Dewberry & Davis LLC 1000 N. Ashley Drive, Suite 801 Tampa, FL 33602-3718 813.225.1325 813.225.1385 fax www.dewberry.com

USGS/FEMA Region IX – Orange County, CA LiDAR

Report Produced for U.S. Geological Survey

USGS Contract: G10PC0013

Task Order: G12PD00039.

Report Date: 7/31/2012

SUBMITTED BY: Dewberry 1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

SUBMITTED TO: U.S. Geological Survey 1400 Independence Road Rolla, MO 65401

Table of Contents

Executive Summary	4
The Project Team	4
Survey Area	4
Date of Survey	4
Datum Reference	4
LiDAR Vertical Accuracy	4
Project Deliverables	5
Project Tiling Footprint	5
List of delivered tiles (1,327):	6
LiDAR Acquisition Report	13
Scope of Work	13
LiDAR Acquisition Details	13
Collection Summary	14
LiDAR Processing & Qualitative Assessment	14
Data Classification and Editing	14
Qualitative Assessment	16
Analysis	
Conclusion	25
Survey Vertical Accuracy Checkpoints	26
LiDAR Vertical Accuracy Statistics & Analysis	
Background	
Vertical Accuracy Test Procedures	
FVA	
CVA	
SVA	29
Vertical Accuracy Testing Steps	29
Vertical Accuracy Results	
Conclusion	
Breakline Production & Qualitative Assessment Report	
Breakline Production Methodology	
Breakline Qualitative Assessment	
Breakline Topology Rules	
Breakline QA/QC Checklist	35
Data Dictionary	38
Horizontal and Vertical Datum	
Coordinate System and Projection	38
Inland Streams and Rivers	38

Inland Ponds and Lakes	40
Tidal Waters	
DEM Production & Qualitative Assessment	43
DEM Production Methodology	43
DEM Qualitative Assessment	
DEM Vertical Accuracy Results	
DEM QA/QC Checklist	46
Appendix A: Full LiDAR Acquisition Report	

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 4 of 146

Executive Summary

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR) technology for the USGS FEMA IX Orange County, California Project Area.

The LiDAR data were processed to a bare-earth digital terrain model (DTM). Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 1500m by 1500m. A total of 868 tiles were produced for the project encompassing an area of approximately 681 sq. miles.

THE PROJECT TEAM

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all LiDAR products, breakline production, Digital Elevation Model (DEM) production, and quality assurance.

Dewberry's Steven A. Wood completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the LiDAR-derived surface model. He also verified the GPS base station coordinates used during LiDAR data acquisition to ensure that the base station coordinates were accurate. Note that a separate Survey Report was created for this portion of the project.

Digital Mapping, Inc (DMI) completed LiDAR data acquisition and data calibration for the project area.

SURVEY AREA

The project area addressed by this report falls within the California counties of Los Angeles, Orange, Riverside, and San Bernardino.

DATE OF SURVEY

The LiDAR aerial acquisition was conducted from December 17, 2011 thru February 9, 2012.

DATUM REFERENCE

Data produced for the project were delivered in the following reference system.

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 (NAD 83)

Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)

Coordinate System: UTM Zone 11

Units: Horizontal units are in meters, Vertical units are in meters.

Geiod Model: Geoido9 (Geoid 09 was used to convert ellipsoid heights to orthometric heights).

LIDAR VERTICAL ACCURACY

For the FEMA IX Orange County, CA LiDAR Project, the tested $RMSE_z$ for checkpoints in open terrain equaled **0.10 m** compared with the 0.125 m specification; and the FVA computed using $RMSE_z \ge 1.9600$ was equal to **0.19 m**, compared with the 0.245 m specification.

For the FEMA IX Orange County, CA LiDAR Project, the tested CVA computed using the 95th percentile was equal to **0.17 m**, compared with the 0.363 m specification.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 5 of 146

PROJECT DELIVERABLES

The deliverables for the project are listed below.

- 1. Raw Point Cloud Data (Swaths)
- 2. Classified Point Cloud Data (Tiled)
- 3. Bare Earth Surface (Raster DEM IMG Format)
- 4. Intensity Images (8-bit gray scale, tiled, GeoTIFF format)
- 5. Breakline Data (File GDB)
- 6. Control & Accuracy Checkpoint Report & Points
- 7. Metadata
- 8. Project Report (Acquisition, Processing, QC)
- 9. Project Extents, Including a shapefile derived from the LiDAR Deliverable

PROJECT TILING FOOTPRINT

Eight hundred sixty-eight (868) tiles were delivered for the project. Each tile's extent is 1,500 meters by 1,500 meters.

USGS FEMA IX - Orange County, CA LiDAR Project

Figure 1: Project Map

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 6 of 146

LIST OF DELIVERED TILES (1,327):

	11SMT381060	11SMT381105
11SMS396985	11SMT396060	11SMT396105
11SMS411985	11SMT411060	11SMT411105
11SMS426985	11SMT426060	11SMT426105
11SMT381000	11SMT441060	11SMT441105
11SMT396000	11SMT456060	11SMT456105
11SMT411000	11SMT471060	11SMT471105
11SMT426000	11SMT306075	11SMT486105
11SMT441000	11SMT321075	11SMT501105
11SMT366015	11SMT336075	11SMT246120
11SMT381015	11SMT351075	11SMT261120
11SMT396015	11SMT366075	11SMT276120
11SMT411015	11SMT381075	11SMT291120
11SMT426015	11SMT396075	11SMT306120
11SMT441015	11SMT411075	11SMT321120
11SMT456015	11SMT426075	11SMT336120
11SMT336030	11SMT441075	11SMT351120
11SMT351030	11SMT456075	11SMT366120
11SMT366030	11SMT471075	11SMT381120
11SMT381030	11SMT486075	11SMT396120
11SMT396030	11SMT291090	11SMT411120
11SMT411030	11SMT306090	11SMT426120
11SMT426030	11SMT321090	11SMT441120
11SMT441030	11SMT336090	11SMT456120
11SMT456030	11SMT351090	11SMT471120
11SMT321045	11SMT366090	11SMT486120
11SMT336045	11SMT381090	11SMT501120
11SMT351045	11SMT396090	11SMT231135
11SMT366045	11SMT411090	11SMT246135
11SMT381045	11SMT426090	11SMT261135
11SMT396045	11SMT441090	11SMT276135
11SMT411045	11SMT456090	11SMT291135
11SMT426045	11SMT471090	11SMT306135
11SMT441045	11SMT486090	11SMT321135
11SMT456045	11SMT276105	11SMT336135
11SMT471045	11SMT291105	11SMT351135
11SMT306060	11SMT306105	11SMT366135
11SMT321060	11SMT321105	11SMT381135
11SMT336060	11SMT336105	11SMT396135
11SMT351060	11SMT351105	11SMT411135
11SMT366060	11SMT366105	11SMT426135
		. 50

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 7 of 146

11SMT441135	11SMT396165	11SMT231195
11SMT456135	11SMT411165	11SMT246195
11SMT471135	11SMT426165	11SMT261195
11SMT486135	11SMT441165	11SMT276195
11SMT501135	11SMT456165	11SMT291195
11SMT516135	11SMT471165	11SMT306195
11SMT216150	11SMT486165	11SMT321195
11SMT231150	11SMT501165	11SMT336195
11SMT246150	11SMT516165	11SMT351195
11SMT261150	11SMT141180	11SMT366195
11SMT276150	11SMT156180	11SMT381195
11SMT291150	11SMT171180	11SMT396195
11SMT306150	11SMT186180	11SMT411195
11SMT321150	11SMT201180	11SMT426195
11SMT336150	11SMT216180	11SMT441195
11SMT351150	11SMT231180	11SMT456195
11SMT366150	11SMT246180	11SMT471195
11SMT381150	11SMT261180	11SMT486195
11SMT396150	11SMT276180	11SMT501195
11SMT411150	11SMT291180	11SMT096210
11SMT426150	11SMT306180	11SMT111210
11SMT441150	11SMT321180	11SMT126210
11SMT456150	11SMT336180	11SMT141210
11SMT471150	11SMT351180	11SMT156210
11SMT486150	11SMT366180	11SMT171210
11SMT501150	11SMT381180	11SMT186210
11SMT516150	11SMT396180	11SMT201210
11SMT171165	11SMT411180	11SMT216210
11SMT186165	11SMT426180	11SMT231210
11SMT201165	11SMT441180	11SMT246210
11SMT216165	11SMT456180	11SMT261210
11SMT231165	11SMT471180	11SMT276210
11SMT246165	11SMT486180	11SMT291210
11SMT261165	11SMT501180	11SMT306210
11SMT276165	11SMT516180	11SMT321210
11SMT291165	11SMT126195	11SMT336210
11SMT306165	11SMT141195	11SMT351210
11SMT321165	11SMT156195	11SMT366210
11SMT336165	11SMT171195	11SMT381210
11SMT351165	11SMT186195	11SMT396210
11SMT366165	11SMT201195	11SMT411210
11SMT381165	11SMT216195	11SMT426210

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 8 of 146

11SMT441210	11SMT186240	11SMT366255
11SMT456210	11SMT201240	11SMT381255
11SMT471210	11SMT216240	11SMT396255
11SMT486210	11SMT231240	11SMT411255
11SMT501210	11SMT246240	11SMT426255
11SMT081225	11SMT261240	11SMT441255
11SMT096225	11SMT276240	11SMT456255
11SMT111225	11SMT291240	11SMT471255
11SMT126225	11SMT306240	11SMT486255
11SMT141225	11SMT321240	11SMT036270
11SMT156225	11SMT336240	11SMT051270
11SMT171225	11SMT351240	11SMT066270
11SMT186225	11SMT366240	11SMT081270
11SMT201225	11SMT381240	11SMT096270
11SMT216225	11SMT396240	11SMT111270
11SMT231225	11SMT411240	11SMT126270
11SMT246225	11SMT426240	11SMT141270
11SMT261225	11SMT441240	11SMT156270
11SMT276225	11SMT456240	11SMT171270
11SMT291225	11SMT471240	11SMT186270
11SMT306225	11SMT486240	11SMT201270
11SMT321225	11SMT051255	11SMT216270
11SMT336225	11SMT066255	11SMT231270
11SMT351225	11SMT081255	11SMT246270
11SMT366225	11SMT096255	11SMT261270
11SMT381225	11SMT111255	11SMT276270
11SMT396225	11SMT126255	11SMT291270
11SMT411225	11SMT141255	11SMT306270
11SMT426225	11SMT156255	11SMT321270
11SMT441225	11SMT171255	11SMT336270
11SMT456225	11SMT186255	11SMT351270
11SMT471225	11SMT201255	11SMT366270
11SMT486225	11SMT216255	11SMT381270
11SMT501225	11SMT231255	11SMT396270
11SMT066240	11SMT246255	11SMT411270
11SMT081240	11SMT261255	11SMT426270
11SMT096240	11SMT276255	11SMT441270
11SMT111240	11SMT291255	11SMT456270
11SMT126240	11SMT306255	11SMT471270
11SMT141240	11SMT321255	11SMT021285
11SMT156240	11SMT336255	11SMT036285
11SMT171240	11SMT351255	11SMT051285

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 9 of 146

11SMT066285	11SMT246300	11SMT381315
11SMT081285	11SMT261300	11SMT396315
11SMT096285	11SMT276300	11SMT411315
11SMT111285	11SMT291300	11SMT426315
11SMT126285	11SMT306300	11SMT441315
11SMT141285	11SMT321300	11SMT456315
11SMT156285	11SMT336300	11SLT961330
11SMT171285	11SMT351300	11SLT976330
11SMT186285	11SMT366300	11SLT991330
11SMT201285	11SMT381300	11SMT006330
11SMT216285	11SMT396300	11SMT021330
11SMT231285	11SMT411300	11SMT036330
11SMT246285	11SMT426300	11SMT051330
11SMT261285	11SMT441300	11SMT066330
11SMT276285	11SMT456300	11SMT081330
11SMT291285	11SLT976315	11SMT096330
11SMT306285	11SLT991315	11SMT111330
11SMT321285	11SMT006315	11SMT126330
11SMT336285	11SMT021315	11SMT141330
11SMT351285	11SMT036315	11SMT156330
11SMT366285	11SMT051315	11SMT171330
11SMT381285	11SMT066315	11SMT186330
11SMT396285	11SMT081315	11SMT201330
11SMT411285	11SMT096315	11SMT216330
11SMT426285	11SMT111315	11SMT231330
11SMT441285	11SMT126315	11SMT246330
11SMT006300	11SMT141315	11SMT261330
11SMT021300	11SMT156315	11SMT276330
11SMT036300	11SMT171315	11SMT291330
11SMT051300	11SMT186315	11SMT306330
11SMT066300	11SMT201315	11SMT321330
11SMT081300	11SMT216315	11SMT336330
11SMT096300	11SMT231315	11SMT351330
11SMT111300	11SMT246315	11SMT366330
11SMT126300	11SMT261315	11SMT381330
11SMT141300	11SMT276315	11SMT396330
11SMT156300	11SMT291315	11SMT411330
11SMT171300	11SMT306315	11SMT426330
11SMT186300	11SMT321315	11SMT441330
11SMT201300	11SMT336315	11SMT456330
11SMT216300	11SMT351315	11SLT946345
11SMT231300	11SMT366315	11SLT961345

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 10 of 146

11SLT976345	11SMT096360	11SMT261375
11SLT991345	11SMT111360	11SMT276375
11SMT006345	11SMT126360	11SMT291375
11SMT021345	11SMT141360	11SMT306375
11SMT036345	11SMT156360	11SMT321375
11SMT051345	11SMT171360	11SMT336375
11SMT066345	11SMT186360	11SMT351375
11SMT081345	11SMT201360	11SMT366375
11SMT096345	11SMT216360	11SLT976390
11SMT111345	11SMT231360	11SLT991390
11SMT126345	11SMT246360	11SMT006390
11SMT141345	11SMT261360	11SMT021390
11SMT156345	11SMT276360	11SMT036390
11SMT171345	11SMT291360	11SMT051390
11SMT186345	11SMT306360	11SMT066390
11SMT201345	11SMT321360	11SMT081390
11SMT216345	11SMT336360	11SMT096390
11SMT231345	11SMT351360	11SMT111390
11SMT246345	11SMT366360	11SMT126390
11SMT261345	11SMT381360	11SMT141390
11SMT276345	11SMT396360	11SMT156390
11SMT291345	11SMT411360	11SMT171390
11SMT306345	11SLT961375	11SMT186390
11SMT321345	11SLT976375	11SMT201390
11SMT336345	11SLT991375	11SMT216390
11SMT351345	11SMT006375	11SMT231390
11SMT366345	11SMT021375	11SMT246390
11SMT381345	11SMT036375	11SMT261390
11SMT396345	11SMT051375	11SMT276390
11SMT411345	11SMT066375	11SMT291390
11SMT426345	11SMT081375	11SMT306390
11SMT441345	11SMT096375	11SMT321390
11SMT456345	11SMT111375	11SMT336390
11SLT961360	11SMT126375	11SLT976405
11SLT976360	11SMT141375	11SLT991405
11SLT991360	11SMT156375	11SMT006405
11SMT006360	11SMT171375	11SMT021405
11SMT021360	11SMT186375	11SMT036405
11SMT036360	11SMT201375	11SMT051405
11SMT051360	11SMT216375	11SMT066405
11SMT066360	11SMT231375	11SMT081405
11SMT081360	11SMT246375	11SMT096405

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 11 of 146

11SMT111405	11SMT066435	11SMT036465
11SMT126405	11SMT081435	11SMT051465
11SMT141405	11SMT096435	11SMT066465
11SMT156405	11SMT111435	11SMT081465
11SMT171405	11SMT126435	11SMT096465
11SMT186405	11SMT141435	11SMT111465
11SMT201405	11SMT156435	11SMT126465
11SMT216405	11SMT171435	11SMT141465
11SMT231405	11SMT186435	11SMT156465
11SMT246405	11SMT201435	11SMT171465
11SMT261405	11SMT216435	11SMT186465
11SMT276405	11SMT231435	11SMT201465
11SMT291405	11SMT246435	11SMT216465
11SMT306405	11SMT261435	11SMT231465
11SMT321405	11SMT276435	11SMT246465
11SLT991420	11SMT291435	11SMT261465
11SMT006420	11SMT006450	11SMT276465
11SMT021420	11SMT021450	11SMT291465
11SMT036420	11SMT036450	11SMT306465
11SMT051420	11SMT051450	11SMT321465
11SMT066420	11SMT066450	11SMT336465
11SMT081420	11SMT081450	11SMT351465
11SMT096420	11SMT096450	11SMT366465
11SMT111420	11SMT111450	11SMT381465
11SMT126420	11SMT126450	11SMT021480
11SMT141420	11SMT141450	11SMT036480
11SMT156420	11SMT156450	11SMT051480
11SMT171420	11SMT171450	11SMT066480
11SMT186420	11SMT186450	11SMT081480
11SMT201420	11SMT201450	11SMT096480
11SMT216420	11SMT216450	11SMT111480
11SMT231420	11SMT231450	11SMT126480
11SMT246420	11SMT246450	11SMT141480
11SMT261420	11SMT261450	11SMT156480
11SMT276420	11SMT276450	11SMT171480
11SMT291420	11SMT291450	11SMT186480
11SMT306420	11SMT306450	11SMT201480
11SLT991435	11SMT321450	11SMT216480
11SMT006435	11SMT336450	11SMT231480
11SMT021435	11SMT351450	11SMT246480
11SMT036435	11SMT006465	11SMT261480
11SMT051435	11SMT021465	11SMT276480

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 12 of 146

11SMT291480	11SMT231510	11SMT261540
11SMT306480	11SMT246510	11SMT276540
11SMT321480	11SMT261510	11SMT291540
11SMT336480	11SMT276510	11SMT306540
11SMT351480	11SMT291510	11SMT081555
11SMT366480	11SMT306510	11SMT096555
11SMT036495	11SMT321510	11SMT111555
11SMT051495	11SMT336510	11SMT126555
11SMT066495	11SMT351510	11SMT141555
11SMT081495	11SMT051525	11SMT156555
11SMT096495	11SMT066525	11SMT171555
11SMT111495	11SMT081525	11SMT186555
11SMT126495	11SMT096525	11SMT201555
11SMT141495	11SMT111525	11SMT216555
11SMT156495	11SMT126525	11SMT231555
11SMT171495	11SMT141525	11SMT246555
11SMT186495	11SMT156525	11SMT261555
11SMT201495	11SMT171525	11SMT276555
11SMT216495	11SMT186525	11SMT291555
11SMT231495	11SMT201525	11SMT081570
11SMT246495	11SMT216525	11SMT096570
11SMT261495	11SMT231525	11SMT111570
11SMT276495	11SMT246525	11SMT126570
11SMT291495	11SMT261525	11SMT141570
11SMT306495	11SMT276525	11SMT156570
11SMT321495	11SMT291525	11SMT171570
11SMT336495	11SMT306525	11SMT186570
11SMT351495	11SMT321525	11SMT201570
11SMT366495	11SMT336525	11SMT216570
11SMT036510	11SMT066540	11SMT231570
11SMT051510	11SMT081540	11SMT246570
11SMT066510	11SMT096540	11SMT261570
11SMT081510	11SMT111540	
11SMT096510	11SMT126540	
11SMT111510	11SMT141540	
11SMT126510	11SMT156540	
11SMT141510	11SMT171540	
11SMT156510	11SMT186540	
11SMT171510	11SMT201540	
11SMT186510	11SMT216540	
11SMT201510	11SMT231540	
11SMT216510	11SMT246540	

Dewberry

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 13 of 146

LiDAR Acquisition Report

SCOPE OF WORK

DMI acquired LiDAR data over an Area of Interest (AOI) entire of Orange County California. The acquisition plan entailed a nominal point spacing of 1.76 points per meter square and a side lap of 40% between flight lines. The AOI covers 696 square miles.

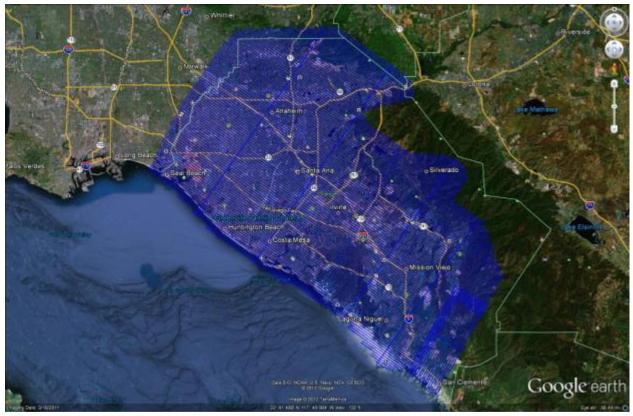


Fig. 1 Flight plan

LIDAR ACQUISITION DETAILS

Collections (Lifts): 14 Collection Dates: 2011 December 17, 20, 21, 23, 24, 26, 27, 28, 29, 30, Field of View (FOV): 18 degrees Average Point Density (planned): 0.75 m Flight Level(s): 914 / 3000 m/ft Sensor Type: Optech Gemini Sensor Serial Number(s): 07SEN204

All acquired LiDAR data was initially quality controlled after every mission for coverage and further verified for content and adherence to flight plan at DMI production facilities Huntington Beach, CA. All data was accepted for processing.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 14 of 146

COLLECTION SUMMARY

A detailed report consisting of the GPS/IMU separation plots, trajectories, and flight information has been attached to this report in the form of attachment A. The full report has been separated from this section because of length and technical content.

LiDAR Processing & Qualitative Assessment

DATA CLASSIFICATION AND EDITING

LiDAR mass points were produced to LAS 1.2 specifications, including the following LAS classification codes:

- Class 1 = Unclassified, and used for all other features that do not fit into the Classes 2, 7, 9, 10, or 11, including vegetation, buildings, etc.
- Class 2 = Ground, includes accurate LiDAR points in overlapping flight lines
- Class 7 = Noise, low and high points
- Class 9 = Water, points located within collected breaklines
- Class 10 = Ignored Ground due to breakline proximity.
- Class 11 = Withheld, Points with scan angles exceeding +/- 20 degrees.

The data was processed using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classifies any obvious outliers in the dataset to class 7 and points with scan angles exceeding +/- 20 degrees to class 11. After points that could negatively affect the ground are removed from class 1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model.

This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model.

The following fields within the LAS files are populated to the following precision: GPS Time (0.000001 second precision), Easting (0.003 meter precision), Northing (0.003 meter precision), Elevation (0.003 meter precision), Intensity (integer value - 12 bit dynamic range), Number of Returns (integer - range of 1-4), Return number (integer range of 1-4), Scan Direction Flag (integer - range 0-1), Classification (integer), Scan Angle Rank (integer), Edge of flight line (integer, range 0-1), User bit field (integer - flight line information encoded). The LAS file also contains a Variable length record in the file header that defines the projection, datums, and units.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 15 of 146

Once the initial ground routine has been performed on the data, Dewberry creates Delta Z (DZ) orthos to check the relative accuracy of the LiDAR data. These orthos compare the elevations of LiDAR points from overlapping flight lines on a 1 meter pixel cell size basis. If the elevations of points within each pixel are within 10 cm of each other, the pixel is colored green. If the elevations of points within each pixel are between 10 cm and 20 cm of each other, the pixel is colored yellow, and if the elevations of points within each pixel are greater than 20 cm in difference, the pixel is colored red. Pixels that do not contain points from overlapping flight lines are colored according to their intensity values. DZ orthos can be created using the full point cloud or ground only points and are used to review and verify the calibration of the data is acceptable. Some areas are expected to show sections or portions of red, including terrain variations, slope changes, and vegetated areas or buildings if the full point cloud is used. However, large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data. The DZ orthos for Orange County California showed that the data was calibrated correctly with no issues that would affect its usability. The figure below shows an example of the DZ orthos.

Figure 3: DZ orthos created from the full point cloud. Some red pixels are visible along embankments, sloped terrain, and in vegetated land cover, as expected. Open, flat areas are green indicating the calibration and relative accuracy of the data is acceptable.

Dewberry utilized a variety of software suites for data processing. The LAS dataset was received and imported into GeoCue task management software for processing in Terrascan. Each tile was imported into Terrascan and a surface model was created to examine the ground

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 16 of 146

classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing conducted by Dewberry. Dewberry analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled by dewberry to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. The final classification routine applied to the dataset selects ground points within a specified distance of the water breaklines and classifies them as class 10, ignored ground due to breakline proximity.

QUALITATIVE ASSESSMENT

Dewberry's qualitative assessment utilizes a combination of statistical analysis and interpretative methodology to assess the quality of the data for a bare-earth digital terrain model (DTM). This process looks for anomalies in the data and also identifies areas where man-made structures or vegetation points may not have been classified properly to produce a bare-earth model.

Within this review of the LiDAR data, two fundamental questions were addressed:

- Did the LiDAR system perform to specifications?
- Did the vegetation removal process yield desirable results for the intended bare-earth terrain product?

Mapping standards today address the quality of data by quantitative methods. If the data are tested and found to be within the desired accuracy standard, then the data set is typically accepted. Now with the proliferation of LiDAR, new issues arise due to the vast amount of data. Unlike photogrammetrically-derived DEMs where point spacing can be eight meters or more, LiDAR nominal point spacing for this project is 1 point per 1 square meters. The end result is that millions of elevation points are measured to a level of accuracy previously unseen for traditional elevation mapping technologies and vegetated areas are measured that would be nearly impossible to survey by other means. The downside is that with millions of points, the dataset is statistically bound to have some errors both in the measurement process and in the artifact removal process.

As previously stated, the quantitative analysis addresses the quality of the data based on absolute accuracy. This accuracy is directly tied to the comparison of the discreet measurement of the survey checkpoints and that of the interpolated value within the three closest LiDAR points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the LiDAR data is actually tested. However there is an increased level of confidence with LiDAR data due to the relative accuracy. This relative accuracy in turn is based on how well one LiDAR point "fits" in comparison to the next contiguous LiDAR measurement, and is verified with DZ orthos. Once the absolute and relative accuracy has been ascertained, the next stage is to address the cleanliness of the data for a bareearth DTM.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 17 of 146

By using survey checkpoints to compare the data, the absolute accuracy is verified, but this also allows us to understand if the artifact removal process was performed correctly. To reiterate the quantitative approach, if the LiDAR sensor operated correctly over open terrain areas, then it most likely operated correctly over the vegetated areas. This does not mean that the entire bareearth was measured; only that the elevations surveyed are most likely accurate (including elevations of treetops, rooftops, etc.). In the event that the LiDAR pulse filtered through the vegetation and was able to measure the true surface (as well as measurements on the surrounding vegetation) then the level of accuracy of the vegetation removal process can be tested as a by-product.

To fully address the data for overall accuracy and quality, the level of cleanliness (or removal of above-ground artifacts) is paramount. Since there are currently no effective automated testing procedures to measure cleanliness, Dewberry employs a combination of statistical and visualization processes. This includes creating pseudo image products such as LiDAR orthos produced from the intensity returns, Triangular Irregular Network (TIN)'s, Digital Elevation Models (DEM) and 3-dimensional models. By creating multiple images and using overlay techniques, not only can potential errors be found, but Dewberry can also find where the data meets and exceeds expectations. This report will present representative examples where the LiDAR and post processing had issues as well as examples of where the LiDAR performed well.

ANALYSIS

Dewberry utilizes GeoCue software as the primary geospatial process management system. GeoCue is a three tier, multi-user architecture that uses .NET technology from Microsoft. .NET technology provides the real-time notification system that updates users with real-time project status, regardless of who makes changes to project entities. GeoCue uses database technology for sorting project metadata. Dewberry uses Microsoft SQL Server as the database of choice. Specific analysis is conducted in Terrascan and QT Modeler environments.

Following the completion of LiDAR point classification, the Dewberry qualitative assessment process flow for the USGS FEMA IX – Orange County, CA LiDAR project incorporated the following reviews:

- 1. *Format:* The LAS files are verified to meet project specifications. The LAS files for the USGS FEMA IX Orange County, CA LiDAR project conform to the specifications outlined below.
 - Format, Echos, Intensity
 - LAS format 1.2
 - Point data record format 1
 - Multiple returns (echos) per pulse
 - Intensity values populated for each point
 - ASPRS classification scheme
 - Class 1 unclassified
 - Class 2 Bare-earth ground
 - Class 7 Noise
 - Class 9 Water
 - Class 10 Ignored Ground due to breakline proximity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 18 of 146

- Class 11 Withheld due to scan angles exceeding +/- 20 degrees
- Projection
 - Datum North American Datum 1983
 - Projected Coordinate System UTM Zone 11
 - Units Meters
 - o Vertical Datum North American Vertical Datum 1988, Geoid 09
 - Vertical Units Meters
- LAS header information:
 - o Class (Integer)
 - GPS Week Time (0.0001 seconds)
 - Easting (0.003 meters)
 - Northing (0.003 meters)
 - Elevation (0.003 meters)
 - Echo Number (Integer 1 to 4)
 - Echo (Integer 1 to 4)
 - Intensity (8 bit integer)
 - Flight Line (Integer)
 - Scan Angle (Integer degree)
- 2. *Data density, data voids:* The LAS files are used to produce Digital Elevation Models using the commercial software package "QT Modeler" which creates a 3-dimensional data model derived from Class 2 (ground points) in the LAS files. Grid spacing is based on the project density deliverable requirement for un-obscured areas. For the USGS FEMA IX Orange County, CA LiDAR project it is stipulated that the minimum post spacing in un-obscured areas should be 1 point per 1 square meter.
 - *a*. Acceptable voids (areas with no LiDAR returns in the LAS files) that are present in the majority of LiDAR projects include voids caused by bodies of water. These are considered to be acceptable voids.

Bare earth quality: Dewberry reviewed the cleanliness of the bare earth to ensure the ground has correct definition, meets the project requirements, there is correct classification of points, and there are less than 5% residual artifacts.

a. Artifacts: Artifacts are caused by the misclassification of ground points and usually represent vegetation and/or man-made structures. The artifacts identified are usually low lying structures, such as porches or low vegetation used as landscaping in neighborhoods and other developed areas. These low lying features are extremely difficult for the automated algorithms to detect as non-ground and must be removed manually. The vast majority of these features have been removed but a small number of these features are still in the ground classification. The limited numbers of features remaining in the ground are usually 0.3 meters or less above the actual ground surface, and should not negatively impact the usability of the dataset.

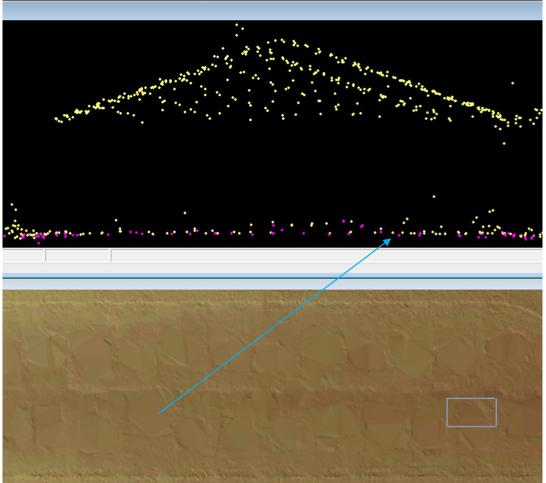


Figure 4 – Tile number 11SMT111465. Profile with points colored by class (class 1=yellow, class 2=pink) is shown in the top view and a TIN of the surface is shown in the bottom view. The arrow identifies low vegetation points. A limited number of these small features are still classified as ground.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 20 of 146

b. Bridge Removal Artifacts: The DEM surface models are created from TINs or Terrains. TIN and Terrain models create continuous surfaces from the inputs. Because a continuous surface is being created, the TIN or Terrain will use interpolation to triangulate across a bridge opening from legitimate ground points on either side of the actual bridge. This can cause visual artifacts or "saddles." These "artifacts" are only visual and do not exist in the LiDAR points or breaklines.

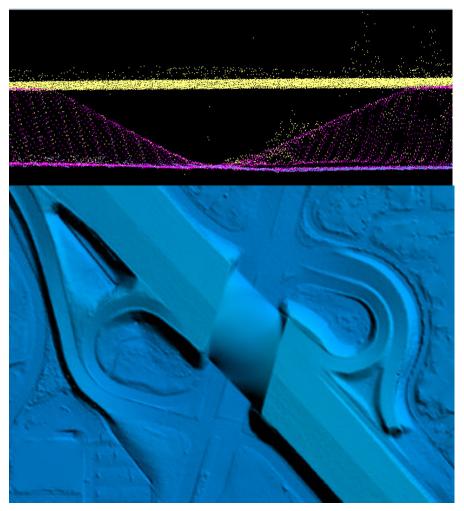


Figure 5 – Tile number 11SMT171390. The DEM in the bottom view shows a visual artifact because the surface model is interpolating from the slope leading to the bridge to the lower ground points on either side of the bridge points that were removed. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This can cause visual artifacts when there are features with large elevation differences. The profile in the top view shows the LiDAR points of this particular feature colored by class. All bridge points have been removed from ground (pink) and are unclassified (yellow). There are no ground points that can be modified to correct this visual artifact.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 21 of 146

C. Building Removal Artifacts: Large buildings, unique construction, and buildings built on sloped terrain or built into the ground can make a noticeable impact on the bare earth DEM once they have been removed, often in the form of large void areas with obvious triangulation or interpolation across the area and general lack of detail in the ground where the structure stood. In a few areas, this interpolation has resulted in visual artifacts within building footprints. These "artifacts" are only visual and do not exist in the LiDAR points.

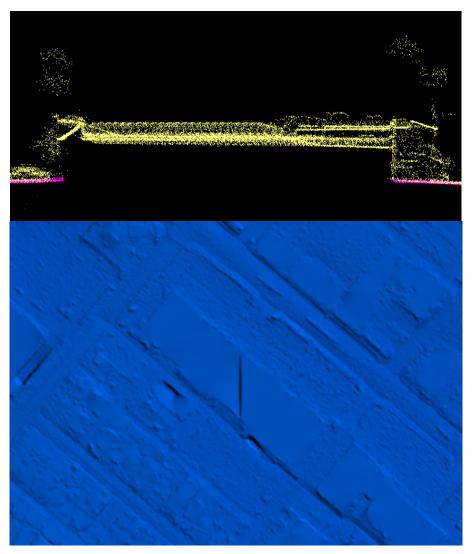


Figure 6 – Tile number 11SMT141210. The DEM in the bottom view shows a visual artifact because the surface model is interpolating between the available ground points on either side of the building points that were removed. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This can cause visual artifacts in areas where the ground elevation is slightly lower on one side of building than the other. The profile in the top view shows the LiDAR points of this particular feature colored by class. All building points have been removed from ground (pink) and are unclassified (yellow) or classified as noise (red). There are no ground points that can be modified to correct this visual artifact.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 22 of 146

d. Culverts and Bridges: Bridges have been removed from the bare earth surface while culverts remain in the bare earth surface. In instances where it is difficult to determine if the feature is a culvert or bridge, such as with some small bridges, Dewberry erred on assuming they would be culverts especially if they are on secondary or tertiary roads. There were also several large structures throughout the project area that Dewberry determined to be box culverts. Below is an example of a culvert that has been left in the ground surface.

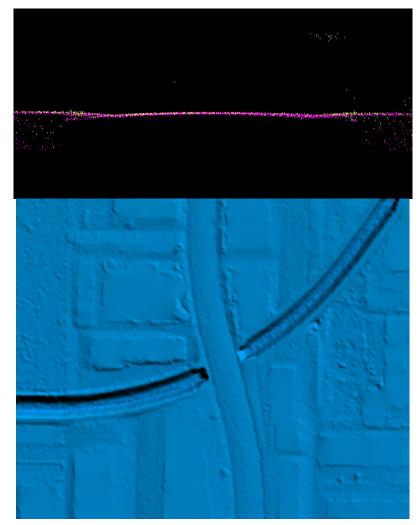


Figure 7– Tile number 11SMT186405. Profile with points colored by class (class 1=yellow, class 2=pink) is shown in the top view and the DEM is shown in the bottom view. This culvert remains in the bare earth surface. Bridges have been removed from the bare earth surface and classified to class 1.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 23 of 146

e. Concrete Railroad Tunnel: Tunnels are generally included in the final ground model. An odd shaped precast concrete railroad tunnel that occurs within the project area is shown below.

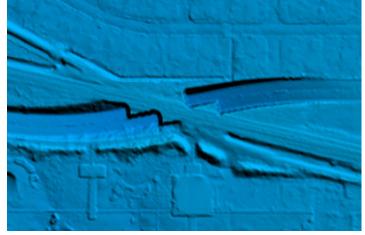


Figure 8– Tile number 11SMT111480. The tunnel shown in the above DEM, remains in the bare earth surface.

f. In Ground Bunkers: In ground structures exist within the project area. These occur mainly on military bases. These features are correctly included in the ground classification.

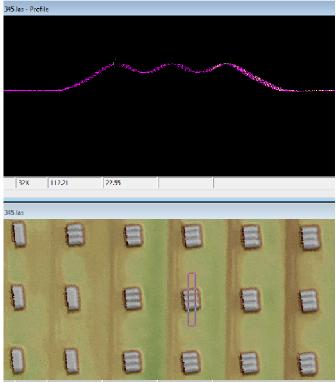


Figure 9 – Tile number 11SMT021345. Profile with points colored by class (class 1=yellow, class 2=pink) is shown in the top view and a TIN of the surface is shown in the bottom view. In ground military structures have been included in the ground classification.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 24 of 146

g. Elevation Change Within Breaklines: While water bodies are flattened in the final DEMs, other features such as linear hydrographic features and tidal waters can have significant changes in elevation within a small distance. In linear hydrographic features, this is often due to the presence of a structure that affects flow such as a dam or spillway. Sudden changes in elevation occur naturally in tidally influenced areas which are present within the project area. Dewberry has gone through the DEMs making sure that changes in elevation are shown from bank to bank. These changes are often shown as steps to reduce the presence of artifacts while ensuring consistent downhill flow. Examples of elevation change due to a structure and within a tidally influenced area are shown below.

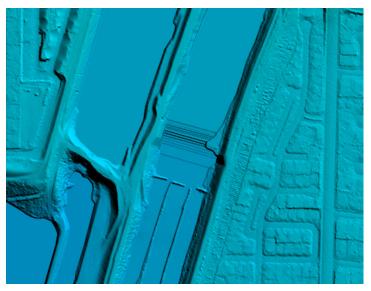


Figure 10 – Tile number 11SMT186435. Elevation change due to the structure has been stair stepped. The steps are straight across from bank to bank and flow consistently downhill.

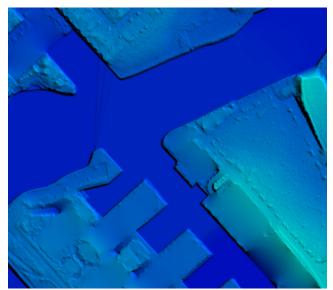


Figure 11 – Tile number 11SLT961360. Sudden changes in elevation within the tidally influenced breaklines have been stair stepped. The steps flow consistently downhill.

h. Flightline Ridges: Ridges occur when there is a difference between the elevations of adjoining flightlines or swaths. Some flightline ridges are visible in the final DEMs but they do not exceed the project specifications and the overall relative accuracy requirements for the project area have been met. An example of a visible ridge that is within tolerance is shown below.

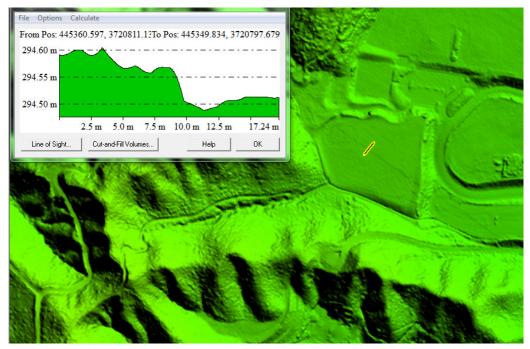


Figure 12 – Tile number 11SMT441195. The flight line ridge is less than 10 cm. Overall, the Orange County LiDAR data meets the project specifications for 10 cm RMSE relative accuracy.

CONCLUSION

The dataset conforms to project specifications for format and header values. The spatial projection information and classification of points is correct. Minor artifacts and small areas of misclassification are isolated and have minimal impact on the usability of the dataset.

Survey Vertical Accuracy Checkpoints

PT. #	EASTING	NORTHING	ELEVS.
	UTM North	n Zone 11	
POINT ID	EASTING (M)	NORTHING (M)	ELEVATION (M)
Or100_0T13	438012.729	3724661.839	221.174
Or13_OT10	426275.573	3735038.027	54.597
Or18_OT04	424644.543	3740376.689	93.865
Or22_OT11	417088.376	3730138.572	10.467
Or23_OT03	414401.835	3727697.854	12.092
Or28_OT02	405913.505	3728762.660	22.067
Or38_OT05	428144.121	3750220.401	169.177
Or43_OT09	413230.692	3747828.908	41.570
Or47_OT06	417474.859	3751257.435	137.653
Or55_OT01	407885.234	3734301.461	11.476
Or60_0T17	425207.757	3721997.253	91.421
Or61_0T22	446108.639	3734510.662	567.901
Or72_OT12	432080.668	3717316.683	190.207
Or75_OT16	445930.258	3709083.385	89.874
Or76_OT15	442323.009	3708812.603	53.261
Or79_OT07	405702.177	3739859.248	13.319
Or8o_OT08	404094.319	3746020.215	14.632
Or87_OT19	434670.780	3706420.686	80.906
Or88_OT20	438963.202	3703614.154	97.036
Or91_OT18	429696.446	3720929.317	122.821
Or95_OT14	436148.223	3720575.444	124.737
Or03_B16	417186.773	3719657.949	20.642
Or06_B17	420335.305	3722229.509	30.432
Or101_B21	443533.876	3703411.049	133.315
Or12_B09	425556.625	3729116.119	17.791
Or15_B10	429253.540	3735551.163	101.830
Or17_B04	428164.414	3742582.899	139.752
Or24_B03	412926.323	3725246.850	23.566
Or26_B02	408577.584	3727018.991	16.061
Or29_B01	403778.953	3735141.169	6.275
Or36_B05	425462.436	3754121.327	227.818
Or42_B08	414552.187	3751051.455	87.258
Or44_B07	409942.117	3751030.965	95.168
Or45_B06	408867.848	3748347.427	26.008
Or62_B11	437774.844	3734522.633	307.028
Or63_B12	440641.768	3729195.902	419.832
Or65_B13	444638.023	3724027.225	288.333
Or73_B19	434444.280	3711455.974	65.234
Or82_B15	442722.854	3722284.418	256.239
Or83_B14	445003.482	3721623.581	295.417

Or89_B20	441587.895	3704515.424	73.740
Or93_B16	438805.228	3721997.928	210.623
Or96_B18	427338.383	3724083.628	58.231
Or05_F13	416521.375	3722953.070	26.592
Or19_F10	421855.612	3736582.602	55.953
Or20_F12	416906.251	3733122.349	19.937
Or21_F04	412665.469	3732620.855	15.587
Or25_F03	409892.555	3724186.045	2.141
Or32_F07	407739.403	3742788.274	21.816
Or33_F07	407055.999	3751844.146	55.837
Or34_F08	412432.847	3756075.110	124.401
Or35_F05	422537.849	3753600.315	129.710
Or49_F06	422515.967	3744593.874	99.515
Or53_F01	416045.915	3738186.776	34.934
Or54_F02	410443.187	3736184.793	18.679
Or56_F11	428948.113	3730494.298	53.647
Or59_F19	424199.179	3724839.859	30.257
Or71_F14	433428.124	3715319.792	66.972
Or90_F18	439626.509	3707103.916	29.694
Or92_F16	435433.246	3723792.701	129.317
Or94_F15	437385.865	3715887.885	108.840
Or98_F17	441258.968	3712778.254	150.106
Or01_TW14	414310.974	3720509.940	3.721
Oro2_TW13	418712.225	3725144.900	13.346
Oro8_TW11	432926.485	3736607.702	248.494
Or10_TW20	423905.552	3727856.964	17.440
Or14_TW10	429822.478	3733317.482	82.484
Or16_TW03	429655.825	3739293.399	191.380
Or31_TW08	402642.728	3744543.059	13.065
Or39_TW05	424047.910	3750065.414	103.609
Or48_TW04	427711.641	3745291.070	133.355
Or52_TW07	411060.754	3740743.217	28.491
Or57_TW09	427543.406	3726459.284	36.908
Or58_TW17	432626.995	3729517.277	122.633
Or61_TW12	446214.928	3734567.891	573.167
Or64_TW02	406200.571	3731497.728	1.391
Or68_TW16	429516.073	3717466.744	93.587
Or69_TW15	429061.781	3714487.070	49.860
Or78_TW01	413283.759	3735869.446	22.870
Or81_TW06	414895.921	3742411.492	43.995
Or84_TW18	444918.667	3714946.274	162.958
Or97_TW19	448803.102	3710710.305	114.163
Or04_U19	432874.006	3708888.836	157.070
Or07_U10	419405.802	3727524.647	10.318
Or09_U17	420938.040	3729546.112	13.111

Or11_U09	423862.622	3732245.302	28.240
Or27_U03	410555.417	3728168.277	3.636
Or30_U08	400215.787	3739495.567	4.581
Or37_U04	434404.506	3750241.984	313.163
Or40_U05	419436.890	3746855.019	63.981
Or41_U06	417709.684	3745155.199	56.987
Or46_U16	433920.904	3726436.423	128.049
Or50_U01	419310.580	3741323.858	50.734
Or51_U07	411231.560	3743926.191	33.878
Or66_U18	432814.707	3719087.889	117.807
Or67_U11	420218.828	3719198.908	89.351
Or70_U12	424439.659	3718154.762	283.761
Or74_U15	435816.432	3708453.594	103.893
Or77_U02	410070.322	3731305.239	9.418
Or85_U14	441538.129	3716056.661	180.438
Or86_U20	443447.236	3701869.101	72.054
Or99_U13	437866.324	3727671.532	269.808

Table 6: USGS FEMA IX-Orange County, CA LiDAR surveyed accuracy checkpoints

LiDAR Vertical Accuracy Statistics & Analysis

BACKGROUND

Dewberry tests and reviews project data both quantitatively (for accuracy) and qualitatively (for usability).

For qualitative assessment (i.e. vertical accuracy assessment), One hundred and two (102) check points were surveyed for the project and are located within bare earth/open terrain, brush/small trees, forested/fully grown, tall weeds/crops and urban land cover categories. The checkpoints were surveyed for the project using RTK survey methods. A survey report was produced which details and validates how the survey was completed for this project.

Checkpoints were evenly distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

VERTICAL ACCURACY TEST PROCEDURES

FVA (Fundamental Vertical Accuracy) is determined with check points located only in the open terrain (grass, dirt, sand, and/or rocks) land cover category, where there is a very high probability that the LiDAR sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The FVA determines how well the calibrated LiDAR sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSEz) of the checkpoints x 1.9600. For the USGS FEMA IX Orange County California LiDAR project, vertical accuracy must be 0.245 meters or less based on an RMSEz of 0.125 meters x 1.9600.

CVA (Consolidated Vertical Accuracy) is determined with all checkpoints in all land cover categories combined where there is a possibility that the LiDAR sensor and post-processing may yield elevation errors that do not follow a normal error distribution. CVA at the 95% confidence

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 29 of 146

level equals the 95th percentile error for all checkpoints in all land cover categories combined. The USGS FEMA IX Orange County California LiDAR Project CVA standard is 0.363 meters at the 95% confidence level. The CVA is accompanied by a listing of the 5% outliers that are larger than the 95th percentile used to compute the CVA; these are always the largest outliers that may depart from a normal error distribution. Here, Accuracy_z differs from CVA because Accuracy_z assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas CVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

SVA (Supplemental Vertical Accuracy) is determined for each land cover category other than open terrain. SVA at the 95% confidence level equals the 95th percentile error for all checkpoints in each land cover category. The USGS FEMA IX Orange County California LiDAR Project SVA target is 0.363 meters at the 95% confidence level. Target specifications are given for SVA's as one individual land cover category may exceed this target value as long as the overall CVA is within specified tolerances. Again, Accuracy_z differs from SVA because Accuracy_z assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas SVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

The relevant testing criteria are summarized in Table 7.

Quantitative Criteria	Measure of Acceptability			
Fundamental Vertical Accuracy (FVA) in open terrain	0.245 meters (based on RMSEz (0.125 meters) * 1.9600)			
only using RMSEz *1.9600				
Consolidated Vertical Accuracy (CVA) in all land cover	0.363 meters (based on combined 95 th percentile)			
categories combined at the 95% confidence level				
Supplemental Vertical Accuracy (SVA) in each land cover	0.363 meters (based on 95 th percentile for each land			
category separately at the 95% confidence level	cover category)			

Table 7 – Acceptance Criteria


VERTICAL ACCURACY TESTING STEPS

The primary QA/QC vertical accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications.
- 2. Next, Dewberry interpolated the bare-earth LiDAR DTM to provide the z-value for each of the 102 checkpoints.
- 3. Dewberry then computed the associated z-value differences between the interpolated z-value from the LiDAR data and the ground truth survey checkpoints and computed FVA, CVA, and SVA values.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

The figure below shows the location of the QA/QC checkpoints within the project area.

Orange County Checkpoint Locations

Figure 13 – Location of QA/QC Checkpoints

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 31 of 146

VERTICAL ACCURACY RESULTS

Table 8 summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the LiDAR LAS files.

Land Cover Category	# of Points	FVA – Fundamental Vertical Accuracy (RMSEz x 1.9600) Spec=0.245 m	CVA – Consolidated Vertical Accuracy (95th Percentile) Spec=0.363 m	SVA – Supplemental Vertical Accuracy (95th Percentile) Target=0.363 m
Consolidated	102		0.17	
Bare Earth-Open				
Terrain	21	0.19		
Tall Weeds and				
Crops	20			0.12
Forested and Fully				
Grown	19			0.13
Brush and Small				
Trees	22			0.18
Urban	20			0.16

Table 8 – FVA, CVA, and SVA Vertical Accuracy at 95% Confidence Level

The $RMSE_z$ for checkpoints in open terrain only tested 0.10 meters, within the target criteria of 0.125 meters. Compared with the 0.245 meters specification, the FVA tested 0.19 meters at the 95% confidence level based on $RMSE_z \ge 1.9600$.

Compared with the 0.363 meters specification, CVA for all checkpoints in all land cover categories combined tested 0.17 meters at the 95% confidence level based on the 95th percentile.

Compared with target 0.363 specification, SVA for checkpoints in the tall weeds and crops land cover category tested 0.12 meters, checkpoints in the forested and fully grown land cover category tested 0.13 meters at the 95% confidence level based on the 95th percentiles, checkpoints in the brush and small trees land cover category tested 0.18 meters at the 95% confidence level based on the 95th percentiles, and checkpoints in the urban land cover category tested 0.16 meters at the 95% confidence level based on the 95th percentiles.

Figure 14 illustrates the magnitude of the differences between the QA/QC checkpoints and LiDAR data. This shows that the majority of LiDAR elevations were within +/- 0.15 meters of the checkpoints elevations, but there were some outliers where LiDAR and checkpoint elevations differed by up to +0.35 meters.

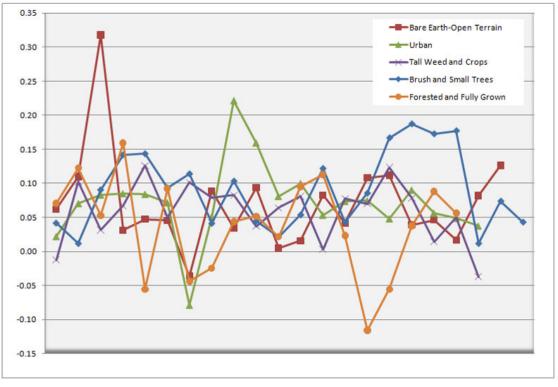


Figure 14 – Magnitude of Elevation Discrepancies

Point ID	NAD83 UTM	North Zone 11	NAVD88	LiDAR - Z	Delta	AbsDelta
	Easting - X (m)	Northing - Y (m)	Survey -Z (m)	(m)	Z	Z
Or18_OT0						
4	424644.543	3740376.689	93.865	94.1827	0.32	0.32
Or14_TW1						
0	429822.478	3733317.482	82.484	82.61	0.13	0.13
Or69_TW1						
5	429061.781	3714487.070	49.860	49.9833	0.12	0.12
Or19_F10	421855.612	3736582.602	55.953	56.0756	0.12	0.12
Or21_F04	412665.469	3732620.855	15.587	15.7462	0.16	0.16
Or71_F14	433428.124	3715319.792	66.972	66.8562	-0.12	0.12
Or65_B13	444638.023	3724027.225	288.333	288.4998	0.17	0.17
Or73_B19	434444.280	3711455.974	65.234	65.4212	0.19	0.19
Or82_B15	442722.854	3722284.418	256.239	256.4116	0.17	0.17
Or83_B14	445003.482	3721623.581	295.417	295.5941	0.18	0.18
Or41_U06	417709.684	3745155.199	56.987	57.2083	0.22	0.22
Or46_U16	433920.904	3726436.423	128.049	128.2083	0.16	0.16

Table 9 – 5% Outliers

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 33 of 146

100 % of Totals	RMSE (m) Open Terrain Spec=0.125m	Mean (m)	Mean Absolute (m)	Median (m)	Skew	Std Dev (m)	# of Points	Min (m)	Max (m)
Consolidated		0.07	0.08	0.07	0.41	0.06	102	-0.12	0.32
Bare Earth-Open Terrain	0.10	0.07	0.07	0.05	2.19	0.07	21	-0.04	0.32
Tall Weeds and Crops		0.06	0.06	0.07	-0.60	0.04	20	-0.04	0.13
Forested and Fully Grown		0.04	0.08	0.05	-0.51	0.07	19	-0.12	0.16
Brush and Small Trees		0.09	0.09	0.09	0.30	0.06	22	0.01	0.19
Urban		0.07	0.08	0.07	0.15	0.06	20	-0.08	0.22

Table 10 provides overall descriptive statistics.

Table 10 – Overall Descriptive Statistics

Figure 15 illustrates a histogram of the associated elevation discrepancies between the QA/QC checkpoints and elevations interpolated from the LiDAR triangulated irregular network (TIN). The frequency shows the number of discrepancies within each band of elevation differences. Although the discrepancies vary between a low of -0.12 meters and a high of +0.32 meters, the histogram shows that the majority of the discrepancies are skewed on the positive side. The vast majority of points are within the ranges of -0.05 meters to +0.05 meters.

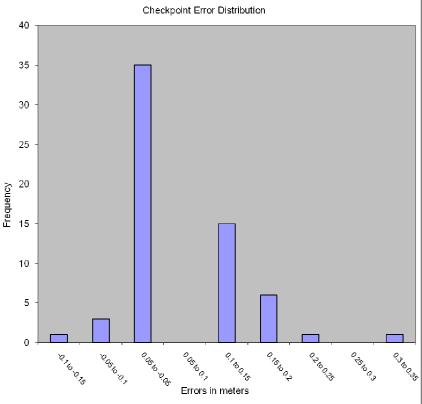


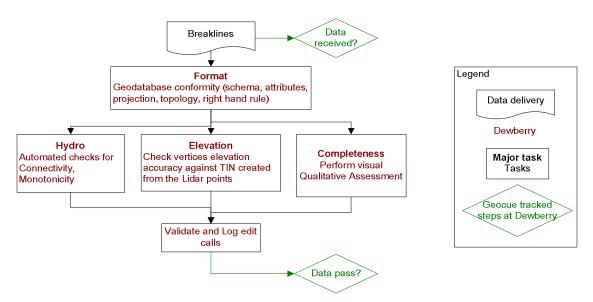
Figure 15 – Histogram of Elevation Discrepancies within errors in feet

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 34 of 146

CONCLUSION

Based on the vertical accuracy testing conducted by Dewberry, the LiDAR dataset for the USGS FEMA IX – Orange County LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

Breakline Production & Qualitative Assessment Report


BREAKLINE PRODUCTION METHODOLOGY

Dewberry used GeoCue software to develop LiDAR stereo models of the USGS FEMA IX – Orange County LiDAR Project area so the LiDAR derived data could be viewed in 3-D stereo using Socet Set softcopy photogrammetric software. Using LiDARgrammetry procedures with LiDAR intensity imagery, Dewberry used the stereo models developed by Dewberry to stereo-compile the three types of hard breaklines in accordance with the project's Data Dictionary.

All drainage breaklines are monotonically enforced to show downhill flow. Water bodies are reviewed in stereo and the lowest elevation is applied to the entire waterbody.

BREAKLINE QUALITATIVE ASSESSMENT

Dewberry completed breakline qualitative assessments according to a defined workflow. The following workflow diagram represents the steps taken by Dewberry to provide a thorough qualitative assessment of the breakline data.

BREAKLINE TOPOLOGY RULES

Automated checks are applied on hydro features to validate the 3D connectivity of the feature and the monotonicity of the hydrographic breaklines. Dewberry's major concern was that the hydrographic breaklines have a continuous flow downhill and that breaklines do not undulate. Error points are generated at each vertex not complying with the tested rules and these potential edit calls are then visually validated during the visual evaluation of the data. This step also

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 35 of 146

helped validate that breakline vertices did not have excessive minimum or maximum elevations and that elevations are consistent with adjacent vertex elevations.

The next step is to compare the elevation of the breakline vertices against the elevation extracted from the ESRI Terrain built from the LiDAR ground points, keeping in mind that a discrepancy is expected because of the hydro-enforcement applied to the breaklines and because of the interpolated imagery used to acquire the breaklines. A given tolerance is used to validate if the elevations differ too much from the LiDAR.

Dewberry's final check for the breaklines was to perform a full qualitative analysis. Dewberry compared the breaklines against LiDAR intensity images to ensure breaklines were captured in the required locations. The quality control steps taken by Dewberry are outlined in the QA Checklist below.

BREAKLINE QA/QC CHECKLIST

Project Number/Description: TO G10PC00013 USGS FEMA IX – Orange County LiDAR

Date:_____06/13/2012_____

Overview

- All Feature Classes are present in GDB
- All features have been loaded into the geodatabase correctly. Ensure feature classes with subtypes are domained correctly.
- The breakline topology inside of the geodatabase has been validated. See Data Dictionary for specific rules
- Projection/coordinate system of GDB is accurate with project specifications

Perform Completeness check on breaklines using either intensity or ortho imagery

- Check entire dataset for missing features that were not captured, but should be to meet baseline specifications or for consistency (See Data Dictionary for specific collection rules). NHD data will be used to help evaluate completeness of collected hydrographic features. Features should be collected consistently across tile bounds within a dataset as well as be collected consistently between datasets.
- Check to make sure breaklines are compiled to correct tile grid boundary and there is full coverage without overlap
- Check to make sure breaklines are correctly edge-matched to adjoining datasets if applicable. Ensure breaklines from one dataset join breaklines from another dataset that are coded the same and all connecting vertices between the two datasets match in X,Y, and Z (elevation). There should be no breaklines abruptly ending at dataset boundaries and no discrepancies of Z-elevation in overlapping vertices between datasets.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 36 of 146

Compare Breakline Z elevations to LiDAR elevations

Using a terrain created from LiDAR ground points and water points and GeoFIRM tools, drape breaklines on terrain to compare Z values. Breakline elevations should be at or below the elevations of the immediately surrounding terrain. This should be performed before other breakline checks are completed.

Perform automated data checks using PLTS

The following data checks are performed utilizing ESRI's PLTS extension. These checks allow automated validation of 100% of the data. Error records can either be written to a table for future correction, or browsed for immediate correction. PLTS checks should always be performed on the full dataset.

- Perform "adjacent vertex elevation change check" on the Inland Ponds feature class (Elevation Difference Tolerance=.001 meters). This check will return Waterbodies whose vertices are not all identical. This tool is found under "Z Value Checks."
- Perform "unnecessary polygon boundaries check" on Inland Ponds and Inland Streams feature classes. This tool is found under "Topology Checks."
- Perform "duplicate geometry check" on (inland streams to inland streams), (inland ponds to inland ponds), (inland ponds to inland streams). Attributes do not need to be checked during this tool. This tool is found under "Duplicate Geometry Checks."
- Perform "geometry on geometry check" on (inland ponds to inland streams). Spatial relationship is contains, attributes do not need to be checked. This tool is found under "Feature on Feature Checks."
- Perform "polygon overlap/gap is sliver check" (inland streams to inland streams), (inland ponds to inland ponds), (inland ponds to inland streams). Maximum Polygon Area is not required. This tool is found under "Feature on Feature Checks."

Perform Dewberry Proprietary Tool Checks

- \boxtimes Perform monotonicity check inland using on streams features "A3_checkMonotonicityStreamLines." This tool looks at line direction as well as Features in the output shapefile attributed with a "d" are correct elevation. monotonically, but were compiled from low elevation to high elevation. These errors can be ignored. Features in the output shapefile attributed with an "m" are not correct monotonically and need elevations to be corrected. Input features for this tool need to be in a geodatabase. Z tolerance is .01 meters. Polygons need to be exported as lines for the monotonicity tool.
- Perform connectivity check between (inland ponds to inland streams) using the tool "07_CheckConnectivityForHydro." The input for this tool needs to be in a geodatabase. The output is a shapefile showing the location of overlapping vertices from the polygon features and polyline features that are at different Z-elevation. The unnecessary polygon

boundary check must be run and all errors fixed prior to performing connectivity check. If there are exceptions to the polygon boundary rule then that feature class must be checked against itself, i.e. inland streams to inland streams.

Metadata

- Each XML file (1 per feature class) is error free as determined by the USGS MP tool
- Metadata content contains sufficient detail and all pertinent information regarding source materials, projections, datums, processing steps, etc. Content should be consistent across all feature classes.

Completion Comments: Complete – Approved

Data Dictionary

HORIZONTAL AND VERTICAL DATUM

The horizontal datum shall be North American Datum of 1983, Units in Meters. The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88), Units in Meters. Geoido9 shall be used to convert ellipsoidal heights to orthometric heights.

COORDINATE SYSTEM AND PROJECTION

All data shall be projected to UTM Zone 11, Horizontal Units in Meters and Vertical Units in Meters.

INLAND STREAMS AND RIVERS

Feature Dataset: BREAKLINES Feature Type: Polygon

Contains M Values: No Annotation Subclass: None

XY Resolution: Accept Default Setting **XY Tolerance:** 0.003

Feature Class: STREAMS_AND_RIVERS

Contains Z Values: Yes

Z Resolution: Accept Default Setting **Z Tolerance:** 0.001

Description

This polygon feature class will depict linear hydrographic features with a width greater than 100 feet.

Table Definition

Field Name	Data Type	Allow Null Value s	Defau lt Value	Domai n	Precisio n	Scal e	Lengt h	Responsibili ty
OBJECTID	Object ID							Assigned by Software
SHAPE	Geomet ry							Assigned by Software
SHAPE_LENG TH	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Streams and Rivers	such as streams, rivers, canals, etc. with an average width greater than 100 feet in length. In the case of embankments, if the feature	Capture features showing dual line (one on each side of the feature). Average width shall be great than 100 feet to show as a double line. Each vertex placed should maintain vertical integrity and data is required to show "closed polygon". Generally both banks shall be collected to show consistent downhill flow. There are exceptions to this rule where a small branch or offshoot

abannal than conturn it	of the stream on vivon is present
channel, then capture it consistent with the capture	of the stream or river is present.
rules. Other natural or manmade embankments will not qualify for this project.	The banks of the stream must be captured at the same elevation to ensure flatness of the water feature. If the elevation of the banks appears to be different see the task manager or PM for further guidance.
	Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually.
	These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.
	Every effort should be made to avoid breaking a stream or river into segments.
	Dual line features shall break at road crossings (culverts). In areas where a bridge is present the dual line feature shall continue through the bridge.
	Islands: The double line stream shall be captured around an island if the features on either side of the island meet the criteria for capture. In this case a segmented polygon shall be used around the island in order to allow for the island feature to remain as a "hole" in the feature.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 40 of 146

INLAND PONDS AND LAKES

Feature Dataset: BREAKLINES Feature Type: Polygon

Contains M Values: No Annotation Subclass: None Feature Class: PONDS_AND_LAKES

Contains Z Values: Yes

XY Resolution: Accept Default Setting **XY Tolerance:** 0.003

Z Resolution: Accept Default Setting **Z Tolerance:** 0.001

Description

This polygon feature class will depict closed water body features that are at a constant elevation.

Table Definition

Field Name	Data Type	Allow Null Value s	Defau lt Value	Domai n	Precisio n	Scal e	Lengt h	Responsibili ty
OBJECTID	Object ID							Assigned by Software
SHAPE	Geomet ry							Assigned by Software
SHAPE_LENG TH	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Ponds and Lakes	Land/Water boundaries of constant elevation water bodies such as lakes, reservoirs, ponds, etc. Features shall be defined as closed polygons and contain an elevation value that reflects the best estimate of the water elevation at the time of data capture. Water body features will be captured for features 2 acres in size or greater. "Donuts" will exist where there are islands within a closed water body feature greater than ½ acre in size.	 Water bodies shall be captured as closed polygons with the water feature to the right. <u>The compiler shall take care to ensure that the z-value remains consistent for all vertices placed on the water body.</u> Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually. An Island within a Closed Water Body Feature will also have a "donut polygon" compiled. These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 41 of 146

	the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.
--	---

TIDAL WATERS

Feature Dataset: BREAKLINES Feature Type: Polygon

Contains M Values: No Annotation Subclass: None

XY Resolution: Accept Default Setting **XY Tolerance:** 0.003

Feature Class: Tidal Waters

Contains Z Values: Yes

Z Resolution: Accept Default Setting **Z Tolerance:** 0.001

Description

This polygon feature class will outline the land / water interface at the time of LiDAR acquisition.

Table Definition

Field Name	Data Type	Allow Null Value s	Defau lt Value	Domai n	Precisio n	Scal e	Lengt h	Responsibili ty
OBJECTID	Object ID							Assigned by Software
SHAPE	Geomet ry							Assigned by Software
DATESTAMP_ DT	Date	Yes			0	0	8	Assigned by Dewberry
SHAPE_LENG TH	Double	Yes			0	0		Calculated by Dewberry
SHAPE_AREA	Double	Yes			0	0		Calculated by Dewberry

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 42 of 146

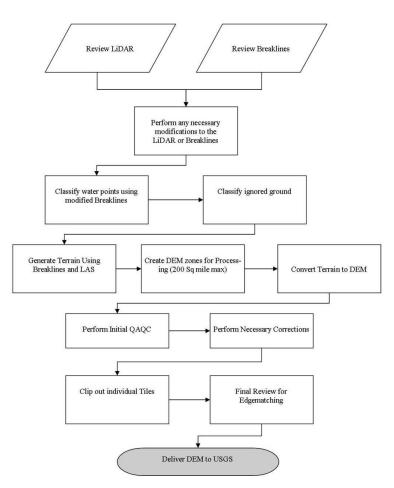
Feature Definition

Description	Definition	Capture Rules
TIDAL_WATERS	The coastal breakline will delineate the land water interface using LiDAR data as reference. In flight line boundary areas with tidal variation the coastal shoreline may require some feathering or edge matching to ensure a smooth transition.	The feature shall be extracted at the apparent land/water interface, as determined by the LiDAR intensity data, to the extent of the tile boundaries. Differences caused by tidal variation are acceptable and breaklines delineated should reflect that change with no feathering. Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water. Breaklines shall snap and merge seamlessly with linear hydrographic features.

CONTACT INFORMATION

Any questions regarding this document should be addressed to:

Josh Novac Project Manager Dewberry 1000 N. Ashley Dr., Suite 801 Tampa, FL 33602 (813) 421-8632 jnovac@dewberry.com


Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 43 of 146

DEM Production & Qualitative Assessment

DEM PRODUCTION METHODOLOGY

Dewberry utilized ESRI software and Global Mapper for the DEM production and QC process. ArcGIS software is used to generate the products and the QC is performed in both ArcGIS and Global Mapper.

Dewberry Hydro-Flattening Workflow

- 1. <u>Classify Water Points</u>: LAS point falling within hydrographic breaklines shall be classified to ASPRS class 9 using TerraScan. Breaklines must be prepared correctly prior to performing this task.
- 2. <u>Classify Ignored Ground Points</u>: Classify points in close proximity to the breaklines from Ground to class 10 (Ignored Ground). Close proximity will be defined as no more than 1x the nominal point spacing on the landward side of the breakline. Breaklines will be buffered using this specification and the subsequent file will need to be prepared in the same manner as the water breaklines for classification. This process will be performed after the water points have been classified and only run on remaining ground points.
- 3. <u>Terrain Processing</u>: A Terrain will be generated using the Breaklines and LAS data that has been imported into Arc as a Multipoint File. If the final DEMs are to be clipped to a project boundary that boundary will be used during the generation of the Terrain.

- 4. <u>Create DEM Zones for Processing</u>: Create DEM Zones that are buffered around the edges. Zones should be created in a logical manner to minimize the number of zones without creating zones too large for processing. BAE will make zones no larger than 200 square miles (taking into account that a DEM will fill in the entire extent not just where LiDAR is present). Once the first zone is created it must be verified against the tile grid to ensure that the cells line up perfectly with the tile grid edge.
- 5. <u>Convert Terrain to Raster</u>: Convert Terrain to raster using the DEM Zones created in step 6. In the environmental properties set the extents of the raster to the buffered Zone. For each subsequent zone, the first DEM will be utilized as the snap raster to ensure that zones consistently snap to one another.
- 6. <u>Perform Initial QAQC on Zones</u>: During the initial QA process anomalies will be identified and corrective polygons will be created.
- 7. <u>Correct Issues on Zones</u>: BAE will perform corrections on zones following Dewberry's correction process.
- 8. <u>Extract Individual Tiles</u>: BAE will extract individual tiles from the zones utilizing the Dewberry created tool.
- 9. <u>Final QA</u>: Final QA will be performed on the dataset to ensure that tile boundaries are seamless.

DEM QUALITATIVE ASSESSMENT

Dewberry performed a comprehensive qualitative assessment of the DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. This process was performed in ArcGIS software with the use of a tool set Dewberry has developed to verify that the raster extents match those of the tile grid and contain the correct projection information. The DEM data was reviewed at a scale of 1:5000 to review for artifacts caused by the DEM generation process and to review the hydro-flattened features. To perform this review Dewberry creates HillShade models and overlays a partially transparent colorized elevation model to review for these issues. Upon completion of this review the DEM data is loaded into Global Mapper to ensure that all files are readable and that no artifacts exist between tiles.

DEM VERTICAL ACCURACY RESULTS

The same 102 checkpoints that were used to test the vertical accuracy of the LiDAR were used to validate the vertical accuracy of the final DEM products as well. Accuracy results may vary between the source LiDAR and final DEM deliverable. DEMs are created by averaging several LiDAR points within each pixel which may result in slightly different elevation values at each survey checkpoint when compared to the source LAS, which does not average several LiDAR points to gether but may interpolate (linearly) between two or three points to derive an elevation value.

Table 7 summarizes the tested vertical accuracy results from a comparison of the surveyed checkpoints to the elevation values present within the final DEM dataset.

Land Cover Category	# of Points	FVA – Fundamental Vertical Accuracy (RMSEz x 1.9600) Spec=0.245 m	CVA – Consolidated Vertical Accuracy (95th Percentile) Spec=0.363 m	SVA – Supplemental Vertical Accuracy (95th Percentile) Target=0.363 m
Consolidated	102		0.17	
Bare Earth-Open				
Terrain	21	0.18		
Tall Weeds and				
Crops	20			0.12
Forested and				
Fully Grown	19			0.13
Brush and Small				
Trees	22			0.20
Urban	20			0.17

Table 7 – FVA, CVA, and SVA Vertical Accuracy at 95% Confidence Level

The RMSE_z for checkpoints in open terrain only tested 0.09 meters, within the target criteria of 0.125 meters. Compared with the 0.245 meters specification, the FVA tested 0.18 meters at the 95% confidence level based on RMSE_z x 1.9600.

Compared with the 0.363 meters specification, CVA for all checkpoints in all land cover categories combined tested 0.17 meters at the 95% confidence level based on the 95th percentile.

Compared with target 0.363 specification, SVA for checkpoints in the tall weeds and crops land cover category tested 0.12 meters, checkpoints in the forested and fully grown land cover category tested 0.13 meters at the 95% confidence level based on the 95th percentiles, checkpoints in the brush and small trees land cover category tested 0.20 meters at the 95% confidence level based on the 95th percentiles, and checkpoints in the urban land cover category tested 0.17 meters at the 95% confidence level based on the 95th percentiles.

	NAD83 UTM	North Zone 11	NAVD88	DEM Z	Delta	AbsDel	
Point ID	Easting - X (m)	Northing - Y (m)	Survey Z (m)	(m)	Z	taZ	
Or18_OT04	424644.543	3740376.689	93.865	94.158	0.29	0.29	
Or65_B13	444638.023	3724027.225	288.333	288.535	0.20	0.20	
Or73_B19	434444.28	3711455.974	65.234	65.428	0.19	0.19	
Or101_B21	443533.876	3703411.049	133.315	133.543	0.23	0.23	
Or41_U06	417709.684	3745155.199	56.987	57.240	0.25	0.25	

Table 8 lists the 5% outliers that are larger than the 95th percentile.

Table 8 – 5% Outliers

Table 9 provides overall descriptive statistics.

100 % of Totals	RMSE (m) Open Terrain Spec=0.125 m	Mea n (m)	Mean Absolute (m)	Media n (m)	Skew	Std Dev (m)	# of Points	Min (m)	Ma x (m)
Consolidated		0.07	0.08	0.07	0.53	0.06	102	-0.12	0.29
Bare Earth-Open Terrain	0.09	0.07	0.07	0.07	2.02	0.06	21	-0.03	0.29
Tall Weeds and Crops		0.06	0.07	0.07	-0.40	0.04	20	-0.02	0.13
Forested and Fully Grown		0.04	0.08	0.05	-0.71	0.07	19	-0.12	0.16
Brush and Small Trees		0.10	0.10	0.10	0.39	0.06	22	0.01	0.23
Urban		0.07	0.08	0.07	1.26	0.06	20	-0.05	0.25

Table 9 – Overall Descriptive Statistics

DEM QA/QC CHECKLIST

Project Number/Description: TO G10PC00013 USGS FEMA IX – Orange County LiDAR Date:_____06/13/2012_____

Overview

- Correct number of files is delivered and all files are in ERDAS IMG format
- Verify Raster Extents
- Verify Projection/Coordinate System

Review

- Manually review bare-earth DEMs with a hillshade to check for issues with hydroenforcement process or any general anomalies that may be present. Specifically, water should be flowing downhill, water features should NOT be floating above surrounding terrain and bridges should NOT be present in bare-earth DEM. Hydrologic breaklines should be overlaid during review of DEMs.
- Overlap points (in the event they are supplied to fill in gaps between adjacent flightlines) are not to be used to create the bare-earth DEMs
- DEM cell size is 1 meterPerform final overview in
- Perform final overview in Global Mapper to ensure seamless product.

Metadata

- Project level DEM metadata XML file is error free as determined by the USGS MP tool
- Metadata content contains sufficient detail and all pertinent information regarding source materials, projections, datums, processing steps, etc.

Completion Comments: Complete - Approved

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 47 of 146

Appendix A: Full LiDAR Acquisition Report

Scope of Work

DMI acquired LiDAR data over an Area of Interest (AOI) entire of Orange County California. The acquisition plan entailed a nominal point spacing of 1.76 points per meter square and a side lap of 40% between flight lines. The AOI covers 696 square miles.

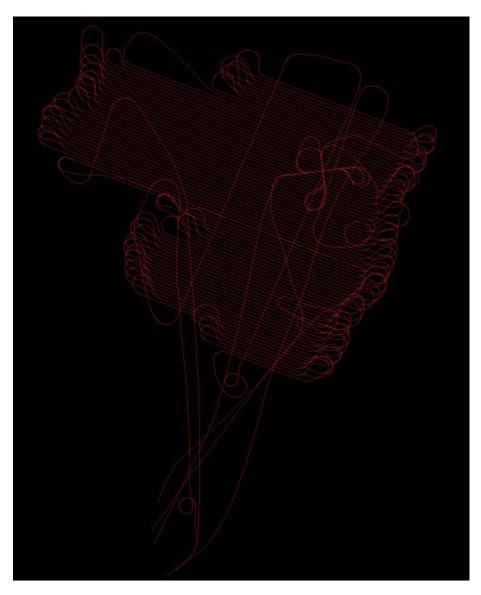
Fig. 1 Flight plan

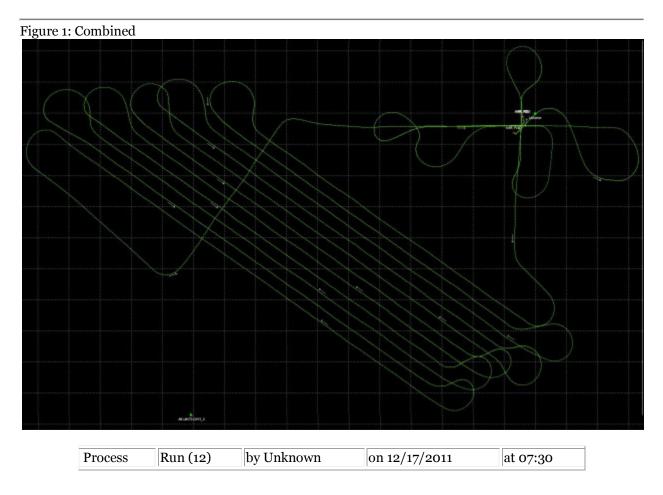
LiDAR Acquisition Details

Collections (Lifts): 14 Collection Dates: 2011 December 17, 20, 21, 23, 24, 26, 27, 28, 29, 30, Field of View (FOV): 18 degrees Average Point Density (planned): 0.75 m Flight Level(s): 914 / 3000 m/ft Sensor Type: Optech Gemini Sensor Serial Number(s): 07SEN204

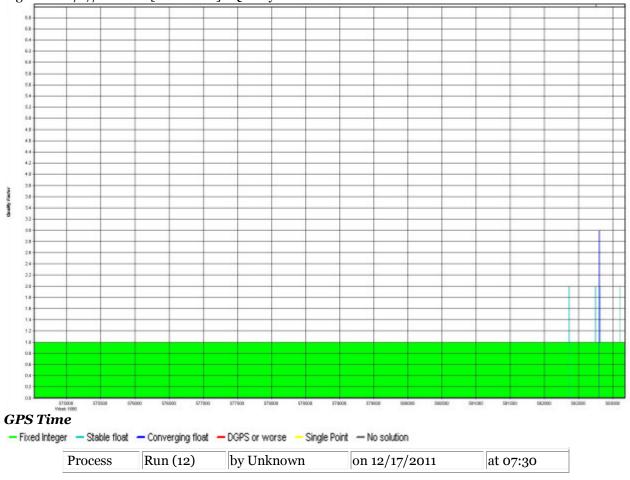
All acquired LiDAR data was initially quality controlled after every mission for coverage and further verified for content and adherence to flight plan at DMI production facilities Huntington Beach, CA. All data was accepted for processing.

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 48 of 146




Fig. 2 Orange County AOI Flight Trajectories

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 49 of 146


Output Results for 12/17/2011AM

POSPAC Version 4.31

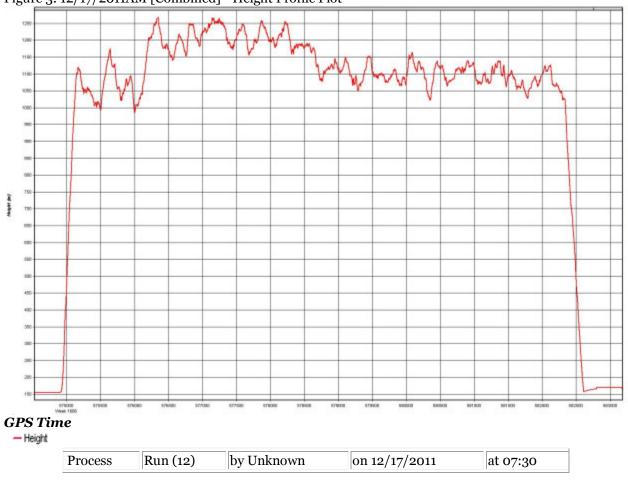

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 50 of 146

Figure 2: 12/17/2011AM [Combined] - Quality Factor Plot

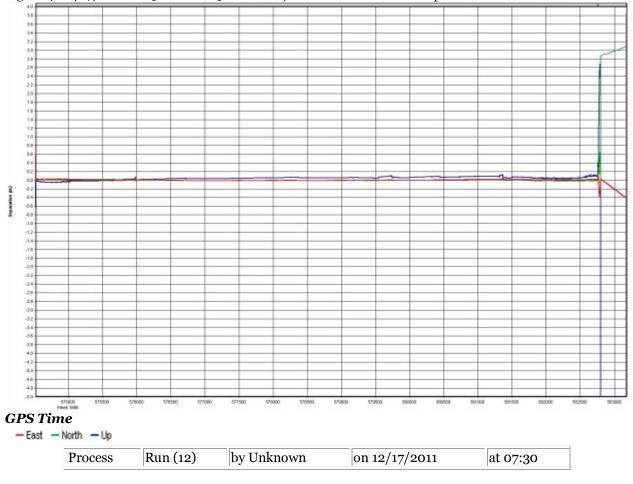

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 51 of 146

Figure 3: 12/17/2011AM [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 52 of 146

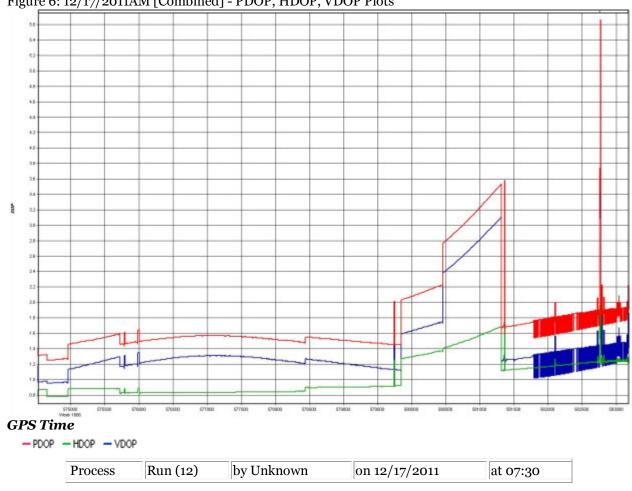


Figure 4: 12/17/2011AM [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/17/2011AM [Combined] - Forward/Reverse or Combined Weighting Plot

Process	Run (12)	by Unknown	on 12/17/2011	at 07:30	
---------	----------	------------	---------------	----------	--

Figure 6: 12/17/2011AM [Combined] - PDOP, HDOP, VDOP Plots

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 54 of 146

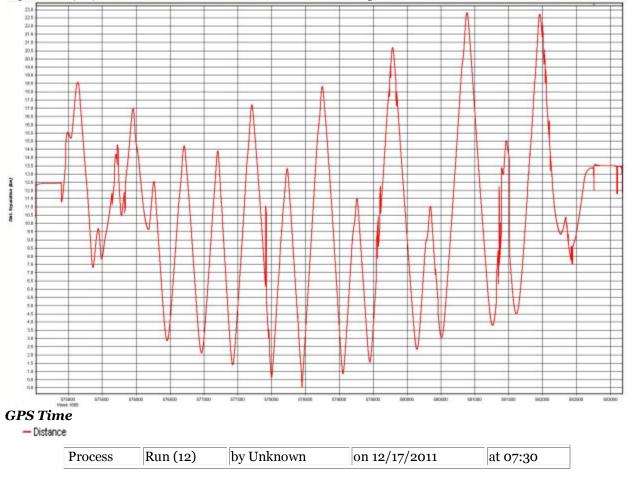


Figure 7: 12/17/2011AM [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/17/2011AM [Combined] - Forward/Reverse or Combined RMS Plot

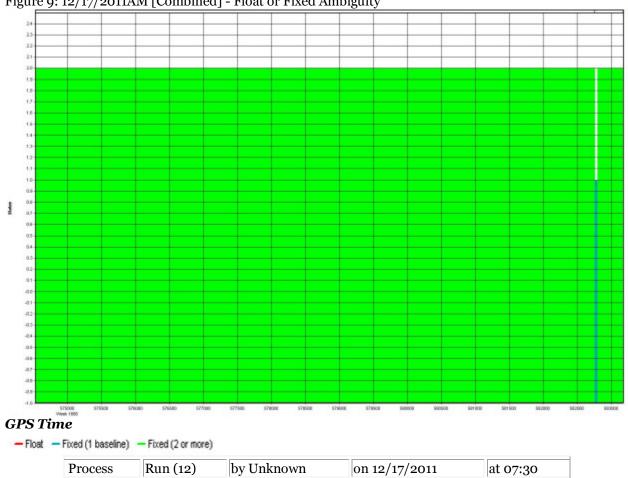


Figure 9: 12/17/2011AM [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 56 of 146

Output Results for 12/17/2011PM

POSPAC Version 4.31

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 57 of 146

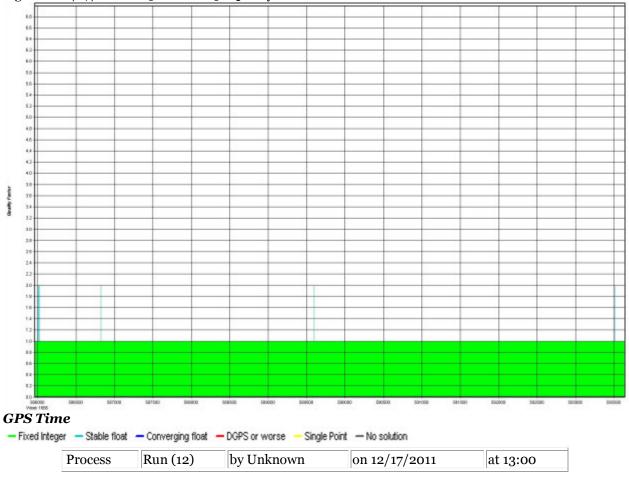


Figure 2: 12/17/2011PM [Combined] - Quality Factor Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 58 of 146

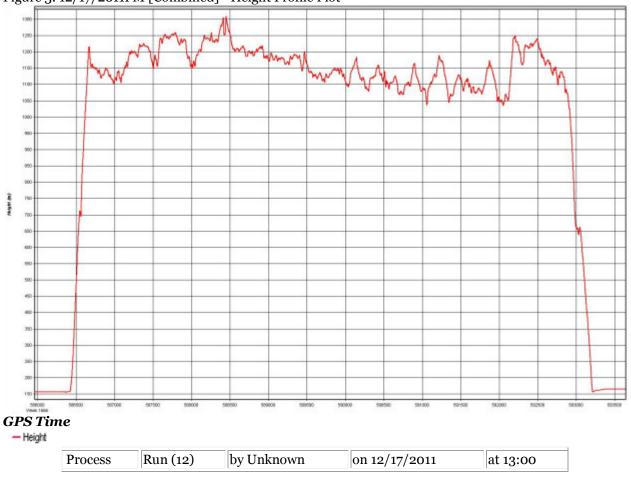
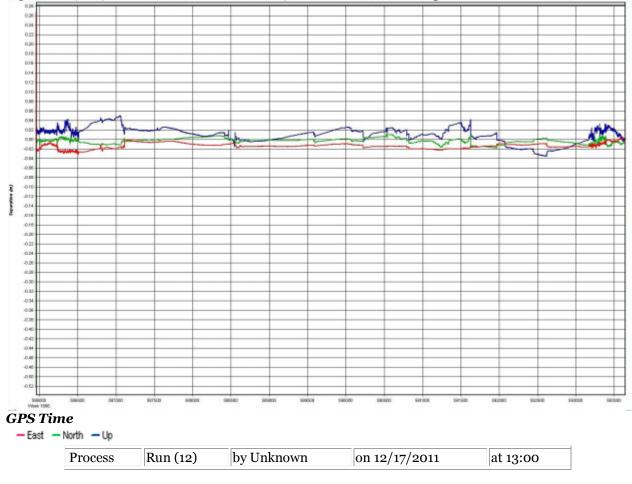



Figure 3: 12/17/2011PM [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 59 of 146

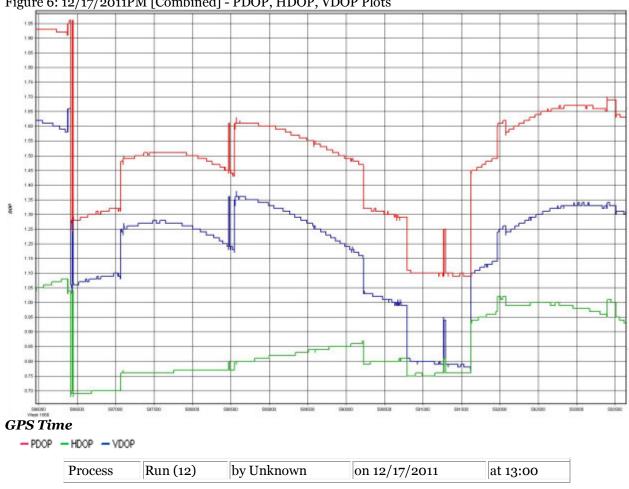


Figure 4: 12/172/011PM [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/17/2011PM [Combined] - Forward/Reverse or Combined Weighting Plot

Process	Run (12)	by Unknown	on 12/17/2011	at 13:00	
---------	----------	------------	---------------	----------	--

Figure 6: 12/17/2011PM [Combined] - PDOP, HDOP, VDOP Plots

Dewberry

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 61 of 146

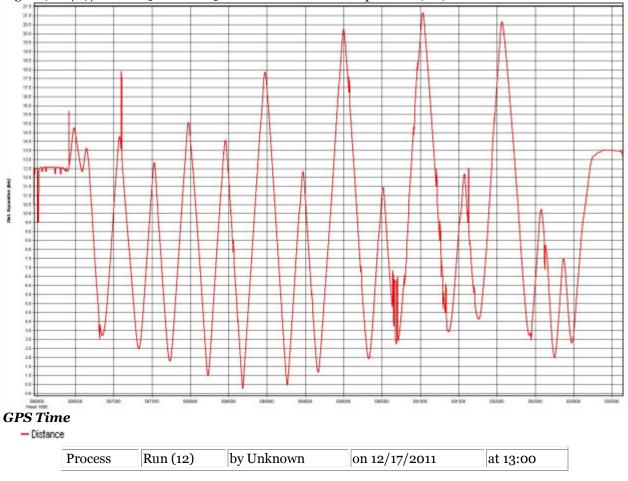
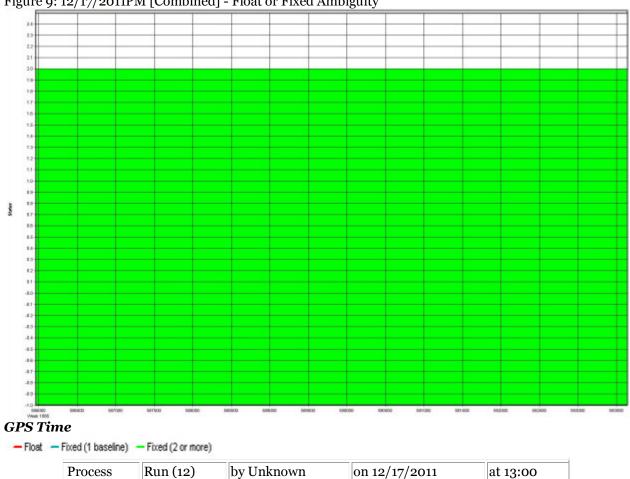
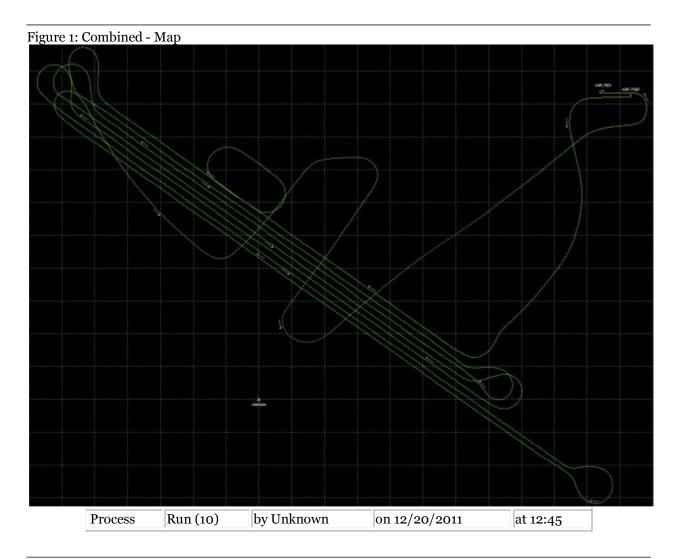


Figure 7: 12/17/2011PM [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/17/2011PM [Combined] - Forward/Reverse or Combined RMS Plot

Process	Run (12)	by Unknown	on 12/17/2011	at 13:00
---------	----------	------------	---------------	----------




Figure 9: 12/17/2011PM [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 63 of 146

Output Results for 12/20/2011

POSPAC Version 4.31

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 64 of 146

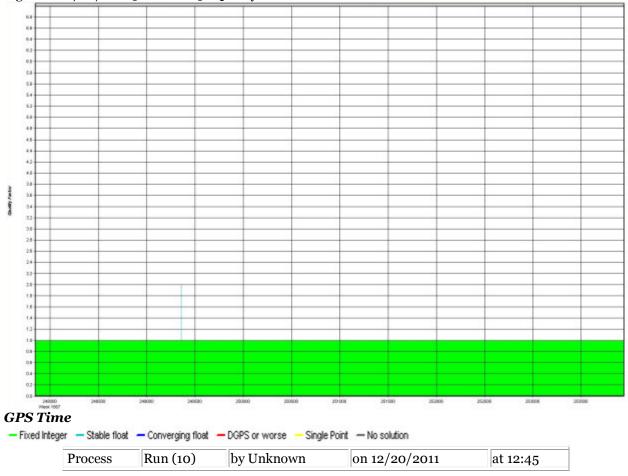


Figure 2: 12/20/2011 [Combined] - Quality Factor Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 65 of 146

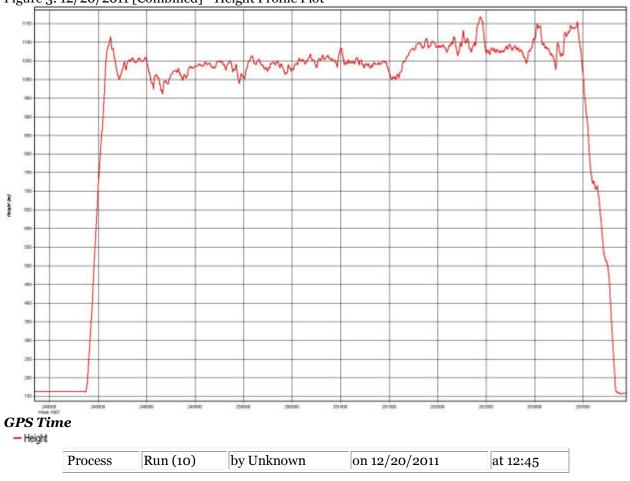


Figure 3: 12/20/2011 [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 66 of 146

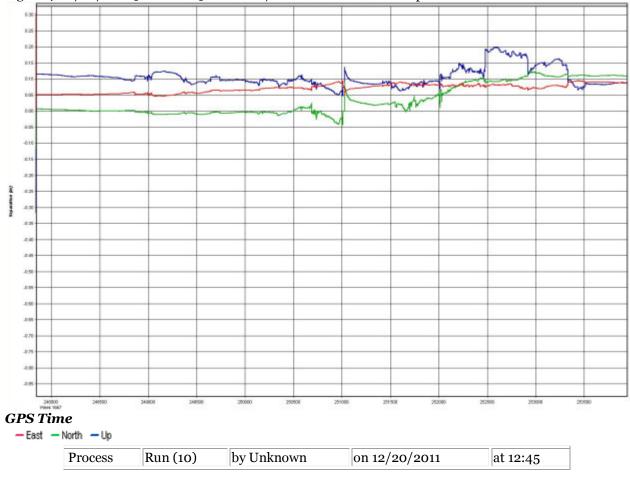
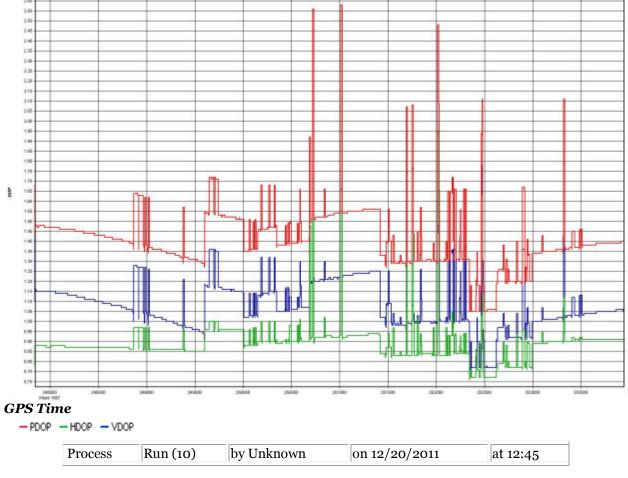



Figure 4: 12/20/2011 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/20/2011 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: 12/20/2011 [Combined] - PDOP, HDOP, VDOP Plots

Dewberry

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 68 of 146

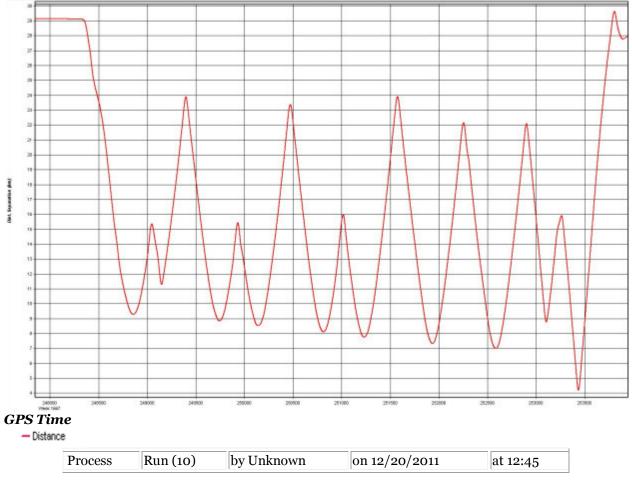
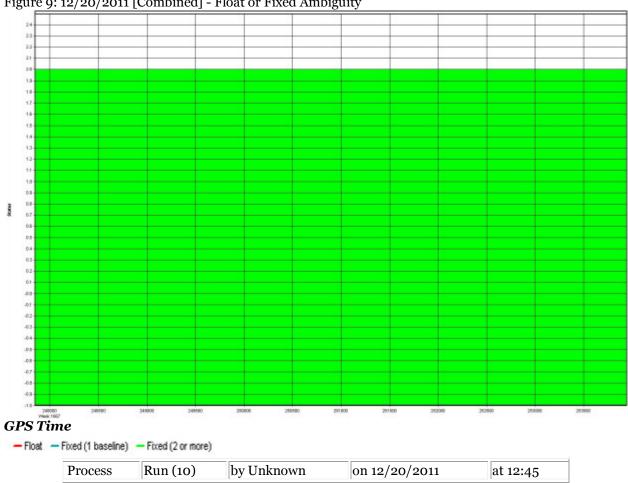



Figure 7: 12/20/2011 [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/20/2011 [Combined] - Forward/Reverse or Combined RMS Plot

Process	Run (10)	by Unknown	on 12/20/2011	at 12:45
---------	----------	------------	---------------	----------

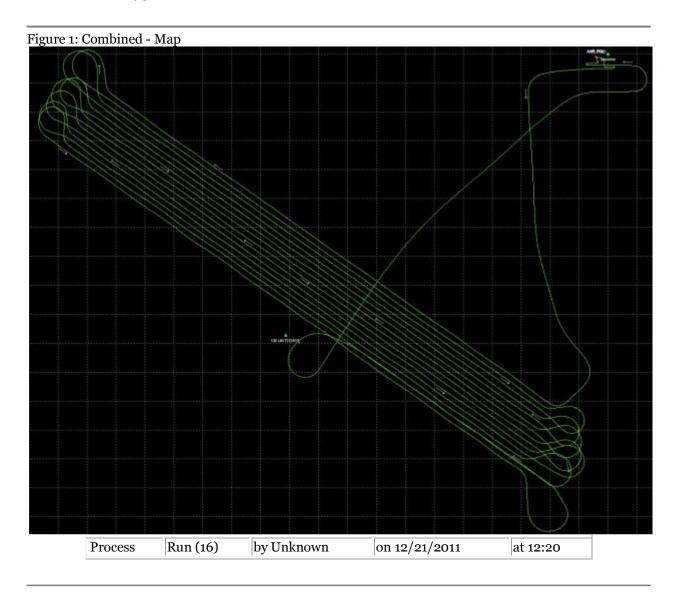
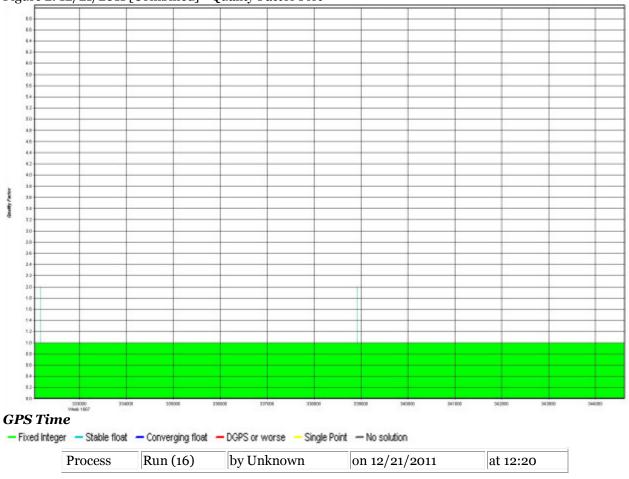


Figure 9: 12/20/2011 [Combined] - Float or Fixed Ambiguity


Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 70 of 146

Output Results for 12/21/2011 POSPAC Version 4.31

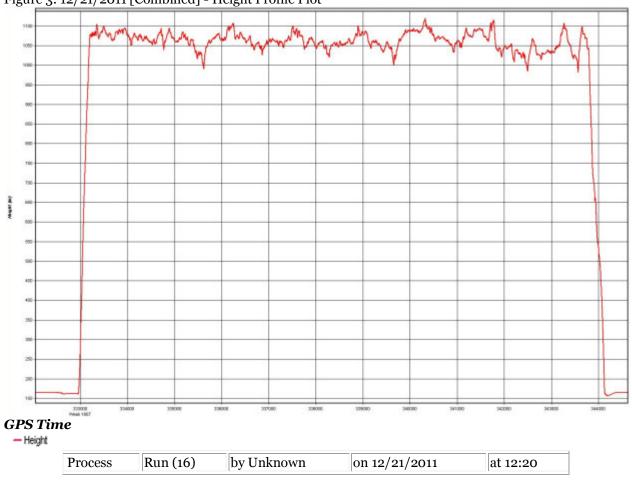

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 71 of 146

Figure 2: 12/21/2011 [Combined] - Quality Factor Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 72 of 146

Figure 3: 12/21/2011 [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 73 of 146

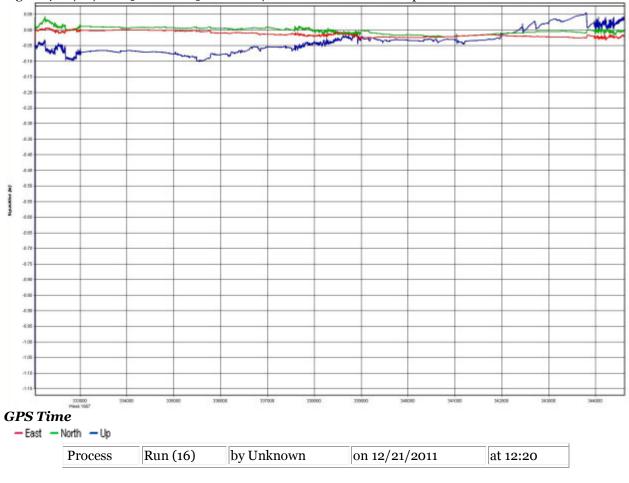


Figure 4: 12/21/2011 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/21/2011 [Combined] - Forward/Reverse or Combined Weighting Plot

Process	Run (16)	by Unknown	on 12/21/2011	at 12:20
---------	----------	------------	---------------	----------

2.48 2.08 1.9 3.25 2.28 215 3.18 2.08 2.08 1.95 1.98 1.0 1.08 175 1.72 1.68 1.68 1.0 900 1.51 14 1.48 13 1.38 12 1.28 1.18 11 1.05 1.08 1 25 19 1.05 8.08 175 8.78 1.68 140 220800 **GPS** Time - PDOP - HDOP - VDOP Run (16) by Unknown on 12/21/2011 Process at 12:20

Figure 6: 12/21/2011 [Combined] - PDOP, HDOP, VDOP Plots

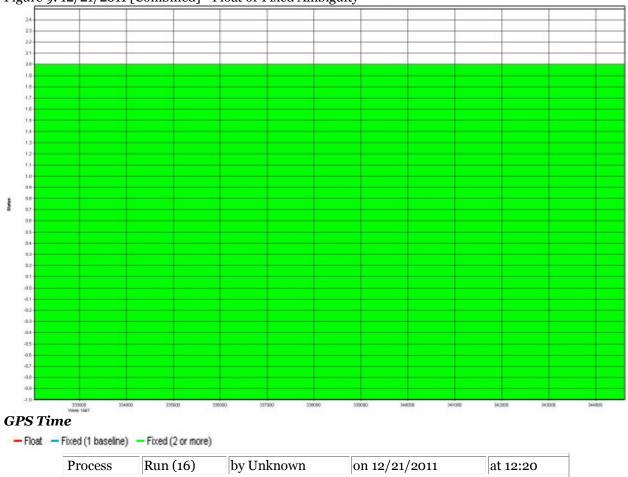
Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 75 of 146

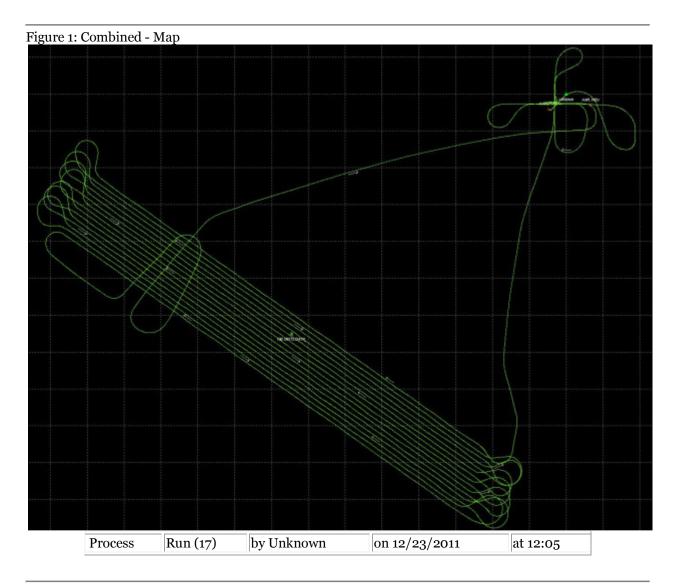


Figure 7: 12/21/12011 [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/21/2011 [Combined] - Forward/Reverse or Combined RMS Plot

Process Run (16)	by Unknown	on 12/21/2011	at 12:20
------------------	------------	---------------	----------




Figure 9: 12/21/2011 [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 77 of 146


2.7 Output Results for 12/23/2011

POSPAC Version 4.31

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 78 of 146

Figure 2: 12/23/2011 [Combined] - Quality Factor Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 79 of 146

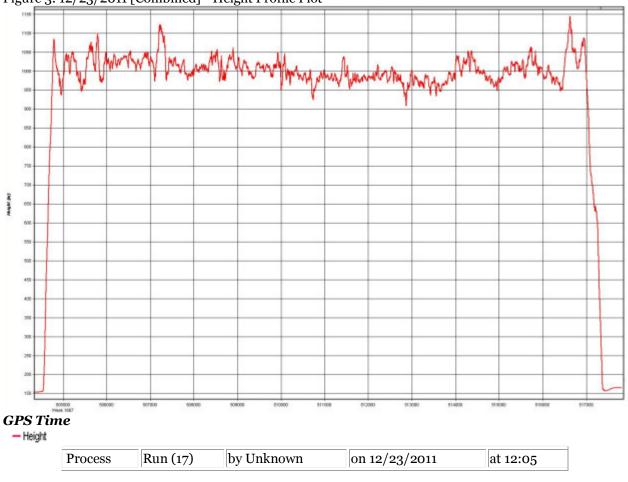
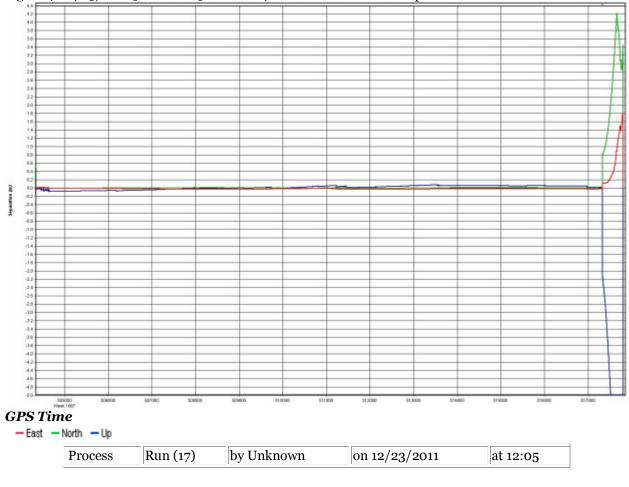



Figure 3: 12/23/2011 [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 80 of 146

Figure 4: 12/23/2011 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/23/2011 [Combined] - Forward/Reverse or Combined Weighting Plot

Process	Run (17)	by Unknown	on 12/23/2011	at 12:05	
---------	----------	------------	---------------	----------	--

Figure 6: 12/23/2011 [Combined] - PDOP, HDOP, VDOP Plots 12 3.26 215 218 2.05 2.08 1.99 19 1.8 1.00 175 1.78 1.65 1.51 1.9 100 1.35 13 12 128 3.15 1.18 10 1.0 UL. 6.95 0.96 2.38 0.06 6.75 0.76 0.05 0.00 505800 PANE 168 51100 5130 **GPS** Time - PDOP - HDOP - VDOP Process on 12/23/2011 Run (17) by Unknown at 12:05

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 82 of 146

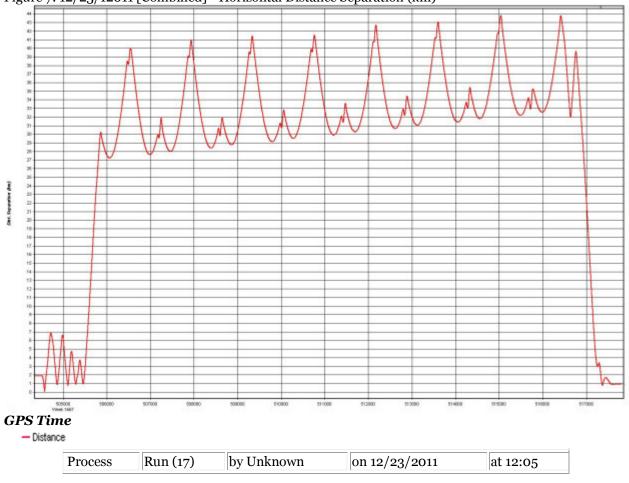
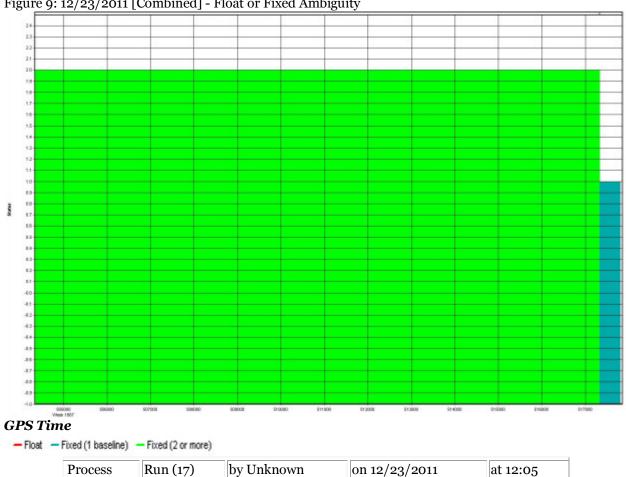
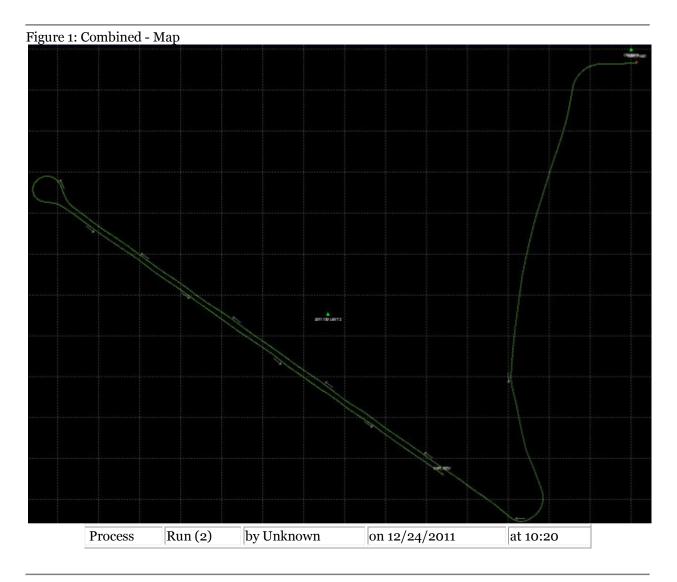



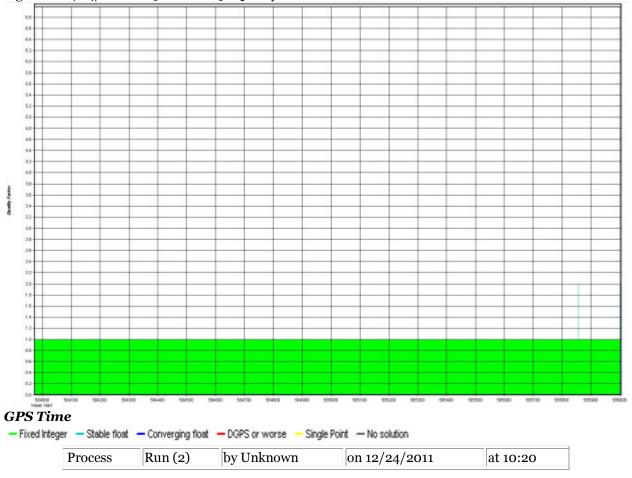
Figure 7: 12/23/12011 [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/23/2011 [Combined] - Forward/Reverse or Combined RMS Plot

Process	Run (17)	by Unknown	on 12/23/2011	at 12:05	
---------	----------	------------	---------------	----------	--


Figure 9: 12/23/2011 [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 84 of 146


2.8 Output Results for 12/24/2011AM

POSPAC Version 4.31

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 85 of 146

Figure 2: 12/24/2011AM [Combined] - Quality Factor Plot

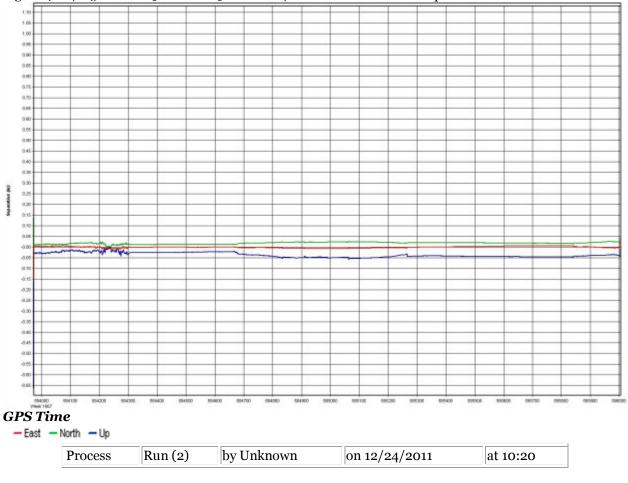

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 86 of 146

Figure 3: 12/24/2011AM [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 87 of 146

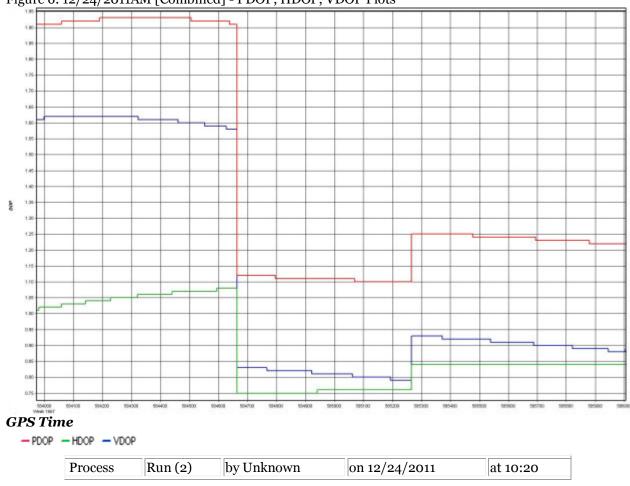


Figure 4: 12/24/2011AM [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/24/2011AM [Combined] - Forward/Reverse or Combined Weighting Plot

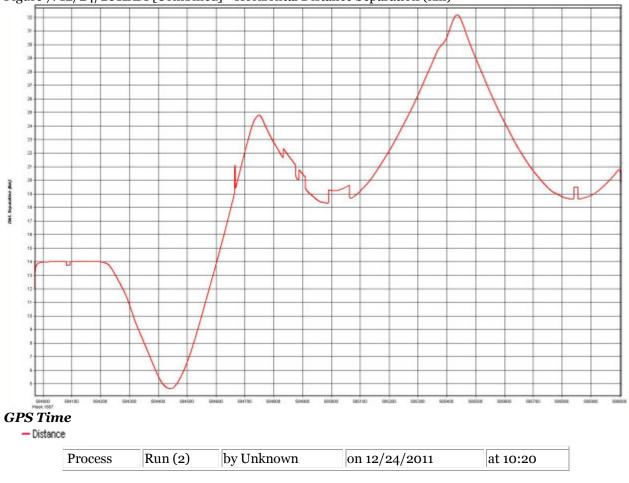

	Process	Run (2)	by Unknown	on 12/24/2011	at 10:20
--	---------	---------	------------	---------------	----------

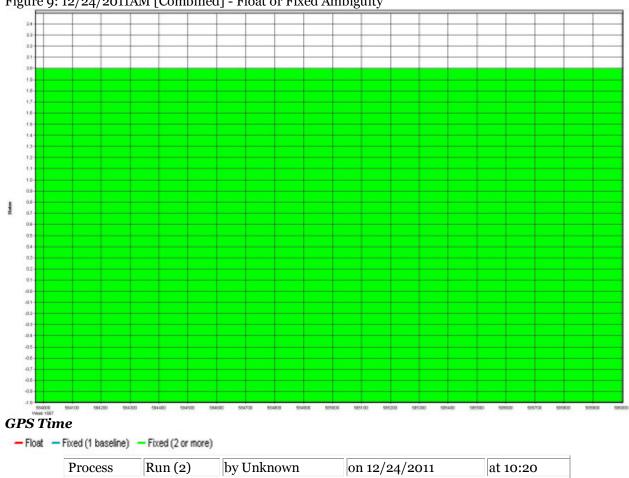
Figure 6: 12/24/2011AM [Combined] - PDOP, HDOP, VDOP Plots

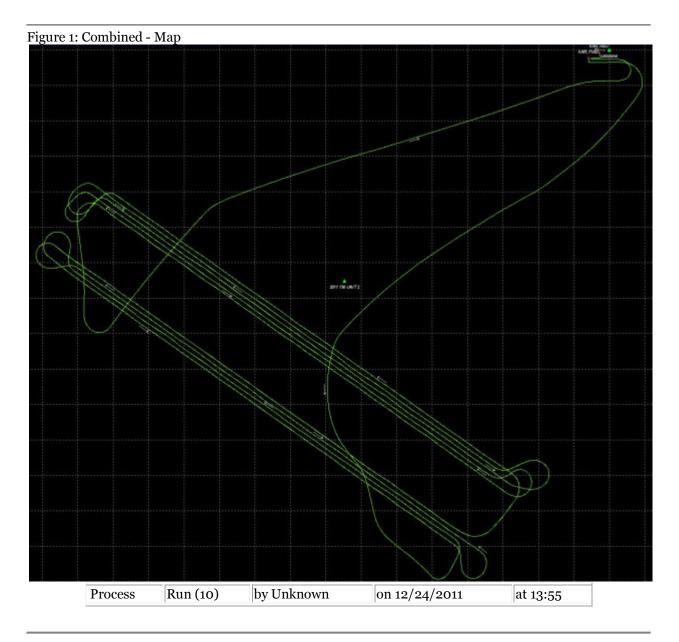
Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 89 of 146

Figure 7: 12/24/2011AM [Combined] - Horizontal Distance Separation (km)

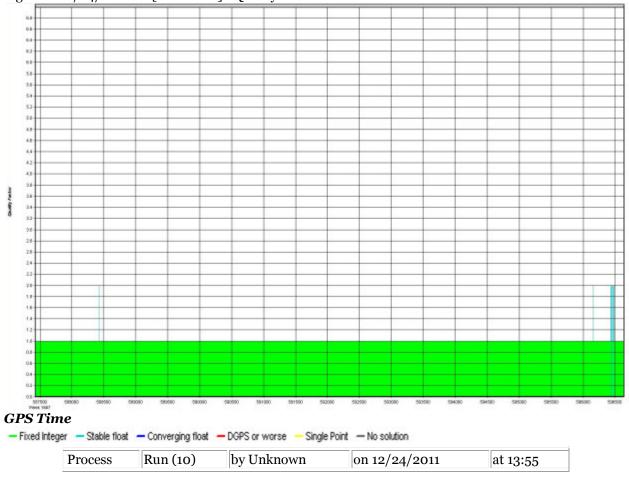
Figure 8: 12/24/2011AM [Combined] - Forward/Reverse or Combined RMS Plot

Process Run (2)	by Unknown	on 12/24/2011	at 10:20
-----------------	------------	---------------	----------




Figure 9: 12/24/2011AM [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 91 of 146


2.9 Output Results for 12/24/2011PM

POSPAC Version 4.31

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 92 of 146

Figure 2: 12/24/2011PM [Combined] - Quality Factor Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 93 of 146

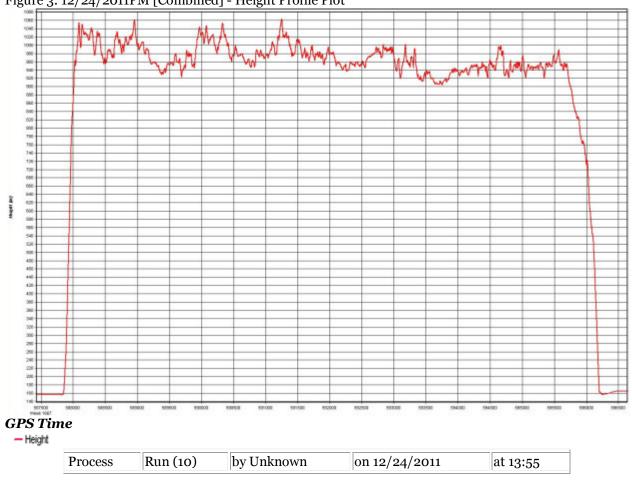
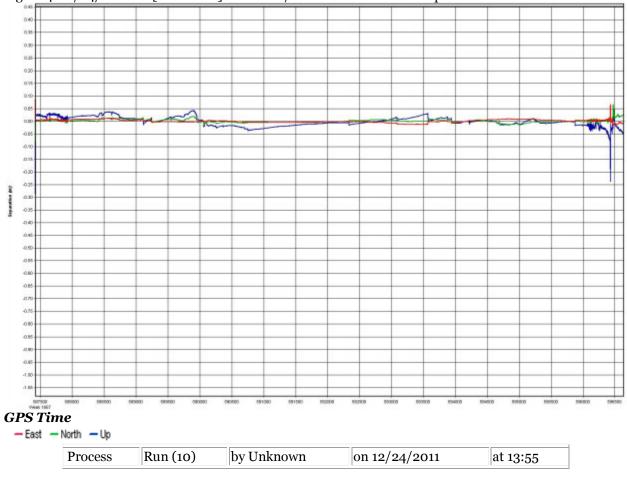



Figure 3: 12/24/2011PM [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 94 of 146

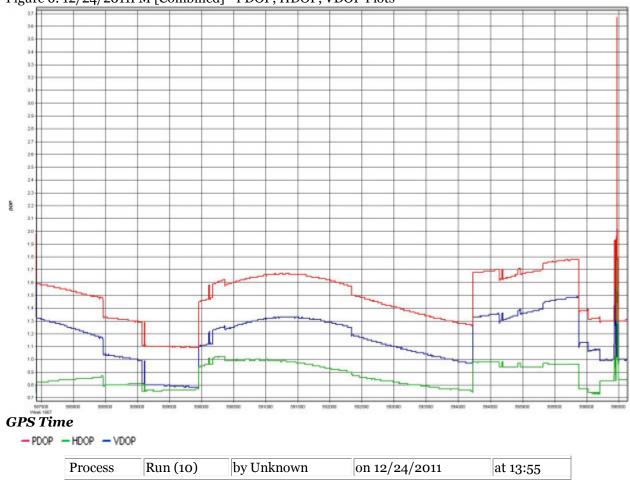


Figure 4: 12/24/2011PM [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/24/2011PM [Combined] - Forward/Reverse or Combined Weighting Plot

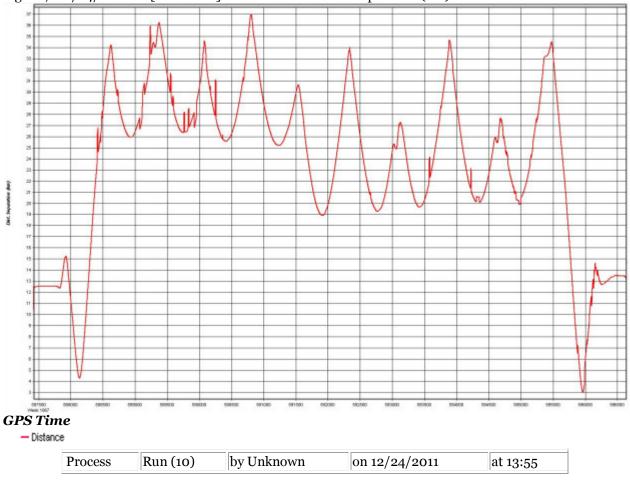

Process	Run (10)	by Unknown	on 12/24/2011	at 13:55	
---------	----------	------------	---------------	----------	--

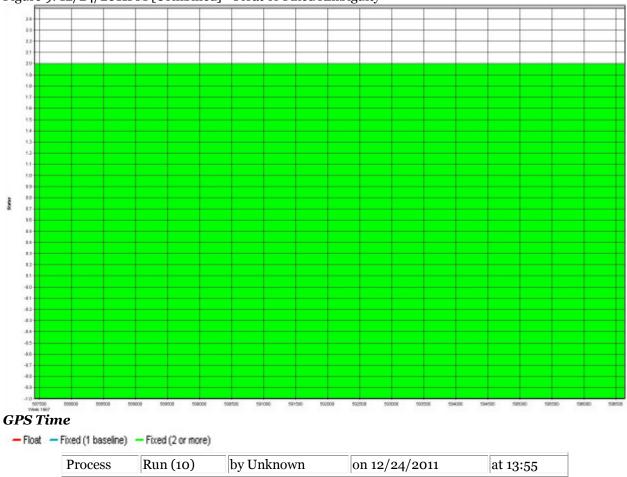
Figure 6: 12/24/2011PM [Combined] - PDOP, HDOP, VDOP Plots

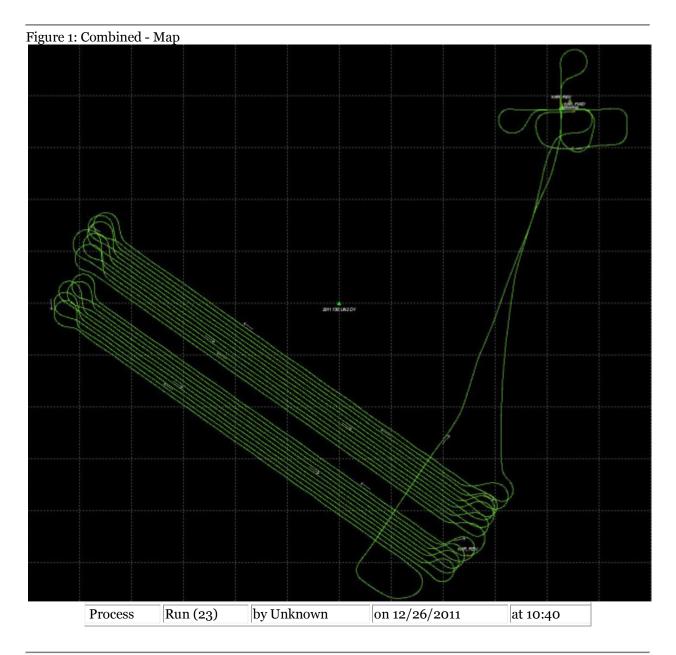
Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 96 of 146

Figure 7: 12/24/2011PM [Combined] - Horizontal Distance Separation (km)

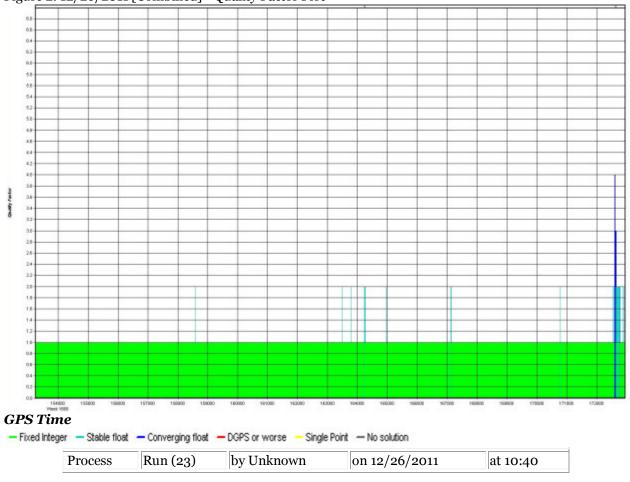
Figure 8: 12/24/2011PM [Combined] - Forward/Reverse or Combined RMS Plot

Process	Run (10)	by Unknown	on 12/24/2011	at 13:55	
---------	----------	------------	---------------	----------	--




Figure 9: 12/24/2011PM [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 98 of 146


2.10 Output Results for 12/26/2011

POSPAC Version 4.31

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 99 of 146

Figure 2: 12/26/2011 [Combined] - Quality Factor Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 100 of 146

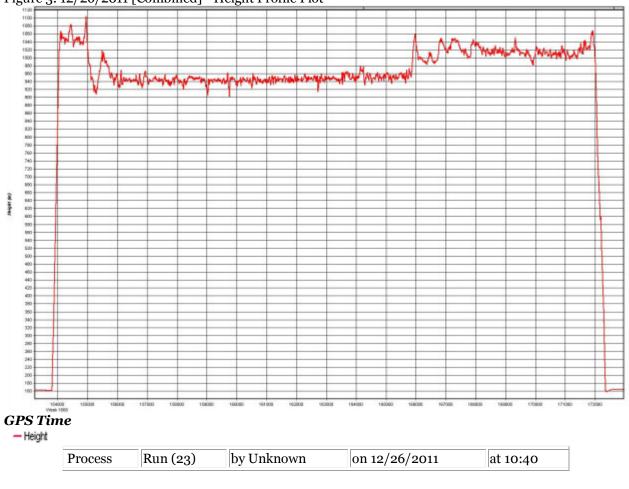
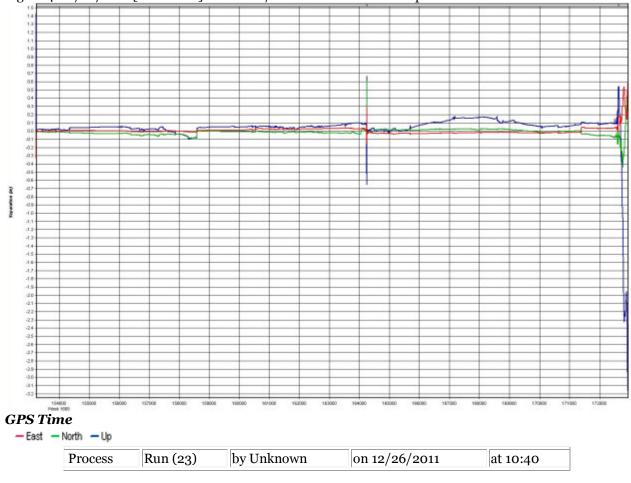



Figure 3: 12/26/2011 [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 101 of 146

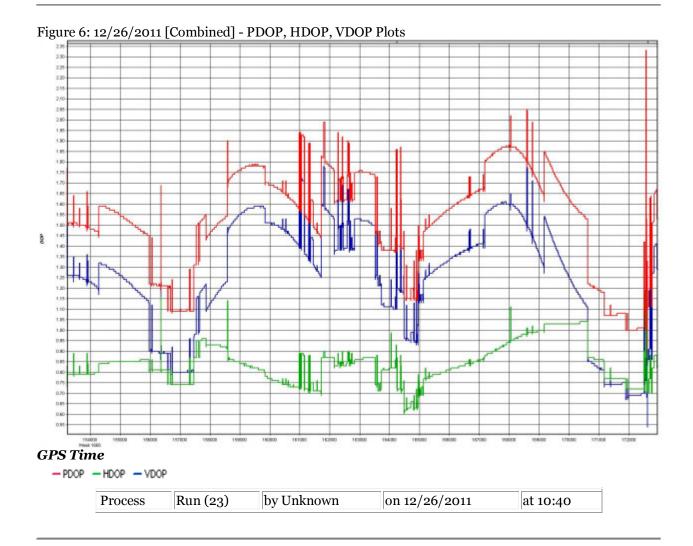


Figure 4: 12/26/2011 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/26/2011 [Combined] - Forward/Reverse or Combined Weighting Plot

Process	Run (23)	by Unknown	on 12/26/2011	at 10:40	
---------	----------	------------	---------------	----------	--

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 103 of 146

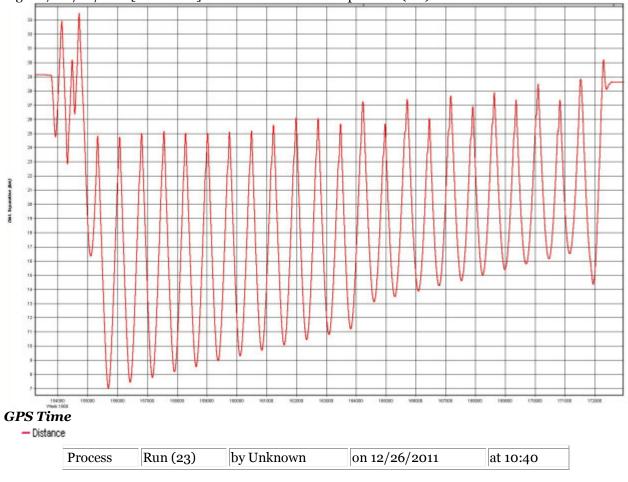
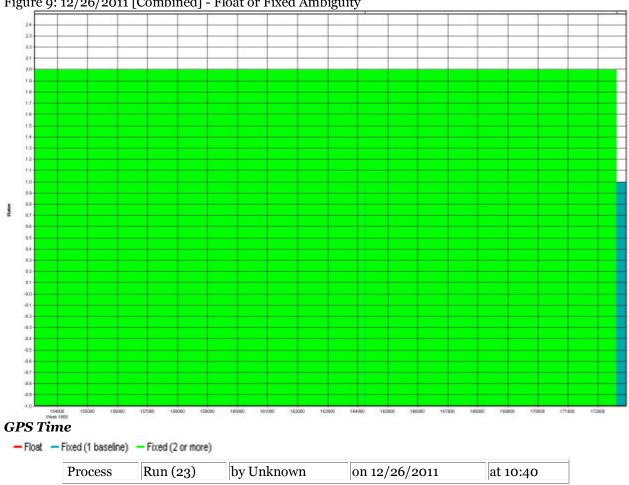
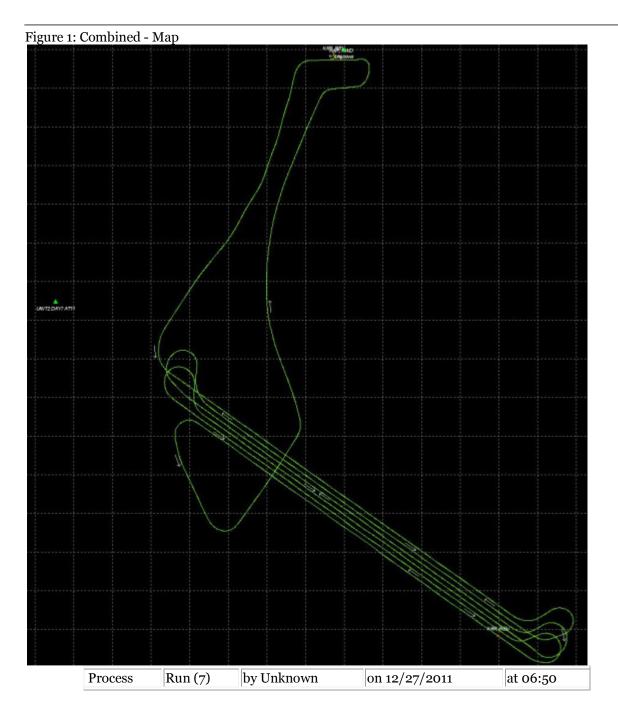


Figure 7: 12/26/2011 [Combined] - Horizontal Distance Separation (km)

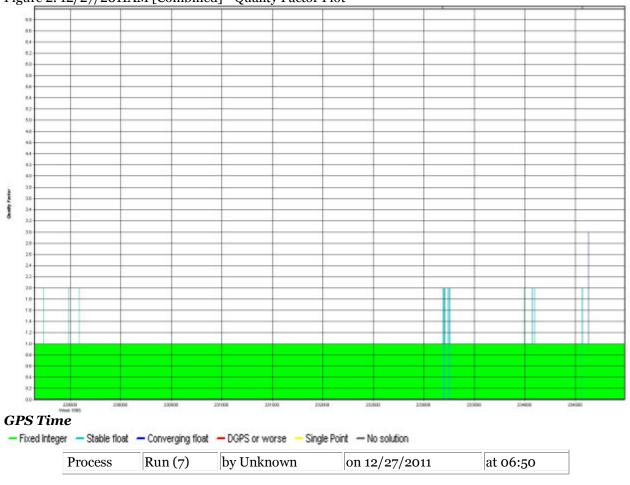
Figure 8: 12/26/2011 [Combined] - Forward/Reverse or Combined RMS Plot

Process Run (23)	by Unknown	on 12/26/2011	at 10:40	
------------------	------------	---------------	----------	--




Figure 9: 12/26/2011 [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 105 of 146


2.11 Output Results for 12/27/2011AM

POSPAC Version 4.31

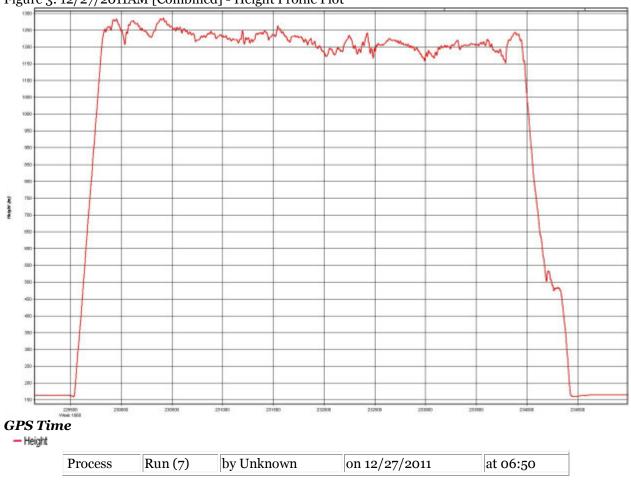

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 106 of 146

Figure 2: 12/27/2011AM [Combined] - Quality Factor Plot

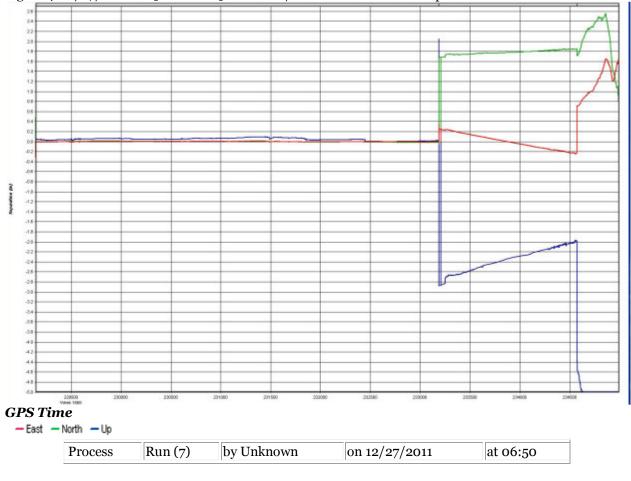

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 107 of 146

Figure 3: 12/27/2011AM [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 108 of 146

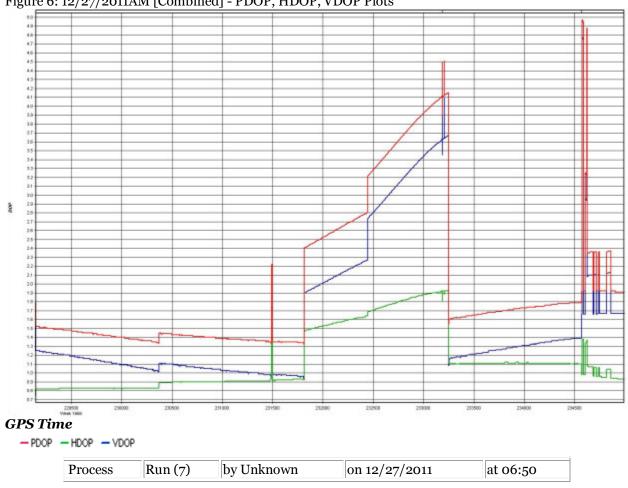


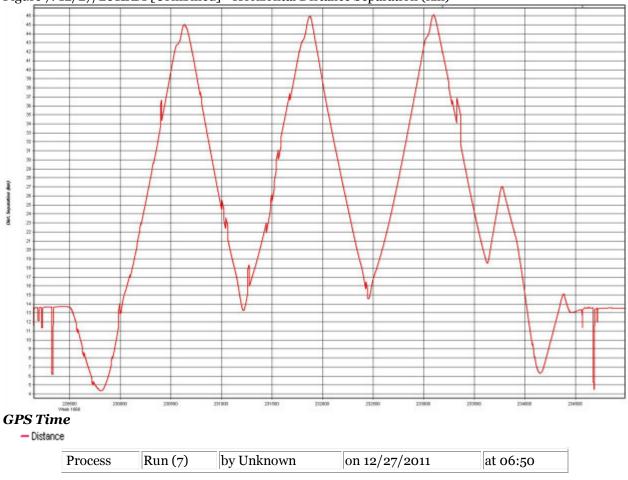
Figure 4: 12/27/2011AM [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/27/2011AM [Combined] - Forward/Reverse or Combined Weighting Plot

Process	Run (7)	by Unknown	on 12/27/2011	at 06:50
---------	---------	------------	---------------	----------

Figure 6: 12/27/2011AM [Combined] - PDOP, HDOP, VDOP Plots

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 110 of 146



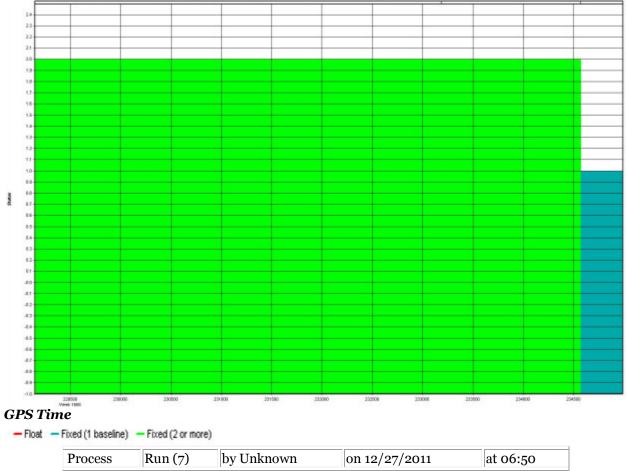

Figure 7: 12/27/2011AM [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/27/2011AM [Combined] - Forward/Reverse or Combined RMS Plot

Process	Run (7)	by Unknown	on 12/27/2011	at 06:50	
---------	---------	------------	---------------	----------	--

Figure 9: 12/27/2011AM [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 112 of 146

2.12 Output Results for 12/27/2011PM

POSPAC Version 4.31

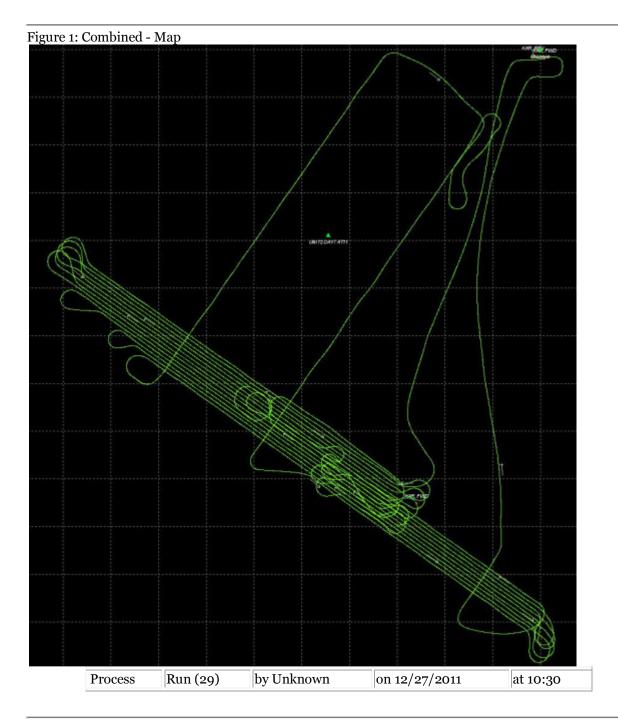
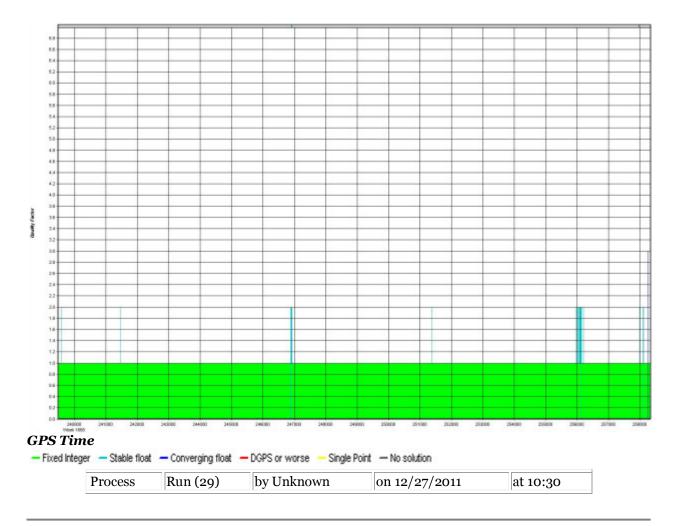



Figure 2: 12/27/2011PM [Combined] - Quality Factor Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 114 of 146

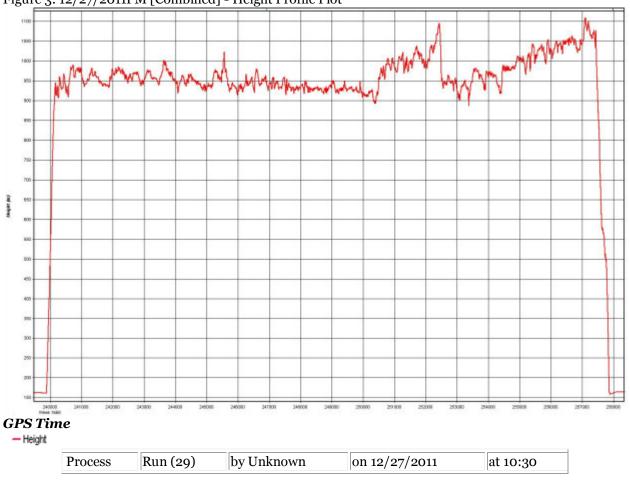


Figure 3: 12/27/2011PM [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 115 of 146

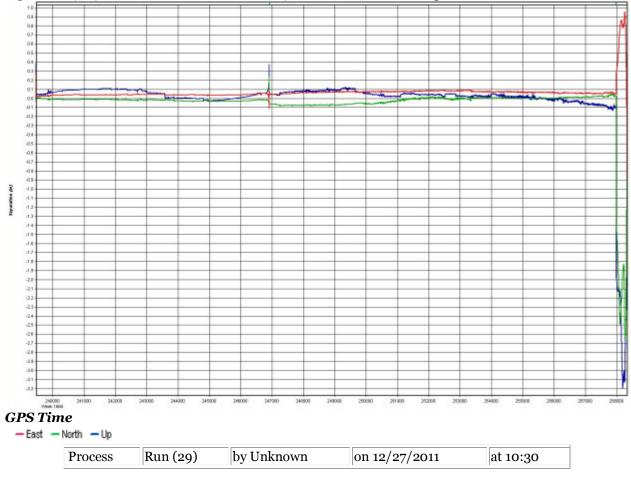
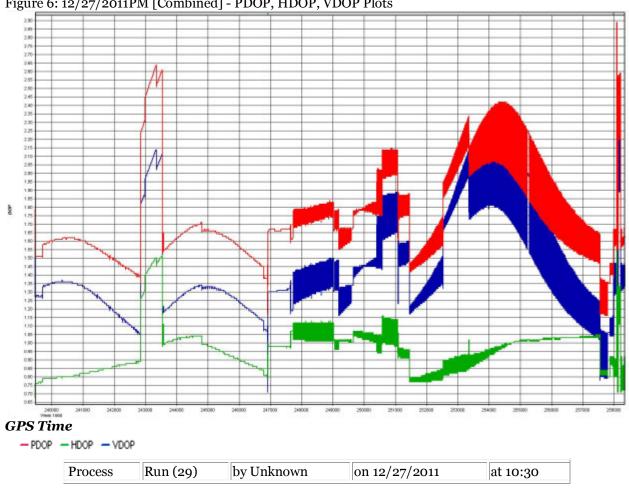



Figure 4: 12/27/2011PM [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/27/2011PM [Combined] - Forward/Reverse or Combined Weighting Plot

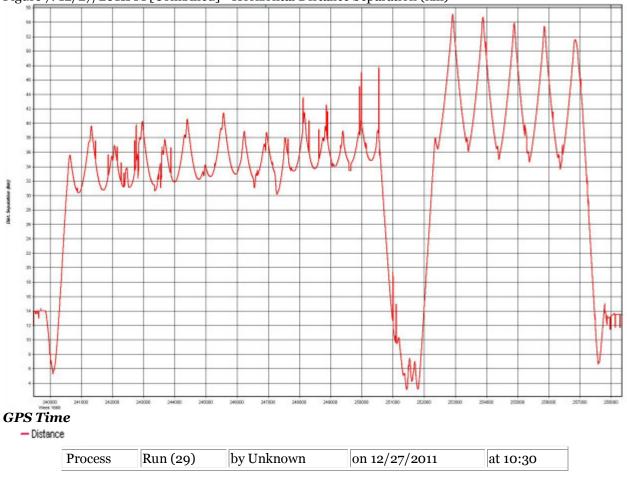

Process	Run (29)	by Unknown	on 12/27/2011	at 10:30
---------	----------	------------	---------------	----------

Figure 6: 12/27/2011PM [Combined] - PDOP, HDOP, VDOP Plots

Dewberry

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 117 of 146

Figure 7: 12/27/2011PM [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/27/2011PM [Combined] - Forward/Reverse or Combined RMS Plot

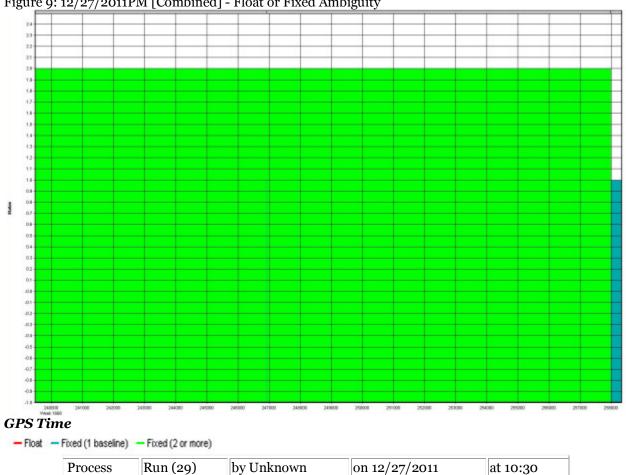
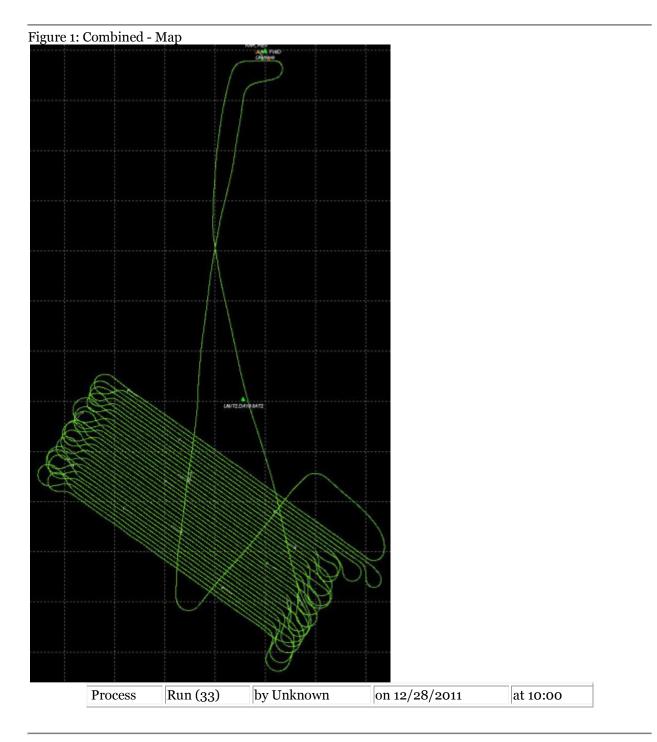
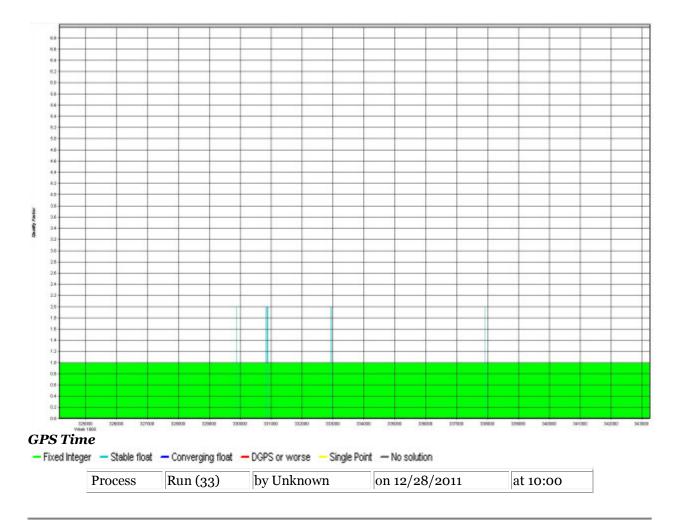


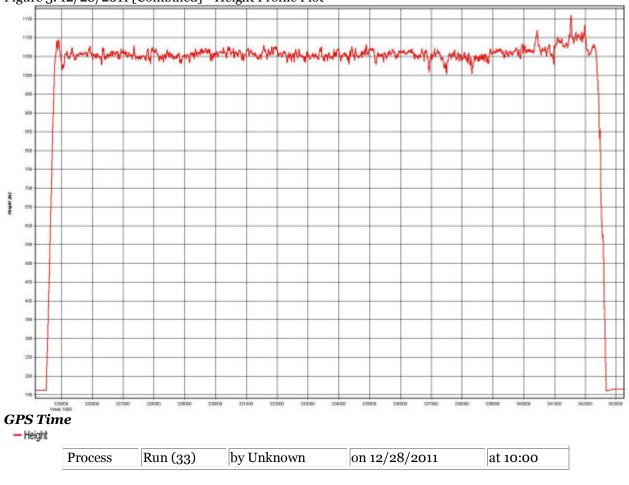
Figure 9: 12/27/2011PM [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 119 of 146

2.13 Output Results for 12/28/2011

POSPAC Version 4.31


Figure 2: 12/28/2011 [Combined] - Quality Factor Plot

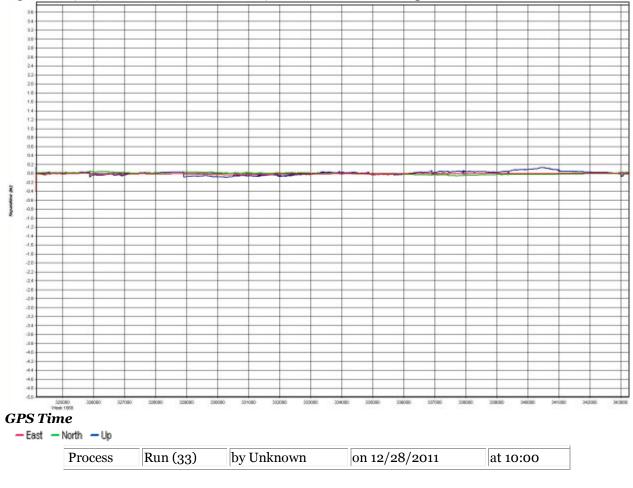

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 121 of 146

Figure 3: 12/28/2011 [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 122 of 146

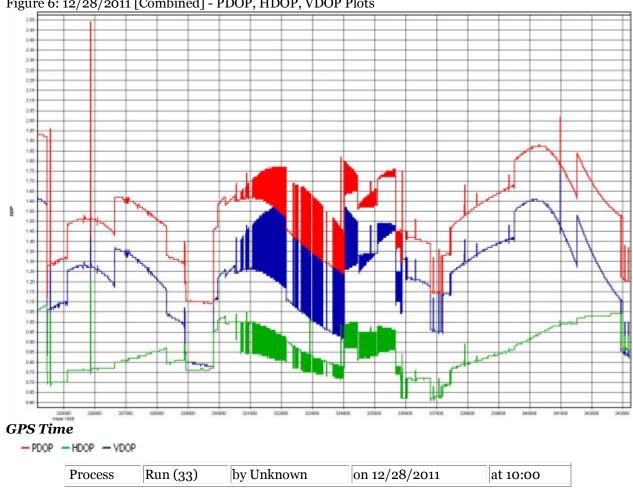


Figure 4: 12/28/2011 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/28/2011 [Combined] - Forward/Reverse or Combined Weighting Plot

Process	Run (33)	by Unknown	on 12/28/2011	at 10:00
---------	----------	------------	---------------	----------

Figure 6: 12/28/2011 [Combined] - PDOP, HDOP, VDOP Plots

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 124 of 146

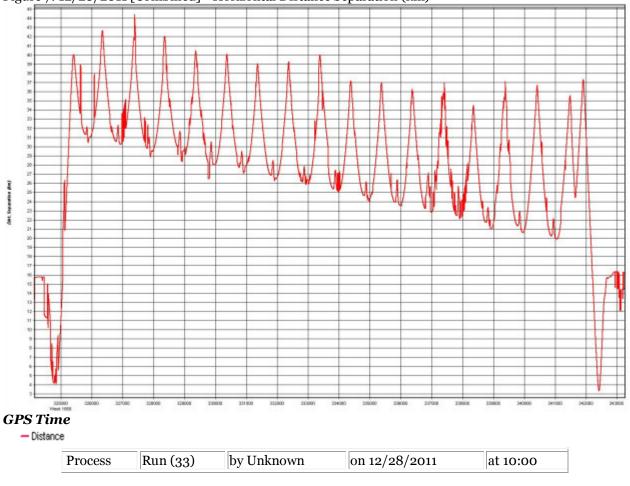
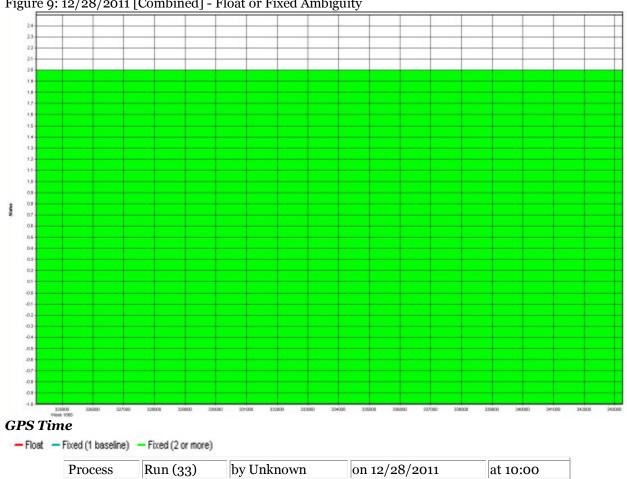



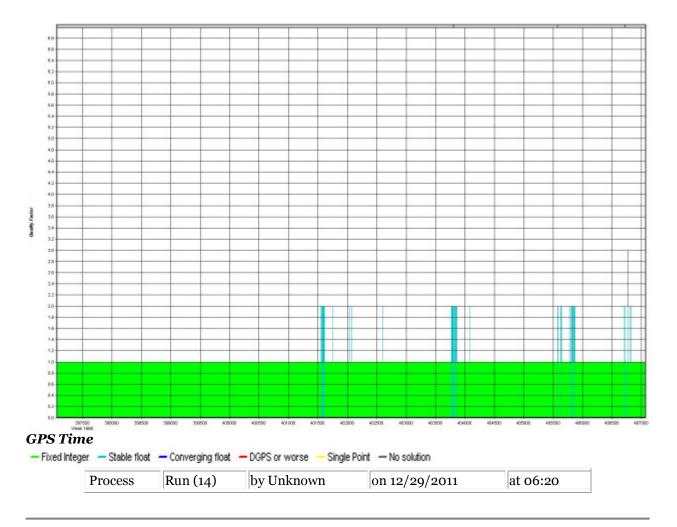
Figure 7: 12/28/2011 [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/28/2011 [Combined] - Forward/Reverse or Combined RMS Plot

Process	Run (33)	by Unknown	on 12/28/2011	at 10:00	
---------	----------	------------	---------------	----------	--

Figure 9: 12/28/2011 [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 126 of 146


2.14 Output Results for 12/29/2011AM

POSPAC Version 4.31

Figure 2: 12/29/2011AM [Combined] - Quality Factor Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 128 of 146

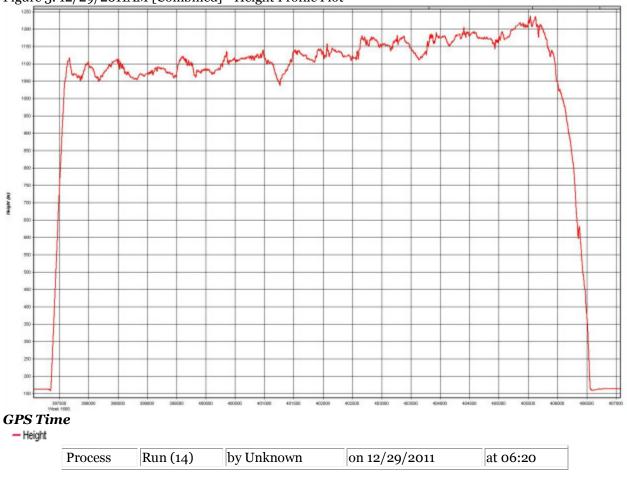
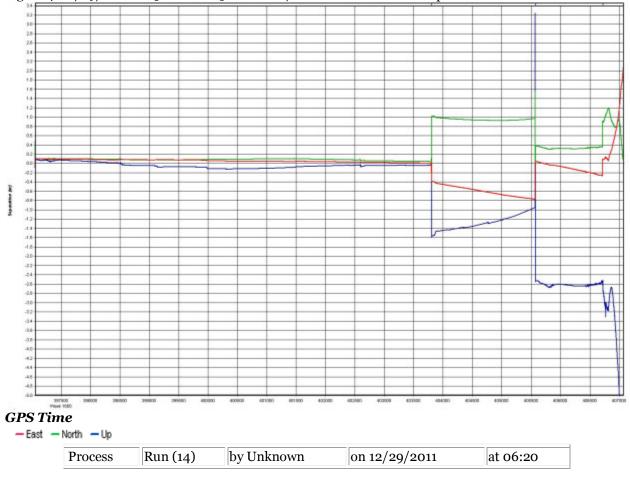



Figure 3: 12/29/2011AM [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 129 of 146

Figure 4: 12/29/2011AM [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/29/2011AM [Combined] - Forward/Reverse or Combined Weighting Plot

	Process	Run (14)	by Unknown	on 12/29/2011	at 06:20
--	---------	----------	------------	---------------	----------

Figure 6: 12/29/2011AM [Combined] - PDOP, HDOP, VDOP Plots

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 131 of 146

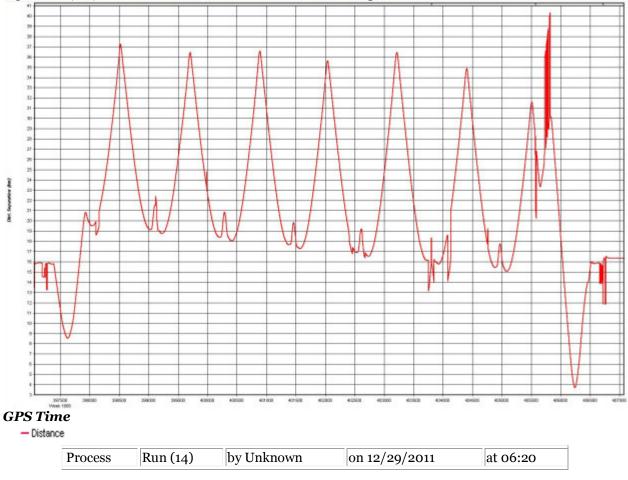


Figure 7: 12/29/2011AM [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/29/2011AM [Combined] - Forward/Reverse or Combined RMS Plot

Process	Run (14)	by Unknown	on 12/29/2011	at 06:20

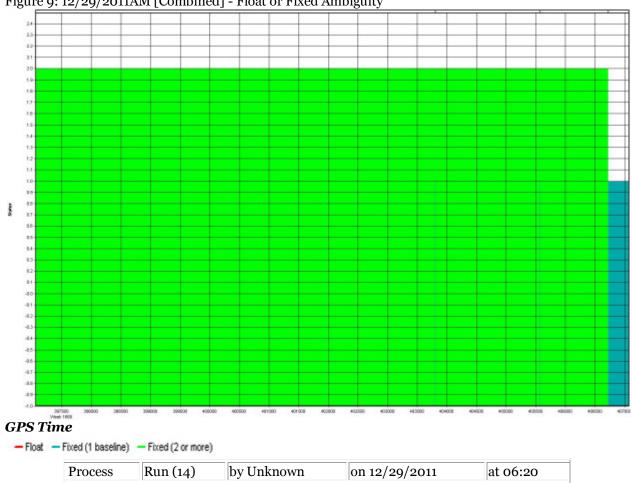
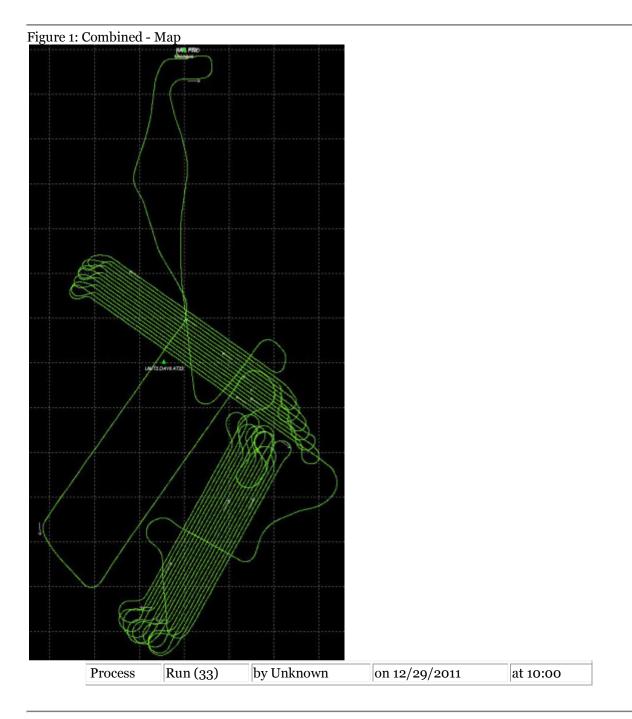
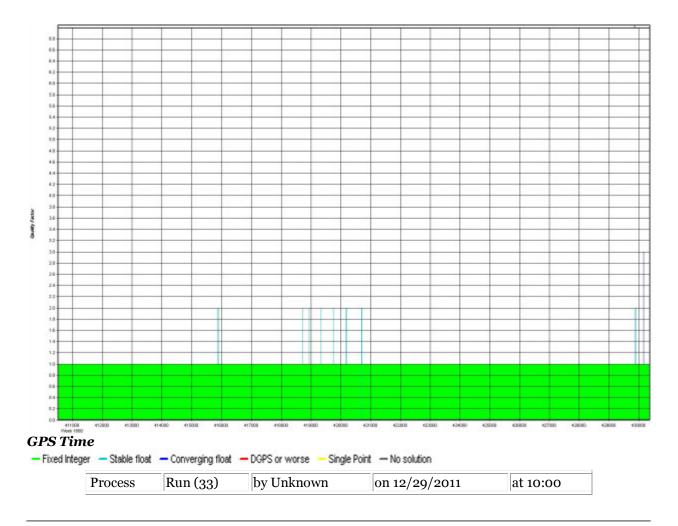


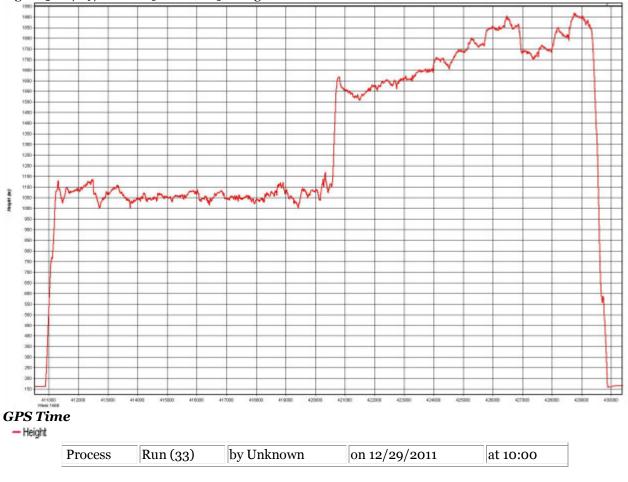
Figure 9: 12/29/2011AM [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 133 of 146

2.15 Output Results for 12/29/2011PM

POSPAC Version 4.31


Figure 2: 12/29/2011PM [Combined] - Quality Factor Plot

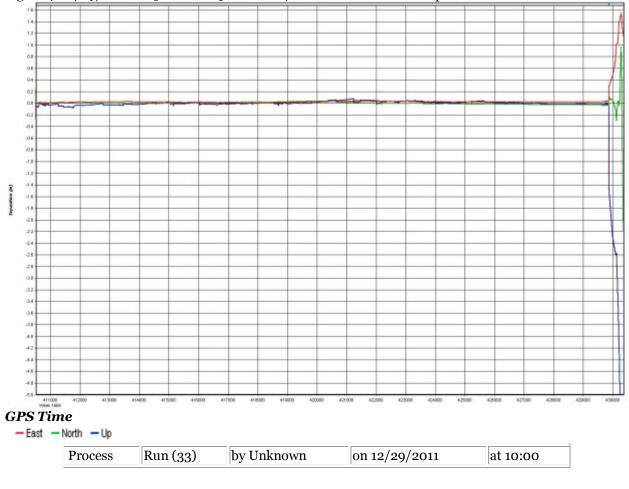

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 135 of 146

Figure 3: 12/29/2011PM [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 136 of 146

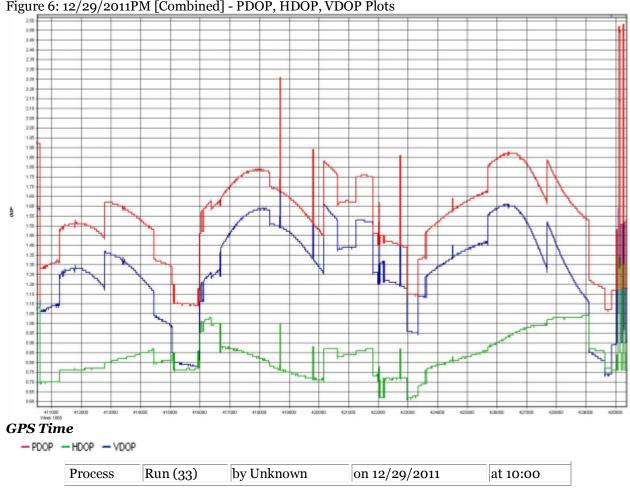


Figure 4: 12/29/2011PM [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/29/2011PM [Combined] - Forward/Reverse or Combined Weighting Plot

Process	Run (33)	by Unknown	on 12/29/2011	at 10:00
---------	----------	------------	---------------	----------

Figure 6: 12/29/2011PM [Combined] - PDOP, HDOP, VDOP Plots

Dewberry

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 138 of 146

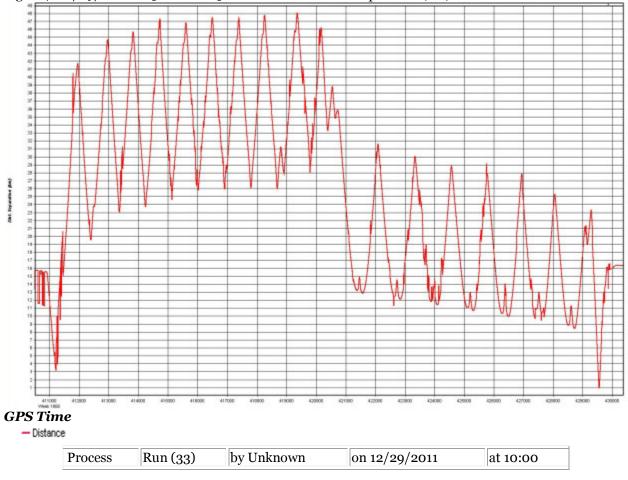


Figure 7: 12/29/2011PM [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/29/2011PM [Combined] - Forward/Reverse or Combined RMS Plot

Process Run (33) by	Unknown on 12/29/	/2011 at 10:00
---------------------	-------------------	----------------

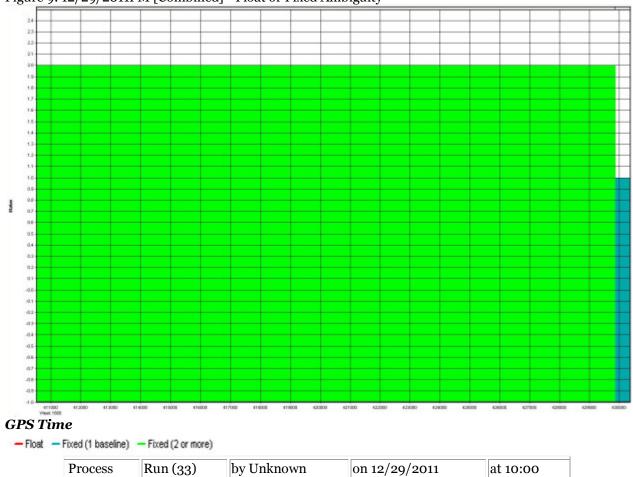


Figure 9: 12/29/2011PM [Combined] - Float or Fixed Ambiguity

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 140 of 146

2.16 Output Results for 12/30/2011

POSPAC Version 4.31

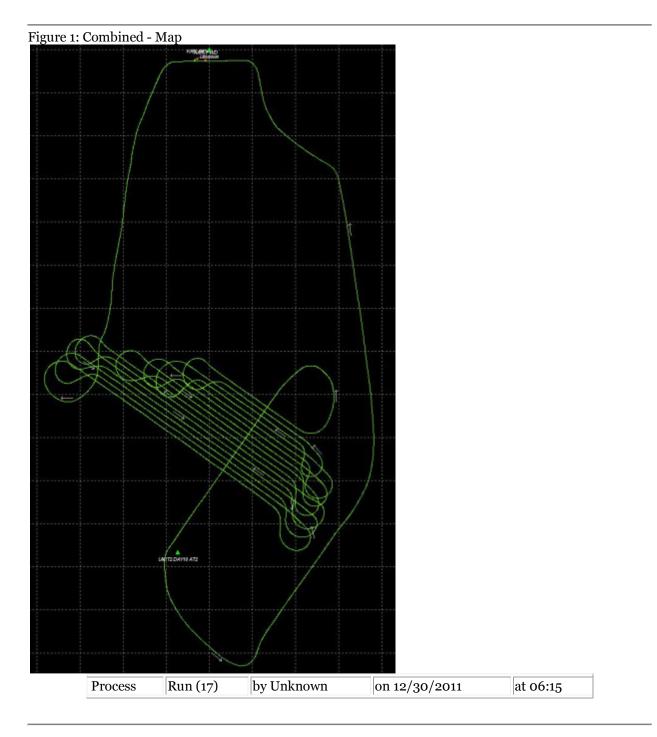
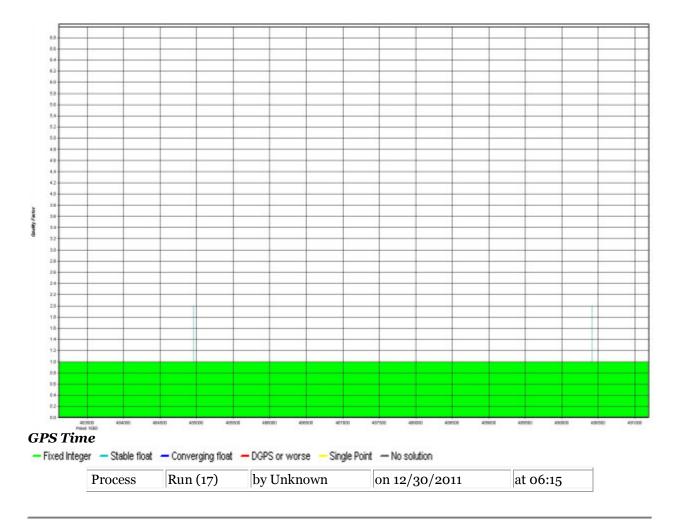



Figure 2: 12/30/2011 [Combined] - Quality Factor Plot

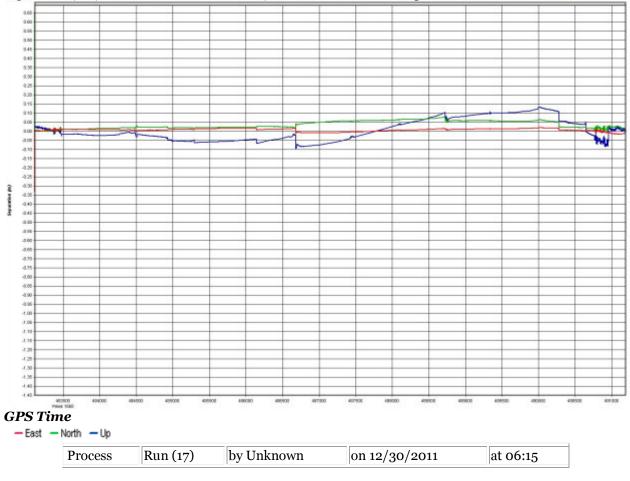

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 142 of 146

Figure 3: 12/30/2011 [Combined] - Height Profile Plot

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 143 of 146

Figure 4: 12/30/2011 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: 12/30/2011 [Combined] - Forward/Reverse or Combined Weighting Plot

Process Run (17) by Unknown on 12/30/2011 at 06	:15
---	-----

2.86 2.80 2.85 2.80 2.75 2.70 2.85 2.80 2.55 2.50 2.45 2.40 2.35 2.30 2.35 2.30 2.18 2.90 2.05 2.00 1.85 900 1.3 1.85 1.80 1.85 1.90 1.45 1.40 1.35 1L 1.30 1.25 1.20 1.15 1.10 1.15 1.80 0.95 0.90 0.85 0.80 0.75 15 1 0.7 **GPS** Time - PDOP - HDOP - VDOP by Unknown on 12/30/2011 Process Run (17) at 06:15

Figure 6: 12/30/2011 [Combined] - PDOP, HDOP, VDOP Plots

Dewberry

Orange County LiDAR TO# G12PD00039 July 31, 2012 Page 145 of 146

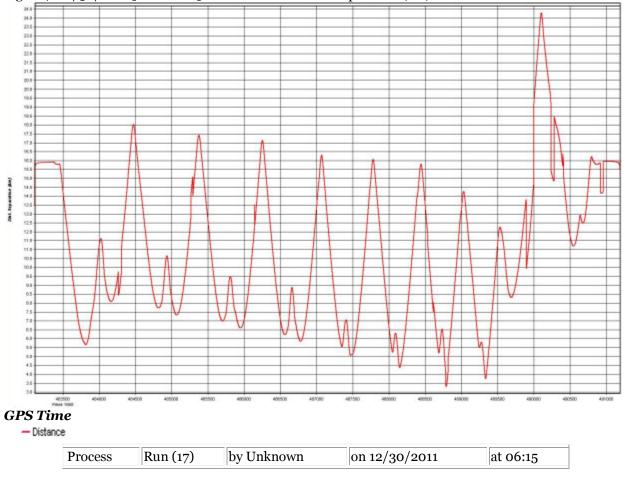


Figure 7: 12/30/2011 [Combined] - Horizontal Distance Separation (km)

Figure 8: 12/30/2011 [Combined] - Forward/Reverse or Combined RMS Plot

Process Ru	ın (17) by	Unknown on 1	12/30/2011	at 06:15
------------	------------	--------------	------------	----------

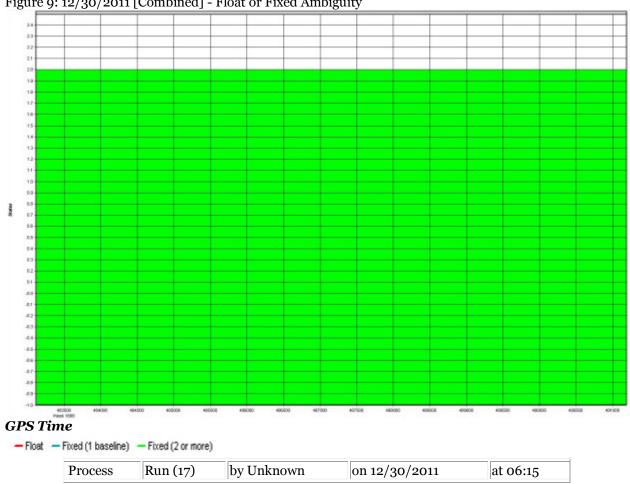


Figure 9: 12/30/2011 [Combined] - Float or Fixed Ambiguity

