delivery, without tile overlap ☐ Data extends to deliverable AOI ☐ Naming convention - named according to the US National Grid conventions ☐ Tiles have been clipped to deliverable AOI **Bare Earth DEM tiles** ☐ All DEM tiles loaded and dataset extent verified to cover Area of Interest ☐ Data loads correctly in native software ☐ Tiled delivery, without tile overlap ☐ 2.0 meter cell size ☐ 32-bit floating point, ERDAS .IMG format ☐ Georeference information included in all raster files Areas outside AOI, but within tiling scheme, coded with unique "NODATA" value Naming convention - named according to the US National Grid conventions ☐ Tiles have been clipped to deliverable AOI **Breaklines** ☐ Breaklines DGN converted to 3-D Polyline-Z shapefile ☐ Elevation attribute included in attribute table ☐ Breaklines - edge-match seamlessly between tiles ☐ Breakline shapefile loaded and into Arc and dataset extent verified to cover Area of Interest

Northrop Grumman Page | 23

☐ Georeference information verified (projection, datum, zone, units, vertical)

☐ Data loads correctly in native software

Control	
	Supplemental Ground Control: Differentially corrected GPS Ground control, used to supplement the Airborne GPS positional accuracy
	Twenty (20) check points included in delivery fall within Area of Interest Twenty (20) check points collected uniformly dispersed over each area, in each of the three major land cover classifications, to verify fundamental vertical accuracy
	Data loads correctly in native software Georeference information verified (projection, datum, zone, units, vertical)
Digital spatia	al representation of precise extents of Raw Point Cloud data
<u> </u>	Shape file created, reflecting extents for each individual delivered dataset 2-D shapefile Data loads correctly in native software Georeference information verified (projection, datum, zone, units, vertical)
Digital spatia	al representation of precise extents of Classified Point Cloud data
	Shape file created, reflecting extents for each individual delivered dataset Georeference information verified (projection, datum, zone, units, vertical) Data loads correctly in native software
Digital spatia	al representation of precise extents of Bare Earth DEM data
	Shape file created, reflecting extents for each individual delivered dataset Georeference information verified (projection, datum, zone, units, vertical) Data loads correctly in native software
Tile Index	
	Shape file created Projection info verified (projection, datum, zone, units, vertical) Data loads correctly in native software
Metadata	
_ _ _ -	Project Lift/mission (one metadata file for each) Raw point cloud data Classified point cloud tiles Bare earth DEM tiles Breaklines Imported into breaklines shapefile Control Imported into control shapefile

Reports		
		Control report included in delivery - PDF format Project report included in delivery - PDF format
Flight Lo	gs	
		Flight logs renumbered to match raw LAS/swath naming convention
		Flight logs converted to PDF

Appendix B - Testing of Relative Accuracy of Calibrated Swaths

SLP Statistics

LAS File 1:00101

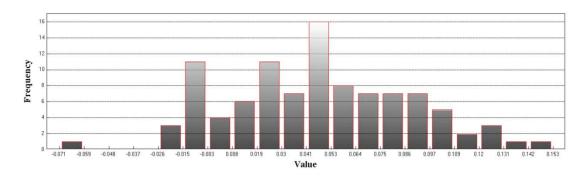
LAS File 2: 00201

SLP ID: 1A

Used Count: 100 # SLP Divisions: 100

Min: -0.071 Max: 0.153 Mean: 0.047

Mean Magnitude: 0.227 Standard Deviation: 0.042


RMSEz: 0.063 RMSEz CM: 6.256

95% Confidence Level: 0.123

95th Percential: 0.123

Threshold: 0.3 Units: Meters

Histogram

Min: -0.071 Max: 0.153

Number Of Bins: 20 Bin Interval: 0.011

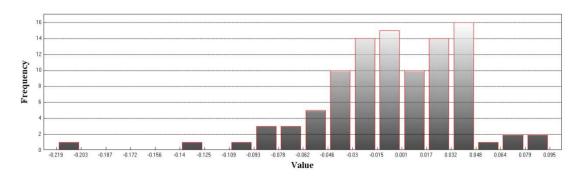
LAS File 1: 00201 LAS File 2: 00301

SLP ID: 2A

Used Count: 98 # SLP Divisions: 100

Min: -0.219 Max: 0.095 Mean: -0.006

Mean Magnitude: 0.187 Standard Deviation: 0.046


RMSEz: 0.047 RMSEz CM: 4.656

95% Confidence Level: 0.091

95th Percential: 0.087

Threshold: 0.3 Units: Meters

Histogram

Min: -0.219 Max: 0.095

Number Of Bins: 20 Bin Interval: 0.016

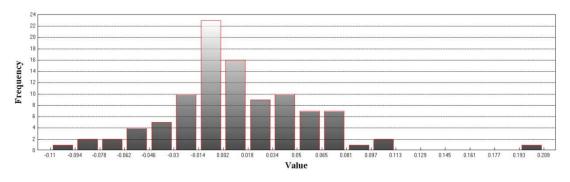
LAS File 1: 00301 LAS File 2: 00401

SLP ID: 3A

Used Count: 100 # SLP Divisions: 100

Min: -0.11 Max: 0.209 Mean: 0.01

Mean Magnitude: 0.183 Standard Deviation: 0.046


RMSEz: 0.047 RMSEz CM: 4.667

95% Confidence Level: 0.091

95th Percential: 0.095

Threshold: 0.3 Units: Meters

Histogram

Min: -0.11 Max: 0.209

Number Of Bins: 20 Bin Interval: 0.016

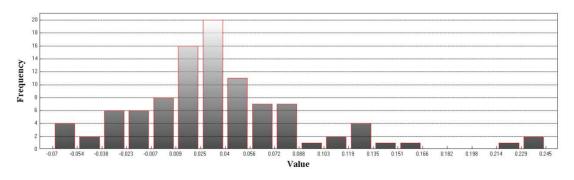
LAS File 1: 00401 LAS File 2: 00501

SLP ID: 4A

Used Count: 99 # SLP Divisions: 100

Min: -0.07 Max: 0.245 Mean: 0.037

Mean Magnitude: 0.222 Standard Deviation: 0.057


RMSEz: 0.068 RMSEz CM: 6.757

95% Confidence Level: 0.132

95th Percential: 0.139

Threshold: 0.3 Units: Meters

Histogram

Min: -0.07 Max: 0.245

Number Of Bins: 20 Bin Interval: 0.016

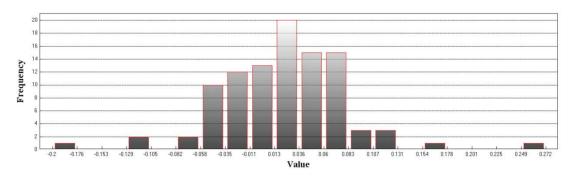
LAS File 1: 00501 LAS File 2: 00601

SLP ID: 5A

Used Count: 98 # SLP Divisions: 100

Min: -0.2 Max: 0.272 Mean: 0.02

Mean Magnitude: 0.221 Standard Deviation: 0.061


RMSEz: 0.064 RMSEz CM: 6.395

95% Confidence Level: 0.125

95th Percential: 0.123

Threshold: 0.3 Units: Meters

Histogram

Min: -0.2 Max: 0.272

Number Of Bins: 20 Bin Interval: 0.024

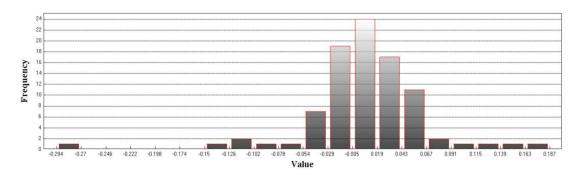
LAS File 1: 00601 LAS File 2: 00701

SLP ID: 6A

Used Count: 90 # SLP Divisions: 100

Min: -0.294 Max: 0.187 Mean: 0.005

Mean Magnitude: 0.193 Standard Deviation: 0.057


RMSEz: 0.057 RMSEz CM: 5.727

95% Confidence Level: 0.112

95th Percential: 0.128

Threshold: 0.3 Units: Meters

Histogram

Min: -0.294 Max: 0.187

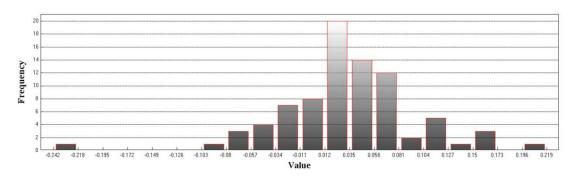
Number Of Bins: 20 Bin Interval: 0.024

LAS File 1: 00701 LAS File 2: 00801

Used Count: 82 # SLP Divisions: 100

Min: -0.242 Max: 0.219 Mean: 0.033

Mean Magnitude: 0.234 Standard Deviation: 0.064


RMSEz: 0.072 RMSEz CM: 7.218

95% Confidence Level: 0.141

95th Percential: 0.169

Threshold: 0.3 Units: Meters

Histogram

SLP ID: 7A

Min: -0.242 Max: 0.219

Number Of Bins: 20 Bin Interval: 0.023

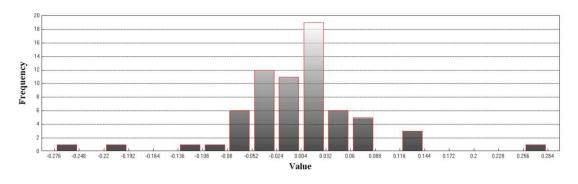
LAS File 1: 00801 LAS File 2: 00901

SLP ID: 8A

Used Count: 67 # SLP Divisions: 100

Min: -0.276 Max: 0.284 Mean: 0

Mean Magnitude: 0.221 Standard Deviation: 0.075


RMSEz: 0.074 RMSEz CM: 7.414

95% Confidence Level: 0.145

95th Percential: 0.182

Threshold: 0.3 Units: Meters

Histogram

Min: -0.276 Max: 0.284

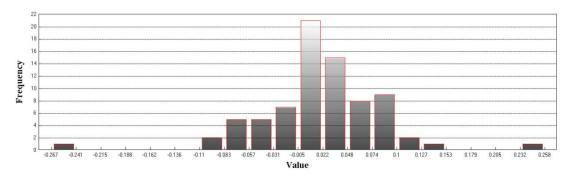
Number Of Bins: 20 Bin Interval: 0.028

LAS File 1: 00901 LAS File 2: 01001

SLP ID: 9A

Used Count: 77 # SLP Divisions: 100

Min: -0.267 Max: 0.258 Mean: 0.018


Mean Magnitude: 0.217 Standard Deviation: 0.064

RMSEz: 0.066 RMSEz CM: 6.647

95% Confidence Level: 0.13 95th Percential: 0.114

Threshold: 0.3 Units: Meters

Histogram

Min: -0.267 Max: 0.258

Number Of Bins: 20 Bin Interval: 0.026

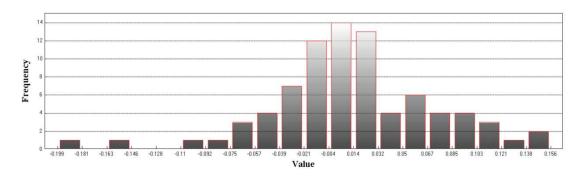
LAS File 1: 01001 LAS File 2: 01101

SLP ID: 10A

Used Count: 81 # SLP Divisions: 100

Min: -0.199 Max: 0.156 Mean: 0.013

Mean Magnitude: 0.213 Standard Deviation: 0.06


RMSEz: 0.061 RMSEz CM: 6.132

95% Confidence Level: 0.12

95th Percential: 0.14

Threshold: 0.3 Units: Meters

Histogram

Min: -0.199 Max: 0.156

Number Of Bins: 20 Bin Interval: 0.018

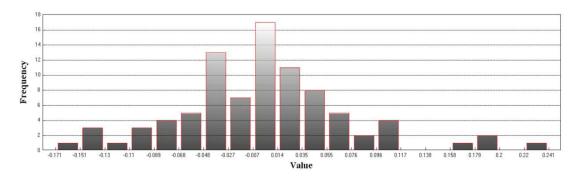
LAS File 1: 01101 LAS File 2: 01201

SLP ID: 11A

Used Count: 88 # SLP Divisions: 100

Min: -0.171 Max: 0.241 Mean: 0.002

Mean Magnitude: 0.23 Standard Deviation: 0.073


RMSEz: 0.072 RMSEz CM: 7.231

95% Confidence Level: 0.142

95th Percential: 0.175

Threshold: 0.3 Units: Meters

Histogram

Min: -0.171 Max: 0.241

Number Of Bins: 20 Bin Interval: 0.021

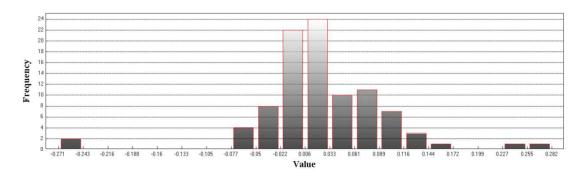
LAS File 1: 01201 LAS File 2: 01301

SLP ID: 12A

Used Count: 94 # SLP Divisions: 100

Min: -0.271 Max: 0.282 Mean: 0.024

Mean Magnitude: 0.223 Standard Deviation: 0.073


RMSEz: 0.076 RMSEz CM: 7.625

95% Confidence Level: 0.149

95th Percential: 0.19 Threshold: 0.3

Units: Meters

Histogram

Min: -0.271 Max: 0.282

Number Of Bins: 20 Bin Interval: 0.028

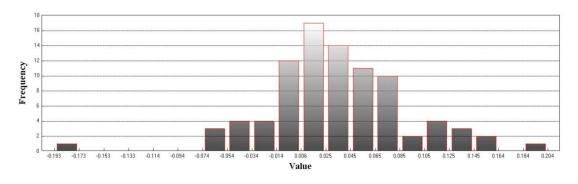
LAS File 1: 01301 LAS File 2: 01401

SLP ID: 13A

Used Count: 88 # SLP Divisions: 100

Min: -0.193 Max: 0.204 Mean: 0.035

Mean Magnitude: 0.226 Standard Deviation: 0.058


RMSEz: 0.067 RMSEz CM: 6.714

95% Confidence Level: 0.132

95th Percential: 0.145

Threshold: 0.3 Units: Meters

Histogram

Min: -0.193 Max: 0.204

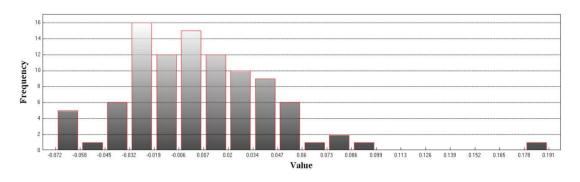
Number Of Bins: 20 Bin Interval: 0.02

LAS File 1: 01401 LAS File 2: 01501

Used Count: 97 # SLP Divisions: 100

Min: -0.072 Max: 0.191 Mean: 0.005

Mean Magnitude: 0.168 Standard Deviation: 0.039


RMSEz: 0.039 RMSEz CM: 3.869

95% Confidence Level: 0.076

95th Percential: 0.072

Threshold: 0.3 Units: Meters

Histogram

SLP ID: 14A

Min: -0.072 Max: 0.191

Number Of Bins: 20 Bin Interval: 0.013

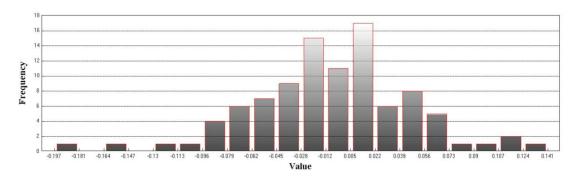
LAS File 1: 01501 LAS File 2: 01601

SLP ID: 15A

Used Count: 97 # SLP Divisions: 100

Min: -0.197 Max: 0.141 Mean: -0.006

Mean Magnitude: 0.204 Standard Deviation: 0.055


RMSEz: 0.055 RMSEz CM: 5.495

95% Confidence Level: 0.108

95th Percential: 0.116

Threshold: 0.3 Units: Meters

Histogram

Min: -0.197 Max: 0.141

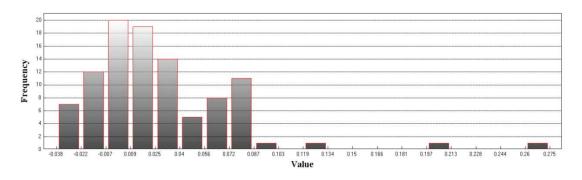
Number Of Bins: 20 Bin Interval: 0.017

LAS File 1: 01601 LAS File 2: 01701

Used Count: 100 # SLP Divisions: 100

Min: -0.038 Max: 0.275 Mean: 0.028

Mean Magnitude: 0.191 Standard Deviation: 0.046


RMSEz: 0.054 RMSEz CM: 5.391

95% Confidence Level: 0.106

95th Percential: 0.087

Threshold: 0.3 Units: Meters

Histogram

SLP ID: 16A

Min: -0.038 Max: 0.275

Number Of Bins: 20 Bin Interval: 0.016

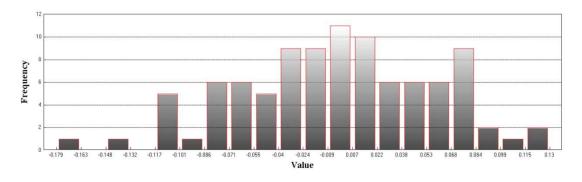
LAS File 1: 01701 LAS File 2: 01801

SLP ID: 17A

Used Count: 96 # SLP Divisions: 100

Min: -0.179 Max: 0.13 Mean: -0.003

Mean Magnitude: 0.222 Standard Deviation: 0.061


RMSEz: 0.061 RMSEz CM: 6.094

95% Confidence Level: 0.119

95th Percential: 0.115

Threshold: 0.3 Units: Meters

Histogram

Min: -0.179 Max: 0.13

Number Of Bins: 20 Bin Interval: 0.015

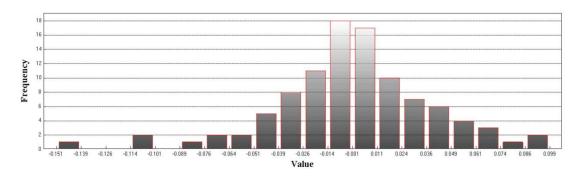
LAS File 1: 01801 LAS File 2: 01901

SLP ID: 18A

Used Count: 100 # SLP Divisions: 100

Min: -0.151 Max: 0.099 Mean: -0.001

Mean Magnitude: 0.173 Standard Deviation: 0.041


RMSEz: 0.041 RMSEz CM: 4.077

95% Confidence Level: 0.08

95th Percential: 0.091

Threshold: 0.3 Units: Meters

Histogram

Min: -0.151 Max: 0.099

Number Of Bins: 20 Bin Interval: 0.013