LIDAR ACQUISITION and CONTROL SURVEY REPORT

Subcontract Agreement: S/C-SCDNR-001 Task order: 1 – Pickens, Oconee, Anderson County Lidar

Prepared for

Dewberry

Prepared by

July, 2011

Surveying, Mapping and GIS Services

EXECUTIVE SUMMARY

Under contract with Dewberry and Davis (Dewberry), Towill acquired Lidar data (nominal point spacing of 1.0 meters) within the 100-meter buffered boundary of Pickens, Oconee, and Anderson Counties, South Carolina. The data were acquired in 15 missions over the course of 13 days in March, 2011.

As part of the campaign, a 3-dimensional primary survey network consisting of local South Carolina Geodetic Survey VRS and North Carolina CORS stations and a semi-permanent base station point was observed to establish the basis of control for the Lidar data. The selected horizontal and vertical datums upon which the Lidar data are processed are NAD83(NSRS2007); epoch of 2007.0 and the North American Vertical Datum of 1988 (NAVD88) as realized by the reported coordinates and ellipsoid heights of the VRS and CORS and the application of GEOID09. This primary network satisfied U.S. Federal Geodetic Control Subcommittee (FGCS) standards for Order B geodetic GPS surveys (8mm + 1 part per million).

In addition, 40 check points and 6 existing NGS bench marks were surveyed to demonstrate the absolute accuracy of the Lidar data. The root-meant-square (RMS) of the differences between the check point surveyed elevations and the Lidar-derived surface model was 0.064 meters (0.21 foot).

Rigorous Lidar sensor calibration and quality control procedures were applied during the course of the campaign. Calibration passes were flown at the beginning and end of each mission and analyzed to verify the performance of the sensor and to make small adjustments to the final processing parameters.

In summary, all of the project's geodetic surveying and mapping goals were achieved. This report provides detailed documentation of all aspects of the work.

Towill, Inc.

Keith Kirkby Geodetic Engineer July, 2011

TABLE OF CONTENTS

1.	INTRODUCTION 1
	1.1 Points of Contact1
2.	Control Survey and Datums
	2.1 Introduction
	2.2 Project Survey Datums
	2.3 Field Equipment and Procedures2
	2.4 Primary Survey Network and Adjustment2
3.	LIDAR DATA ACQUISITION AND PROCESSING
	3.1 Introduction
	3.2 Data Acquisition
	3.3 Airborne GPS Processing
	3.4 IMU Processing and Best Estimated Trajectory9
	3.5 Lidar Point Cloud Processing
4.	LIDAR CALIBRATION AND QC 11
	4.1 Introduction11
	4.2 Calibration Overflights11
	4.3 Additional Calibration
5.	LIDAR CHECKPOINT QA

LIST OF TABLES

TABLE 1.	Absolute Loop Misclosures
TABLE 2.	PRIMARY NETWORK ADJUSTMENT WEIGHTED CONSTRAINTS
TABLE 3.	LIDAR CHECK POINT RESIDUALS

TABLE OF CONTENTS (CONT.)

LIST OF FIGURES

FIGURE 1.	PRIMARY SURVEY NETWORK DIAGRAM	4
FIGURE 2.	LIDAR DATA AND POST-PROCESSING FLOW	7
FIGURE 3.	Lidar Flight Layout	8
FIGURE 4.	GENERAL PROJECT LIDAR ACQUISITION PARAMETERS	9
FIGURE 5.	Post-Processed GrafNAV Solution - Lift 072B 1	0
FIGURE 6.	Forward vs. Reverse Post-Processed Solution - Lift 072B1	0
FIGURE 7.	Example of a Calibration Overflight1	1
FIGURE 8.	MISSION-BY-MISSION CALIBRATION PASS ANALYSES	3

APPENDICES

Appendix I.	Final Coordinates and Elevations	17
Appendix II.	Fully Constrained Network Adjustment	22

1. INTRODUCTION

This document provides a comprehensive overview of the Lidar acquisition campaign to acquire Lidar data of Pickens, Oconee, and Anderson Counties, South Carolina. The report describes the field survey associated with establishing base stations to support the airborne GPS (AGPS) component of the campaign, Lidar system calibration, Lidar data post-processing, and QA/QC of the data.

The Lidar acquisition was completed in a total of 15 separate flight missions between March 13th and March 25th, 2011 inclusive. Flight operations were staged out of the Anderson Regional Airport located in Anderson, South Carolina.

All data acquisition field work, data post-processing and quality analysis was completed by Towill personnel. The components of the campaign include:

- Establishing and surveying AGPS base stations, control, and check points;
- Verifying Lidar system calibration and post-processing parameters;
- Airborne GPS (AGPS) and IMU data post-processing;
- Pre and post-mission control surface overflight data analysis;
- Surface check point survey analysis;

1.1 Points of Contact

Please direct any questions regarding the contents of this document to:

Becky Morton

Project Manager Towill, Inc. Phone: (415) 243-4384 x.130 Fax: (415) 243-8264 Mobile: (916) 212-8206 becky.morton@towill.com

Keith Kirkby

Geodetic Engineer Towill, Inc. Phone: (719) 355-1150 x.403 Fax: (719) 355-1155 Mobile: (719) 243-5990 keith.kirkby@towill.com

2. Control Survey and Datums

2.1 Introduction

The underlying basis of the Lidar survey campaign are the published coordinate and elevation values of the South Carolina Geodetic Survey (SCGS) active VRS network stations. The coordinates and elevations were provided to Towill directly from the SCGS.

Towill observed a primary geodetic network consisting of the local VRS stations and a base station point established at the airport of operations to support the airborne GPS component of the Lidar campaign thereby ensuring a consistent horizontal and vertical datum realization across the entire extent of the project area (see Figure 1). The network consists of 4 SCVRS, 1 North Carolina CORS, and 1 designated GPS base station.

Independent CORS and VRS observation data were downloaded in the days leading up to the start of the acquisition campaign to establish the relative baseline observations between the stations. The remaining baselines were observed using the data from the base station occupations during acquisition and additional VRS data from those respective days.

Final coordinates and elevations of the base station locations were established via a 3-dimensional network adjustment constrained to the published horizontal coordinates and ellipsoid heights of the SCVRS (as described in section 2.5, below).

In addition, 40 check points and 6 existing NGS bench marks were surveyed during the Lidar acquisition. These locations were surveyed with respect to the operating base stations and nearby VRS and base stations.

2.2 **Project Survey Datums**

The horizontal datum for this project is NAD83(NSRS2007); epoch of 2007.0. The datum is realized by the horizontal coordinates reported by the South Carolina Geodetic Survey of the VRS stations and the published coordinates of the North Carolina CORS (see Table 2).

The vertical datum for this project is NAVD88. The datum is realized by the ellipsoid heights of the same VRS and CORS stations reported from SCGS and the application of the geoid model GEOID09.

2.3 Field Equipment and Procedures

All GPS observations were accomplished using Trimble Navigation R7 dual frequency GPS receivers and accompanying Trimble Zephyr Geodetic antennae. Relative static surveying techniques were used for all baseline observations. Instrument heights were measured twice in units of feet and meters and the values reduced and compared in the field prior to leaving each station.

In general, base station data were logged for the duration of the acquisition on any given day (typically 4 to 12 hours) and check point data were logged for a minimum of 30 minutes and as much as 90 minutes depending on proximity to operating base stations and/or VRS station.

2.4 Primary Survey Network and Adjustment

Observed relative GPS baselines were processed in Trimble Business Center. All processed observations consist of quasi-independent baselines (i.e. in accordance with the "*n*-1 baselines" rule where n =number of receivers in a given 'session'). The International GPS Service for Geodynamics (IGS) rapid precise orbits (igr) were used in the processing of all baseline vectors. The 'igr' orbits are published with a latency of approximately 30 hours. These orbits are globally accurate to within ~5cm and are

particularly important when processing long baselines.

The absolute horizontal and vertical GPS loop misclosures for the primary network are presented in Table 1. The spatial misclosures in parts per million (ppm) are also listed. All loops comprise quasi-independent baselines from at least two 'sessions'.

The primary survey network, consisting of 6 points and 11 baselines, was designed to provide a basis for the Lidar control (i.e. AGPS base stations) and establishing additional quality control points for this project. A minimally constrained adjustment was executed to verify the internal integrity of the network, establish *a priori* weights for the GPS observations, and judge the absolute fit of the constraints.

The GPS baselines vector components were adjusted using MicrosearchTM GEOLAB 2001 (version 2001.9.20.0). *A priori* weights for the observations were based on the scaled variance–covariance sub–matrices estimated by the Trimble Business Center software. In the resulting adjustment, the estimated variance factor ($\hat{\sigma}_o^2 = 1.003$) passed the χ^2 -test indicating appropriate *a priori* estimates of the accuracy of the GPS baseline vectors. None of the 33 vector component residuals or associated standardized residuals were flagged for possible rejection under the τ -max test at the 95 percent level of confidence. The relative horizontal accuracy of the adjustment. All station pairings meet the Federal Geodetic Control Subcommittee (FGCS) relative positioning standard for Order B surveys (8mm + 1ppm).

In a second, fully constrained adjustment, the NAD83 latitude, longitude and ellipsoid height of the 4 SCVRS stations and 1 NC CORS were held as *weighted* constraints (see Table 2). The estimated variance factor ($\hat{\sigma}_{_0}^2 = 0.8691$) indicates that the network is not being unduly distorted by the imposition of the constraints and is maintaining its internal integrity. The adjustment yields coordinates on the NAD83 and orthometric elevations relative to NAVD88 via the GEOID09 geoidal model. These coordinates serve as the control for the post-processing of all Lidar data and subsequent products derived from the Lidar data. See Appendix II for the primary constrained adjustment listing.

A third and final adjustment was run to incorporate the check point and bench mark observations. The adjusted coordinate values from the fully constrained adjustment were held as *fixed* constraints to derive final coordinate and elevation values of the check points. Appendix I tabulates the final adjusted coordinate and elevation values of all surveyed points.

Figure 1. Primary Survey Network Diagram

Table 1.

Absolute Loop Misclosures

Соор	Horizontal Misclosure [mm]	Vertical Misclosure [mm]	Loop Length [meters]	PPM
NCHE - GVLT - SCPS - NCHE	3	38	146706	0.26
SCPS - GVLT - SCAN - SCPS	4	65	92699	0.70
GVLT - KAND - SCAN - GVLT	6	32	98724	0.33
SCPS - SCAN - KAND - SCOE - SCPS	4	11	112180	0.11
NCHE - SCPS - SCOE - NCHE	4	39	188162	0.21

Table 2.

Primary Network Adjustment Weighted Constraints

Horizontal Datum: NAD83(NSRS2007) Epoch: 2007.0 Linear Unit: International Meter

Point	Sourco	Latitude				Longitude				Ellipsoid	Adjust	ment Residua
Point	Source									Height	Lat.	Lng.
SCPS	SCGS	Ν	34	50	13.06816	w	82	40	15.72001	300.783	-0.002	0.004
SCAN	SCGS	Ν	34	35	48.45792	w	82	41	00.47566	229.892	-0.012	0.000
SCOE	SCGS	Ν	34	40	19.81527	w	83	02	15.01590	232.457	0.004	0.007
GVLT	SCGS	Ν	34	49	46.94102	w	82	22	15.37249	250.260	0.003	-0.007
NCHE	USGS	Ν	35	21	21.89186	w	82	30	03.99744	654.460	0.006	-0.004

Notes:

Ellipsoid heights are to the Antenna Reference Point (ARP) of the VRS and CORS

3. LIDAR DATA ACQUISITION AND PROCESSING

3.1 Introduction

Following is an overview description of the procedures applied in this Lidar campaign from acquisition to final processed data. Figure 2 illustrates the general flow of the data through the multiple processes required to generate the Lidar point cloud in the 'LAS' version 1.2 format.

3.2 Data Acquisition

The Lidar data acquisition was completed within 15 lifts, or missions. All missions originated and/or terminated at the Anderson Regional Airport. A GPS base stations was operating at the airport during every lift. The South Carolina Geodetic Survey was contacted prior to the start of the Lidar acquisition to arrange for 1 Hertz data logging of several of the VRS stations included in the primary survey network. The data from these stations were downloaded and applied in the post-processing of the kinematic AGPS data.

Figure 3 illustrates the general flight plan. The target flying height of the flight lines was 1,500 meters above mean terrain. Figure 4 summarizes the general acquisition parameters applied project-wide.

Kinematic GPS and Inertial Measurement Unit (IMU) data were acquired by the Applanix POS Inertial Navigation System during the missions. The post-processed POS data results in a 200 Hertz, 6-parameter aircraft trajectory (x, y, z, roll, pitch, yaw).

The Airborne GPS (AGPS) and IMU data were processed immediately following each mission. In addition, a sample of the Lidar data was post-processed at the completion of the missions and the data was reviewed to ensure correct system operation and data coverage.

3.3 Airborne GPS Processing

The quality of the Airborne GPS data represents a significant component of the overall error budget with respect to the accuracy of the Lidar data. It is important to exercise vigilance in the validation of the integrity of the AGPS solution. This effort begins prior to acquisition with careful mission planning to identify periods of the day during which satellite availability and/or geometry may not be conducive to an acceptable solution. Data acquisition is generally scheduled around these periods (other constraints such as airspace restrictions, daylight conditions and weather notwithstanding).

The kinematic AGPS data was post-processed using Novatel, Inc.'s Grafnav version 8.30 software, the *de facto* kinematic GPS post-processing package in the airborne remote sensing industry. Data is post-processed forward and backward in time exploiting the software's robust Kinematic Ambiguity Resolution and Multi-Baseline features to mitigate ambiguity drift and minimize poor data as a result of satellite loss of lock (see example in Figure 5). Figure 6 illustrates the comparison of the forward and reverse solutions of the post-processed GPS data for one of the missions. The plot exhibits a very satisfactory solution and it represents the standard results achieved in the post-processing of all missions.

Figure 3. Lidar Flight Layout

FI	ight Profile	LIDAR Settings
Altitude (m AGL)	1500	System PRF (kHz) 70
Unaided NOHD (m)	163	Scan Freq (Hz)
Pass Heading (deg)	332	Scan Angle +/- 20
Overlap (%)	50	Scan Offset
Speed (kts)	150	Desired Res (m) 1.097
Turn Time (min)	5	CT Res 1.186
Passes	154	DT Res 1.015
Pass Spacing (m)	545.36	PPM^2 0.83
Min DEM Altitude	0	Scan Cutoff (deg)
Max DEM Altitude	0	Swath (m) 1090.72

Figure 4. General Project Lidar Acquisition Parameters

3.4 IMU Processing and Best Estimated Trajectory

The post-processed AGPS trajectory is combined with the raw 200 Hertz IMU observations in a looselycoupled Kalman filter-based processing algorithm to produce the final high-frequency Smoothed Best Estimated Trajectory (SBET). Applanix's POSPac software, version 4.4, is employed in this process.

Given a good quality AGPS solution and clean, gap-free IMU data, this process generally runs very smoothly. The field procedure includes several minutes of static GPS and IMU data collection prior to departure to allow sufficient time for the IMU to acquire a fine local level. The data is acquired in duplicate in real-time to ensure a high-quality record set. The IMU processing was clean and consistent for all missions during this campaign.

The final, high-frequency SBET is the source of absolute geo-referencing of the post-processed Lidar point cloud. The SBET is introduced into the final phase of the Lidar data processing.

3.5 LIDAR Point Cloud Processing

Final Lidar data processing is accomplished using Optech's DASHMap software, version 5.20. The decoded raw laser observations (ranges, intensities, and mirror angles) and the final processed SBET are combined within DASHMap to compute the final 3-dimensional coordinates of the return(s) of each laser pulse.

Based on the daily calibration analysis, described in the following section of this report, several of the Lidar parameters are slightly adjusted within DASHMap on a mission-by-mission basis.

The calibrated data is output in LAS format, version 1.2 with "adjusted" GPS times (defined as GPS seconds of the week minus $1 \ge 10^{-9}$ seconds).

Figure 5. Post-Processed GrafNAV Solution - Lift 072B

4. LIDAR CALIBRATION AND QC

4.1 Introduction

The Optech Orion M200 Lidar system is subject to a regular maintenance and calibration schedule. The intent of periodic calibration is to monitor and validate components of the overall error budget including IMU boresight and performance, mirror angle readings and pulse gate timing. Several of these parameters can vary during and between missions due to changes in ambient meteorological conditions, different flying heights above ground, and different acquisition variables. As such, regular checks on the calibration were carried out during every mission.

4.2 Calibration Overflights

To assure that the LIDAR system is performing within specifications, on a mission-by-mission basis, a snapshot of data is captured over a known surface, most often one of the runways located at the airport of operations. The runway surface is surveyed by collecting hundreds of topographic points using a post-processed kinematic GPS procedure.

At the beginning and end of each mission, two passes are made in opposite directions at right angles to and over the surveyed runway (see Figure 7, below). On average, approximately 50,000 Lidar points are acquired over the runway surface per pass. The surveyed topographic points that define the "known" surface of the runway are used to develop a surface model and the Lidar points from each pass are draped over this model and residuals computed. The residuals from each pass are graphed versus distance along the runway to provide an effective vertical cross-section of the entire Lidar swath at a short moment in time.

Figure 7. Example of a Calibration Overflight

The graphs from each pass are used to check that the mirror angle offset and scale, IMU solution roll and pitch bias, and elevation bias are within acceptable tolerances and to finely tune the general parameters on a mission-by-mission basis. This "snapshot" of the Lidar swath also ensures that the system is operating normally and that there are no anomalies contained in the data.

Figure 8 contains a plot of an unbiased runway overflight computed for each mission during the campaign. The following information may be obtained through careful examination of the graphs:

- The 99-percent noise band of the data is consistent at approximately 10 centimeters or less;
- There is no significant mirror scale error (characterized by a smile or frown);

- There is no significant roll error (characterized by a tilt in the noise band);
- There are no evident data anomalies;

Each plot is accompanied by the average residual and root mean square (RMS) of the residuals for the respective data set. Of the 7 data sets, the largest RMS is 10.3 centimeters, a representation of the combined stochastic noise and bias of the Lidar data prior to any vertical adjustment. The plots and statistics demonstrate that the system is working well within the system specifications.

4.3 Additional Calibration

The runway passes also serve to examine potential pitch and yaw biases that may be present in the data. These parameters are typically more stable over the course of the campaign and are therefore checked only peridoically during the acquisition period.

The pitch bias can be analyzed by examining data flown in opposite directions over an area with a sharp change in elevation, such as the edge of a building perpendicular to the direction of flight. A pitch bias will manifest itself as a "ghosting" of the edge of the building by virtue of the opposite direction passes.

In a similar fashion, a bias about the normal axis (yaw) can be detected simply by observing the intensity return images from orthogonal flight lines of obvious features such as the runway center line. A yaw bias will cause a difference in orientation yielding an obvious displacement of visible features.

The results of these various calibration and QC analyses are applied in the mission-by-mission processing of the data to ensure a consistent and accurate overall data set.

5. LIDAR CHECKPOINT QUALITY ASSURANCE

In a further effort to validate the absolute vertical accuracy of the Lidar-derived elevations, 40 well-distributed check points were established and surveyed with respect to the AGPS base stations and VRS stations that were included in the primary survey network.

In the vicinity of each check point, the post-processed Lidar data is used to generate a surface model upon which the check point is draped. The residual elevation difference is computed at each check point location. Table 3 summarizes the results of the check point analysis in meters. The RMS of all check point differences is 0.064 meters (0.21 foot).

Table 3.

LIDAR CHECK POINT RESIDUALS

Orthometric Elevations (International Feet)

Point	Surveyed Elev.	LIDAR Elev.	Residual
ED1206	797.793	798.060	0.267
ED3342	1214.949	1215.310	0.361
ED3499	883.844	883.530	-0.314
ED3750	701.004	701.570	0.566
KAND	757.195	757.130	-0.065
TC01	957.049	957.110	0.061
TC02	1150.388	1150.510	0.122
TC03	1791.639	1791.730	0.091
TC04	1034.646	1034.900	0.254
TC05	1072.954	1073.520	0.566
TC06	881.871	882.120	0.249
TC07	1083.388	1083.650	0.262
TC08	967.402	967.540	0.138
TC09	1051.346	1051.400	0.054
TC10	2466.743	2466.640	-0.103
TC11	1667.062	1667.400	0.338
TC12	1712.263	1712.340	0.077
TC13	1014.209	1014.400	0.191
TC14	1016.646	1016.730	0.084
TC15	1046.878	1046.940	0.062
TC66	792.433	792.240	-0.193
TC67	777.927	778.030	0.103
TC68	921.852	922.080	0.228
TC69	1034.029	1034.140	0.111
TC70	894.348	894.210	-0.138
TC71	963.029	962.950	-0.079
TC72	821.169	821.040	-0.129
TC73	670.217	670.350	0.133
TC74	914.373	914.250	-0.123
TC75	878.250	878.420	0.170
TC76	671.518	671.160	-0.358
TC77	884.098	884.280	0.182
TC78	910.563	910.700	0.137
TC79	821.033	821.150	0.117
TC80	810.631	810.740	0.109
TC81	849.808	849.830	0.022
TC82	728.208	728.380	0.172
TC83	722.740	722.650	-0.090
TC84	669.682	669.880	0.198
TC85	818.144	817.950	-0.194
TC86	798.170	798.180	0.010
TC87	673.595	673.420	-0.175
TC88	853.486	853.600	0.114
TC89	849.906	849.730	-0.176
TC90	791.532	791.590	0.058
Average			0.077
Standard Deviation	'n		0.197
BMS			0.210

Appendix I Final Coordinates and Elevations

Dewberry and Davis

SCDNR - Pickens, Oconee, Anderson Counties Campaign Control Survey

FINAL ADJUSTED COORDINATES

Horizontal Datum: NAD83(NSRS2007)

Epoch: 2007.0

Linear Unit: International Meter

Point			Latitude			Longitude		Ellipsoid	Sta	Indard Deviat	tion	
1 Olite		2	•			2	•		Height	ρ	λ	h
Base Stations												
KAND	Ν	34	29	42.34781	W	82	42	45.15605	200.345	0.005	0.005	0.009
Lidar Check Points												
TC01	Ν	35	00	10.52261	w	82	39	10.63250	260.672	0.003	0.003	0.007
TC02	Ν	34	59	17.58088	W	82	45	12.57626	319.776	0.003	0.003	0.007
TC03	Ν	35	02	51.09587	W	82	48	12.52591	515.586	0.004	0.003	0.008
TC04	N	34	57	42.08142	w	82	49	46.76785	284.504	0.003	0.002	0.007
TC05	N	34	55	51.56148	w	82	53	11.65211	296.170	0.003	0.002	0.007
TC06	Ν	34	51	29.28686	w	82	51	35.82988	237.814	0.007	0.004	0.013
TC07	Ν	34	51	33.34039	w	82	46	50.12846	299.196	0.003	0.003	0.007
TC08	Ν	34	48	09.69043	w	82	58	10.58699	263.957	0.003	0.002	0.006
TC09	Ν	34	53	17.28557	w	82	58	22.46411	289.665	0.005	0.003	0.009
TC10	Ν	35	00	51.19849	w	83	01	42.64894	721.922	0.004	0.004	0.011
TC11	Ν	34	50	33.92833	w	83	07	56.04691	477.748	0.004	0.003	0.010
TC12	Ν	34	48	00.53035	w	83	16	25.14188	491.788	0.004	0.003	0.007
TC13	Ν	34	43	15.09403	w	83	09	36.90270	278.530	0.003	0.003	0.007
TC14	Ν	34	45	45.51225	w	83	03	22.96950	279.097	0.003	0.002	0.006
TC15	Ν	34	48	56.65335	w	82	36	04.66277	288.029	0.003	0.003	0.009
TC66	Ν	34	28	12.93263	w	82	25	37.59781	211.224	0.003	0.002	0.007
TC67	Ν	34	20	30.76928	w	82	41	18.94656	207.168	0.003	0.002	0.005
TC68	Ν	34	45	46.44216	w	82	45	40.52586	249.990	0.005	0.004	0.008
TC69	Ν	34	48	40.95960	w	82	48	54.56339	284.168	0.002	0.002	0.006
TC70	N	34	46	35.84301	w	82	40	29.42496	241.591	0.003	0.002	0.006
TC71	Ν	34	44	46.99847	W	82	35	16.78645	262.550	0.003	0.003	0.006
TC72	Ν	34	38	32.91566	W	82	46	23.93621	219.453	0.003	0.003	0.008
TC73	Ν	34	31	27.82752	w	82	48	02.12049	173.722	0.004	0.004	0.009
TC74	Ν	34	35	45.56956	w	82	58	33.21260	247.981	0.003	0.003	0.007
TC75	N	34	37	38.13963	w	82	54	16.27854	236.870	0.004	0.003	0.007
TC76	N	34	40	54.77249	w	82	51	58.20709	173.754	0.003	0.003	0.008
TC77	Ν	34	41	33.87358	w	82	58	34.65674	238.608	0.002	0.002	0.006
TC78	Ν	34	39	18.40943	W	83	05	12.14712	246.796	0.003	0.002	0.006
TC79	Ν	34	30	39.64098	W	82	59	23.48096	219.701	0.003	0.003	0.006
TC80	Ν	34	37	11.23501	W	82	28	38.32634	216.340	0.005	0.004	0.009
TC81	N	34	32	47.28095	w	82	34	14.10416	228.458	0.005	0.004	0.011

7/26/2011

Page 1 of 2

Doint			Latitude			L	ongitude	e	Ellipsoid	Sta	ndard Devia	tion
Politi		2	•			2	•		Height	ρ	λ	h
TC82	Ν	34	27	17.09452	w	82	36	00.98697	191.670	0.004	0.004	0.012
TC83	N	34	20	49.30431	w	82	36	07.51283	190.353	0.004	0.003	0.009
TC84	Ν	34	22	34.25252	W	82	48	55.33526	174.013	0.005	0.004	0.009
TC85	Ν	34	30	40.77149	W	82	45	29.99990	218.861	0.005	0.003	0.009
TC86	N	34	35	26.06462	w	82	45	34.11187	212.555	0.003	0.003	0.008
TC87	N	34	37	18.67416	w	82	51	11.55760	174.486	0.003	0.003	0.006
TC88	N	34	38	22.04457	w	82	41	22.81162	229.331	0.003	0.003	0.008
TC89	N	34	38	15.15589	w	82	35	05.73097	228.265	0.003	0.002	0.008
TC90	N	34	32	19.70924	w	82	39	26.33537	210.693	0.004	0.003	0.006
VRS / CORS Stations												
GVLT	N	34	49	46.94102	w	82	22	15.37249	250.260	-	-	-
NCHE	N	35	21	21.89186	W	82	30	03.99744	654.460	-	-	-
SCAN	N	34	35	48.45792	W	82	41	00.47566	229.892	-	-	-
SCOE	N	34	40	19.81527	W	83	02	15.01590	232.457	-	-	-
SCPS	Ν	34	50	13.06816	W	82	40	15.72001	300.783	-	-	-

NOTES:

- Ellipsoid heights of the VRS and CORS are to the antenna reference point (ARP)

Shaded records indicate constrained values

Dewberry and Davis

SCDNR - Pickens, Oconee, Anderson Counties Campaign Control Survey

FINAL ADJUSTED COORDINATES

Horizontal Datum: NAD83(NSRS2007) Epoch: 2007.0 Projection: U.S. State Plane South Carolina Zone Vertical Datum: NAVD88 Geoid Model: GEOID09 Linear Unit: International Foot

Point	Northing	Easting	Elevation	Standard Deviation				
Point	(N)	(E)	(H)	N	E	Н		
Base Stations	∎,	I	I	I	-			
KAND	972733.59	1484036.04	757.20	0.01	0.01	0.02		
Lidar Check Points								
TC01	1157243.00	1504944.03	957.05	0.01	0.01	0.02		
TC02	1152387.02	1474744.52	1150.39	0.01	0.01	0.02		
TC03	1174230.45	1460149.53	1791.64	0.01	0.01	0.03		
TC04	1143128.08	1451761.04	1034.65	0.01	0.01	0.02		
TC05	1132262.05	1434505.72	1072.96	0.01	0.01	0.02		
TC06	1105604.30	1442006.10	881.87	0.02	0.01	0.04		
TC07	1105594.72	1465819.55	1083.39	0.01	0.01	0.02		
TC08	1086037.84	1408728.51	967.40	0.01	0.01	0.02		
TC09	1117149.84	1408331.86	1051.35	0.02	0.01	0.03		
TC10	1163358.39	1392558.41	2466.75	0.01	0.01	0.04		
TC11	1101586.27	1360215.55	1667.07	0.01	0.01	0.03		
TC12	1086985.70	1317448.89	1712.27	0.01	0.01	0.02		
TC13	1057404.54	1350883.32	1014.21	0.01	0.01	0.02		
TC14	1071971.74	1382392.84	1016.65	0.01	0.01	0.02		
TC15	1088875.08	1519358.68	1046.88	0.01	0.01	0.03		
TC66	962389.57	1569901.91	792.43	0.01	0.01	0.02		
TC67	916866.99	1490339.35	777.93	0.01	0.01	0.02		
TC68	1070428.61	1471021.57	921.85	0.02	0.01	0.03		
TC69	1088349.69	1455144.89	1034.03	0.01	0.01	0.02		
TC70	1074990.86	1497054.75	894.35	0.01	0.01	0.02		
TC71	1063576.46	1522962.35	963.03	0.01	0.01	0.02		

7/26/2011

Page 1 of 2

Point	Northing	Easting	Elevation	Sta	Standard Deviation				
Folin	(N)	(E)	(H)	Ν	E	Н			
TC72	1026669.33	1466648.29	821.17	0.01	0.01	0.03			
TC73	983845.46	1457697.56	670.22	0.01	0.01	0.03			
TC74	1010860.26	1405403.85	914.37	0.01	0.01	0.02			
TC75	1021834.99	1427088.29	878.25	0.01	0.01	0.02			
TC76	1041499.56	1438983.23	671.52	0.01	0.01	0.03			
TC77	1046067.21	1405956.45	884.10	0.01	0.01	0.02			
TC78	1033027.73	1372495.59	910.56	0.01	0.01	0.02			
TC79	980020.66	1400607.01	821.03	0.01	0.01	0.02			
TC80	1017012.77	1555550.92	810.63	0.02	0.01	0.03			
TC81	990746.48	1527086.79	849.81	0.02	0.01	0.04			
TC82	957510.22	1517630.94	728.21	0.01	0.01	0.04			
TC83	918324.59	1516476.94	722.74	0.01	0.01	0.03			
TC84	929995.51	1452298.63	669.68	0.02	0.01	0.03			
TC85	978870.25	1470342.00	818.15	0.02	0.01	0.03			
TC86	1007711.84	1470488.93	798.17	0.01	0.01	0.03			
TC87	1019586.89	1442486.64	673.60	0.01	0.01	0.02			
TC88	1025148.99	1491785.75	853.49	0.01	0.01	0.03			
TC89	1023953.56	1523277.32	849.91	0.01	0.01	0.03			
TC90	988367.49	1500929.04	791.53	0.01	0.01	0.02			
VRS / CORS Stations									
GVLT	1092964.52	1588565.61	923.22	-	-	0.00			
NCHE	1285099.58	1552284.65	2246.89	-	-	0.00			
SCAN	1009594.26	1493398.83	855.02	-	-	0.00			
SCOE	1038939.05	1387412.15	863.70	-	-	0.00			
SCPS	1096931.15	1498552.94	1088.75	-	-	0.00			

NOTES:

- Ellipsoid heights of the VRS and CORS are to the antenna reference point (ARP)

- Shaded records indicate constrained values

Appendix II Fully Constrained Network Adjustment Horizontal Datum: NAD83(NSRS2007), 2007.0 Vertical Datum: NAVD88

SC Base Station Survey - Tricounty; NAD83 VRS Coordinates Microsearch GeoLab, V2001.9.20.0 GRS 80 UNITS: m,DMS Page 0001 Fri May 6 10:00:02 2011

Input file: \\tsclient\J\13639-101 SCDNR\Geolab\Tricounty_Bases_c.iob
Output file: \\tsclient\J\13639-101 SCDNR\Geolab\Tricounty_Bases_c.lst
Options file: C:\Program Files\Microsearch\GeoLab\default.gpj

Geoid File: c:\ngs\geoid09\g2009u07pc.gsp

PARAME	TERS	OBSERVATIONS								
Description	Number	Description	Number							
No. of Stations	6	Directions	0							
Coord Parameters	18	Distances	0							
Free Latitudes	6	Azimuths	0							
Free Longitudes	6	Vertical Angles	0							
Free Heights	6	Zenithal Angles	0							
Fixed Coordinates	0	Angles	0							
Astro. Latitudes	0	Heights	5							
Astro. Longitudes	0	Height Differences	0							
Geoid Records	0	Auxiliary Params.	0							
All Aux. Pars.	0	2-D Coords.	10							
Direction Pars.	0	2-D Coord. Diffs.	0							
Scale Parameters	0	3-D Coords.	0							
Constant Pars.	0	3-D Coord. Diffs.	33							
Rotation Pars.	0									
Translation Pars.	0									
Total Daramotorg	19	Total Observations	19							
raidmeters	±0		40							
	Degrees of Freedom = 30									

SUMMARY OF SELECTED OPTIONS

 OPTION	SELECTION
 Computation Mode Maximum Iterations Convergence Criterion Residual Rejection Criterion Confidence Region Types Relative Confidence Regions Variance Factor (VF) Known Scale Covariance Matrix With VF Scale Residual Variances With VF Force Convergence in Max Iters Distances Contribute To Heights Compute Full Inverse	Adjustment 10 0.00100 Tau Max 1D 2D Station Relative Connected Only Yes No No No No No Yes

SC Base Station Survey - Tri	icounty; NAD83 VRS Coordinates
Microsearch GeoLab, V2001.9.20.0	GRS 80 UNITS: m,DMS Page 0002
Optimize Band Width	Yes
Generate Initial Coordinates	Yes
Re-Transform Obs After 1st Pass	Yes
Geoid Interpolation Method	Bi-Quadratic

Ł	4a Jusi	.ea i	LA COOPDINAL	28.											
							LATITUDE				LONGITUDE	ELIP-HEIGHT			
	CODE	FFF	STATION				STD DEV				STD DEV	STD DEV			
	PLH	000	GVLT	Ν	34	49	46.941129	W	82	22	15.372748	250.251	m	0	
							0.005				0.005	0.007			
	PLH	000	KAND	Ν	34	29	42.347812	W	82	42	45.156054	200.345	m	0	
							0.005				0.005	0.009			
	PLH	000	NCHE	Ν	35	21	21.892055	W	82	30	3.997599	654.472	m	0	
							0.005				0.005	0.007			
	PLH	000	SCAN	Ν	34	35	48.457535	W	82	41	0.475655	229.888	m	0	
							0.005				0.005	0.007			
	PLH	000	SCOE	Ν	34	40	19.815403	W	83	2	15.015643	232.452	m	0	
							0.005				0.005	0.006			
	PLH	000	SCPS	Ν	34	50	13.068104	W	82	40	15.719857	300.789	m	0	
							0.005				0.005	0.006			

SC Base Station Survey - Tricounty; NAD83 VRS Coordinates Microsearch GeoLab, V2001.9.20.0 GRS 80 UNITS: m,DMS Page 0004 Adjusted PLO Coordinates:

-	a Jabeea The coordinates.													
							LATITUDE				LONGITUDE	O-HEIGHT		
	CODE	FFF	STATION				STD DEV				STD DEV	STD DEV		
	PLO	000	GVLT	Ν	34	49	46.941129	W	82	22	15.372748	281.398	m	0
							0.005				0.005	0.007		
	PLO	000	KAND	Ν	34	29	42.347812	W	82	42	45.156054	230.793	m	0
							0.005				0.005	0.009		
	PLO	000	NCHE	Ν	35	21	21.892055	W	82	30	3.997599	684.851	m	0
							0.005				0.005	0.007		
	PLO	000	SCAN	Ν	34	35	48.457535	W	82	41	0.475655	260.611	m	0
							0.005				0.005	0.007		
	PLO	000	SCOE	Ν	34	40	19.815403	W	83	2	15.015643	263.257	m	0
							0.005				0.005	0.006		
	PLO	000	SCPS	Ν	34	50	13.068104	W	82	40	15.719857	331.850	m	0
							0.005				0.005	0.006		

 SC Base Station Survey - Tricounty; NAD83 VRS Coordinates

 Microsearch GeoLab, V2001.9.20.0
 GRS 80
 UNITS: m,DMS
 Page 0005

 Geoid Values:
 CODE
 STATION
 N/S DEFLECTION
 E/W DEFLECTION
 UNDULATION

 GEOI
 GVLT
 0
 0
 2.39
 0
 0.81
 -31.147 m

GEOI	GVLT		0	0	2.39	0	0	0.81	-31.147 m
GEOI	KAND		0	0	5.61 -	0	0	0.65	-30.449 m
GEOI	NCHE	-	0	0	4.39	0	0	6.77	-30.379 m
GEOI	SCAN		0	0	3.99 -	0	0	0.45	-30.723 m
GEOI	SCOE		0	0	1.64	0	0	1.86	-30.805 m
GEOI	SCPS		0	0	1.37	0	0	0.62	-31.061 m

_____ SC Base Station Survey - Tricounty; NAD83 VRS Coordinates Microsearch GeoLab, V2001.9.20.0 GRS 80 UNITS: m,DMS Page 0006 _____ Residuals (critical value = 3.214): NOTE: Observation values shown are reduced to mark-to-mark. OBSERVATION RESIDUAL STD RES FROM то STD DEV STD DEV PPM TYPE AT ____ _____ ELAT SCPS N 34 50 13.068160 -0.002 -0.330 0.010 0.005 ELON SCPS W 82 40 15.720010 0.004 0.443 0.010 0.009 N 34 35 48.457920 ELAT SCAN -2.384 -0.0120.010 0.005 ELON SCAN W 82 41 0.475660 0.000 0.016 0.010 0.009 N 34 40 19.815270 ELAT SCOE 0.004 0.816 0.005 0.010 W 83 02 15.015900 0.007 ELON SCOE 0.748 0.010 0.009 ELAT GVLT N 34 49 46.941020 0.003 0.682 0.010 0.005 ELON GVLT W 82 22 15.372490 -0.750 -0.007 0.010 0.009 ELAT NCHE N 35 21 21.891860 0.006 1.299 0.010 0.005 W 82 30 3.997440 ELON NCHE -0.004 -0.462 0.010 0.009 EHGT SCPS 300.78300 0.006 0.776 0.010 0.008 229.89200 EHGT SCAN -0.004 -0.534 0.010 0.008 EHGT SCOE 232.45700 -0.005 -0.651 0.010 0.008 EHGT GVLT 250.26000 -0 009 -1.203 0.010 0.008 EHGT NCHE 654.46000 0.012 1.624 0.010 0.007 GROUP: 00000, Tri_County_Bases.asc -1837.45330 -0.002 -0.616 DXCT SCAN KAND 0.004 0.003 0.14 DYCT SCAN KAND -6660.81010 0.007 0.991 0.010 0.007 0.60 SCAN -9309.31210 -0.852 DZCT KAND -0.004 0.007 0.005 0.34 GROUP: 00001, Tri_County_Bases.asc DXCT SCOE KAND 30964.98360 0.002 1.185 0.003 0.002 0.06 DYCT SCOE KAND -7339.60700 -0.007 -1.344 0.008 0.005 0.19 DZCT SCOE KAND -16191.13990 0.004 1.235 0.006 0.003 0.11 GROUP: 00002, Tri_County_Bases.asc DXCT NCHE GVLT 16143.33570 0.001 0.367

S	C Base Station	Survey - Tric	ounty; NAD83 VRS Coord	linates	
Microsearch	GeoLab, V2001.9	.20.0	GRS 80 UNITS	3: m,DMS	Page 0007
Desiduale (a		2 014).			
Residuais (C	riticai vaiue =	3.214).			
NOIL: Observ	ation values sn	own are reduc	ed to mark-to-mark.	DECTDUAT	
ייעראיי	FDOM	T O	OBSERVATION	CTD DEV	SID RES
IIPE AI	FROM	10	SID DEV	SID DEV	PPM
			0 004	0 003	0 02
DYCT	NCHE	GVLT	-31392 49050	0.002	0.02
DICI	IVCIILI	0111	0 010	0 008	0 03
DZCT	NCHE	GVLT	-48017 48900	-0.002	-0 258
2001	1101112	0721	0.009	0.008	0.03
GROUP: 00003	, Tri County Ba	ses.asc			
DXCT	SCPS	SCAN	797.13790	-0.000	-0.116
			0.005	0.004	0.02
DYCT	SCPS	SCAN	-15138.15890	0.006	0.614
			0.011	0.009	0.21
DZCT	SCPS	SCAN	-21941.44480	-0.003	-0.357
			0.010	0.009	0.12
GROUP: 00004	, Tri_County_Ba	ses.asc			
DXCT	NCHE	SCPS	-11129.41980	0.001	0.150
			0.005	0.003	0.01
DYCT	NCHE	SCPS	-34550.84560	0.000	0.033
			0.009	0.007	0.00
DZCT	NCHE	SCPS	-47327.73670	0.004	0.727
			0.008	0.006	0.07
GROUP: 00005	, Tri_County_Ba	ses.asc			
DXCT	SCPS	SCOE	-32005.30390	0.001	0.229
			0.005	0.004	0.02
DYCT	SCPS	SCOE	-14459.35220	0.009	1.274
			0.009	0.007	0.24
DZCT	SCPS	SCOE	-15059.62210	-0.006	-0.952
			0.008	0.006	0.16
GROUP: 00006	, Tri_County_Ba	ses.asc			
DXCT	GVLT	SCPS	-27272.75000	-0.006	-1.036
			0.007	0.006	0.22
DYCT	GVLT	SCPS	-3158.38460	0.028	2.529
			0.012	0.011	1.02
DZCT	GVLT	SCPS	689.77660	-0.018	-2.980
			0.008	0.006	0.65
GROUP: 00007	, Tri_County_Ba	ses.asc			
DXCT	NCHE	SCOE	-43134.72390	0.002	0.323
			0.006	0.005	0.02
DYCT	NCHE	SCOE	-49010.16570	-0.023	-2.172
			0.012	0.010	0.25
DZCT	NCHE	SCOE	-62387.38150	0.021	1.800
			0.013	0.012	0.23
GROUP: 00008	, Tri_County_Ba	ses.asc			
DXCT	SCOE	SCAN	32802.44400	-0.003	-0.939
			0.005	0.004	0.10
DYCT	SCOE	SCAN	-678.82300	0.013	1.427
			0.010	0.009	0.37
DZCT	SCOE	SCAN	-6881.81100	-0.009	-0.922

_____ SC Base Station Survey - Tricounty; NAD83 VRS Coordinates Microsearch GeoLab, V2001.9.20.0 GRS 80 UNITS: m,DMS Page 0008 _____ Residuals (critical value = 3.214): NOTE: Observation values shown are reduced to mark-to-mark. OBSERVATION RESIDUAL STD RES TYPE AT FROM TO STD DEV STD DEV PPM STD DEV STD DEV PPM TYPE AT 0.011 0.009 0.26 GROUP: 00009, Tri_County_Bases.asc SCAN GVLT 26475.62130 -0.003 -0.787 DXCT 0.003 0.005 0.07 GVLT DYCT SCAN 18296.49280 2.087 0.008 0.45 -0.019 -2.109 0.009 0.48 0.010 GVLT DZCT SCAN 21251.70790 0.010 GROUP: 00010, Tri_County_Bases.asc -28313.06760 -0.006 -0.869 DXCT GVLT KAND 0.007 0.12 0.013 0.646 0.008 -24957.32650 DYCT GVLT KAND 0.021 0.27 0.022 0.99840 -0.007 0.013 0.012 DZCT GVLT KAND -30560.99840 -0.583 0.14

SC Base Station Survey - Tricounty; NAD83 VRS Coordinates Microsearch GeoLab, V2001.9.20.0 GRS 80 UNITS: m,DMS Page 0009

_____ SC Base Station Survey - Tricounty; NAD83 VRS Coordinates Microsearch GeoLab, V2001.9.20.0 GRS 80 UNITS: m,DMS Page 0010 _____ STATISTICS SUMMARY Residual Critical Value Type Tau Max 3.2141 Residual Critical Value Number of Flagged Residuals 0 0.0010 Convergence Criterion Final Iteration Counter Value 2 Confidence Level Used 95.0000 Estimated Variance Factor 0.8691 Number of Degrees of Freedom 30 Chi-Square Test on the Variance Factor: 5.5501e-01 < 1.0000 < 1.5529e+00 ? THE TEST PASSES NOTE: All confidence regions were computed using the following factors: ------1.0000 Variance factor used = 1-D expansion factor = 2-D expansion factor = 2.4477 Note that, for relative confidence regions, precisions are computed from the ratio of the major semi-axis and the spatial distance between the two stations.

SC Base Station Survey - Tricounty; NAD83 VRS Coordinates										
Microsearch GeoLab	, V2001.9.20.0		GRS 80 UNITS:	m,DMS	Page 0011					
2-D and 1-D Statio	n Confidence Regi	ons	(95.000 and 95.000 percent	nt):						
STATION	MAJOR SEMI-AXIS	ΑZ	MINOR SEMI-AXIS		VERTICAL					
GVLT	0.012	163	0.012		0.013					
KAND	0.013	74	0.012		0.017					
NCHE	0.012	25	0.012		0.013					
SCAN	0.012	39	0.012		0.013					
SCOE	0.012	44	0.012		0.013					
SCPS	0.012	28	0.012		0.012					

	SC Base St	ation Survey ·	- Tr:	icounty; 1	AD83 VRS Co	ordinates	
Microsearc	h GeoLab, V	2001.9.20.0		GRS	380 UN	ITS: m,DMS	Page 0012
						=======================================	
2-D and 1-	D Relative	Station Confid	dence	e Regions	(95.000 and	95.000 per	cent):
FROM	TO	MAJ-SEMI	AZ	MIN-SEMI	VERTICAL	DISTANCE	PPM
GVLT	KAND	0.008	55	0.008	0.018	48564.109	0.17
GVLT	NCHE	0.008	16	0.007	0.015	59596.771	0.14
GVLT	SCAN	0.008	178	0.007	0.015	38566.241	0.20
GVLT	SCPS	0.008	169	0.007	0.014	27463.689	0.28
KAND	SCAN	0.007	81	0.005	0.016	11593.356	0.57
KAND	SCOE	0.006	82	0.004	0.015	35705.086	0.17
NCHE	SCOE	0.009	24	0.008	0.015	90303.851	0.10
NCHE	SCPS	0.009	29	0.007	0.014	59645.110	0.14
SCAN	SCOE	0.006	76	0.005	0.013	33523.430	0.19
SCAN	SCPS	0.008	27	0.007	0.014	26668.826	0.28
SCOE	SCPS	0.008	34	0.006	0.013	38212.621	0.21