

PROJECT REPORT

For the

NRCS Virginia LiDAR Project

USGS Contract: G10PC00013

Task Order Number: G11PD00336

> Prepared for: USGS

Prepared by: Dewberry 1000 Ashley Blvd., Suite 801 Tampa, Florida 33602-3718

Report Date: February 17, 2012

Table of Contents

Exe	ecutive Summary	2
1	Project Tiling Footprint	4
1.	.1 List of delivered tiles (1,327):	5
2	LiDAR Acquisition Report	14
3	LiDAR Processing & Qualitative Assessment	
3.	B.1 Data Classification and Editing	
3.	3.2 Qualitative Assessment	197
3.	3.3 Analysis	
3.	3.4 Conclusion	
4	Survey Vertical Accuracy Checkpoints	
4.	1.1 Survey Checkpoints not used in vertical accuracy testing	
5	LiDAR Vertical Accuracy Statistics & Analysis	
5.	5.1 Background	
5.	5.2 Vertical Accuracy Test Procedures	
5.	5.3 Vertical Accuracy Testing Steps	
5.	5.4 Vertical Accuracy Results	
5.	5.5 Conclusion	
6	Breakline Production & Qualitative Assessment Report	
6.	5.1 Breakline Production Methodology	
6.	5.2 Breakline Qualitative Assessment	
6.	5.3 Breakline Topology Rules	
6.	5.4 Breakline QA/QC Checklist	
6.	5.5 Data Dictionary	
7	DEM Production & Qualitative Assessment	
7.	7.1 DEM Production Methodology	
7.	DEM Qualitative Assessment	
7.	DEM Vertical Accuracy Results	
7.	DEM QA/QC Checklist	

Executive Summary

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR) technology for the USGS NRCS Virginia project area.

The LiDAR data were processed to a bare-earth digital terrain model (DTM). Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 1,327 tiles were produced for the project encompassing an area of approximately 1,071 sq. miles.

The Project Team

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry processed the LAS tiles to the initial ground classification. BAE Systems then performed the manual LAS classification, breakline collection, and production of the bare-earth DEMs. Dewberry was responsible for the final quality review of all project deliverables, including vertical accuracy testing. Dewberry prepared the final project reports and metadata.

Dewberry's IES offices completed ground surveying for the project and delivered surveyed checkpoints. Their task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the LiDAR-derived surface model. Note that a separate Survey Report was created for this portion of the project.

The Atlantic Group completed LiDAR data acquisition and data calibration for 1,071 square miles covering the project area.

Survey Area

The project area addressed by this report falls within the Virginia counties of Augusta, Waynesboro, Staunton, Harrisonburg, Rockingham, and Shenandoah Counties.

Date of Survey

The LiDAR aerial acquisition was conducted from Apr. 7, 2011 thru April 30, 2011.

Datum Reference

Data produced for the project were delivered in the following reference system.

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 (NAD 83) HARN

Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)

Coordinate System: Virginia State Plane Coordinate System, North Zone

Units: Horizontal units are in US Survey Feet, Vertical units are in Feet.

Geiod Model: Geoid09 (Geoid 09 was used to convert ellipsoid heights to orthometric heights).

LiDAR Vertical Accuracy

For the USGS NRCS Virginia LiDAR Project, the tested $RMSE_z$ for checkpoints in open terrain equaled **0.24 ft** compared with the 0.31 ft specification; and the FVA computed using $RMSE_z \ge 1.9600$ was equal to **0.47 ft**, compared with the 0.61 ft specification.

For the USGS NRCS Virginia LiDAR Project, the tested CVA computed using the 95th percentile was equal to **0.95 ft**, compared with the 1.21 ft specification.

Project Deliverables

The deliverables for the project are listed below.

- 1. Raw Point Cloud Data (Swaths)
- 2. Classified Point Cloud Data (Tiled)
- 3. Bare Earth Surface (Raster DEM IMG Format)
- 4. Control & Accuracy Checkpoint Report & Points
- 5. Metadata
- 6. Project Report (Acquisition, Processing, QC)
- 7. Project Extents, Including a shapefile derived from the LiDAR Deliverable
- 8. Breakline Data (File GDB)
- 9. Intensity Imagery (Tiled)

1 Project Tiling Footprint

One thousand three hundred and twenty-seven (1,327) tiles were delivered for the project. Each tile's extent is 5000 feet by 5000 feet.

Figure 1: Project Map

1.1 List of delivered tiles (1,327):

LAS N16 2841 30	LAS_N16_2678_20	LAS_N16_2780_20
LAS N16 2842 40	LAS_N16_2679_10	LAS_N16_2781_10
LAS N16 2842 30	LAS_N16_2779_10	LAS_N16_2788_10
LAS N16 2843 40	LAS_N16_2779_20	LAS_N16_2788_20
LAS N16 2850 20	LAS_N16_2870_10	LAS_N16_2789_10
LAS N16 2851 10	LAS N16 2870 20	LAS N16 2789 20
LAS N16 2851 20	LAS_N16_2871_10	LAS_N16_2880_10
LAS N16 2852 10	LAS N16 2871 20	LAS N16 2880 20
LAS_N16_2852_20	LAS N16 2872 10	LAS_N16_2881_10
LAS_1110_2052_20	LAS_N16_2872_20	LAS N16 2881 20
LAS_N16_2853_20	LAS N16 2873 10	LAS N16 2882 10
LAS_N16_2850_40	LAS N16 2873 20	LAS N16 2882 20
LAS_N16_2850_40	LAS N16 2874 10	LAS N16 2883 10
LAS_N10_2050_50	LAS N16 2874 20	LAS N16 2883 20
$LAS_N10_2031_40$	LAS N16 2875 10	LAS N16 2884 10
LAS_N10_2031_30	$LAS_1(10_2075_10)$	LAS N16 2884 20
LAS_N16_2852_40	$LAS_1(10_2075_20)$	$LAS_N16_2885_10$
LAS_N16_2852_30	$LAS_1(10_2070_50)$	$LAS_N10_2005_10$
LAS_N16_2853_40	$LAS_1(10_2077_40)$	$LAS_N10_2005_20$
LAS_N16_2853_30	LAS_N16_2678_40	LAS_N10_2000_10
LAS_N16_2854_40	LAS_N10_2078_40	LAS_N10_2000_20
LAS_N16_2769_20	LAS_N10_2078_30	LAS_N10_2080_40
LAS_N16_2860_10	LAS_N16_2079_40	LAS_N10_2080_30
LAS_N16_2860_20	LAS_N16_2079_30	LAS_N16_2087_40
LAS_N16_2861_10	LAS_N16_2778_30	LAS_N16_2687_30
LAS_N16_2861_20	LAS_N16_2779_40	LAS_N16_2688_40
LAS_N16_2862_10	LAS_N16_2779_30	LAS_N16_2688_30
LAS_N16_2862_20	LAS_N16_28/0_40	LAS_N16_2689_40
LAS_N16_2863_10	LAS_N16_2870_30	LAS_N16_2689_30
LAS_N16_2863_20	LAS_N16_2871_40	LAS_N16_2780_40
LAS_N16_2864_10	LAS_N16_2871_30	LAS_N16_2780_30
LAS_N16_2864_20	LAS_N16_2872_40	LAS_N16_2781_40
LAS_N16_2667_30	LAS_N16_2872_30	LAS_N16_2781_30
LAS_N16_2668_40	LAS_N16_2873_40	LAS_N16_2787_30
LAS_N16_2769_30	LAS_N16_2873_30	LAS_N16_2788_40
LAS_N16_2860_40	LAS_N16_2874_40	LAS_N16_2788_30
LAS N16 2860 30	LAS_N16_2874_30	LAS_N16_2789_40
LAS N16 2861 40	LAS_N16_2875_40	LAS_N16_2789_30
LAS N16 2861 30	LAS_N16_2875_30	LAS_N16_2880_40
LAS_N16_2862_40	LAS_N16_2876_40	LAS_N16_2880_30
LAS N16 2862 30	LAS_N16_2876_30	LAS_N16_2881_40
LAS N16 2863 40	LAS_N16_2686_20	LAS_N16_2881_30
LAS N16 2863 30	LAS N16 2687 10	LAS N16 2882 40
LAS N16 2864 40	LAS_N16_2687_20	LAS_N16_2882_30
LAS N16 2864 30	LAS N16 2688 10	LAS N16 2883 40
LAS N16 2865 40	LAS N16 2688 20	LAS N16 2883 30
LAS N16 2677 10	LAS N16 2689 10	LAS N16 2884 40
LAS N16 2677 20	LAS N16 2689 20	LAS N16 2884 30
$LAS_110_2077_20$	LAS N16 2780 10	LAS N16 2885 40
LAS_1110_2070_10	210_110_2700_10	L/10_110_2003_40

LAS_N16_2885_30	LAS_N16_2792_30	LAS_N16_3708_10
LAS_N16_2886_40	LAS_N16_2793_40	LAS_N16_3708_20
LAS_N16_2886_30	LAS_N16_2793_30	LAS_N16_3709_10
LAS_N16_2887_40	LAS_N16_2794_40	LAS_N16_3709_20
LAS N16 2696 10	LAS N16 2794 30	LAS N16 3800 10
LAS N16 2696 20	LAS N16 2795 40	LAS N16 3800 20
LAS N16 2697 10	LAS N16 2796 30	LAS N16 3801 10
LAS N16 2697 20	LAS N16 2797 40	LAS N16 3801 20
LAS N16 2698 10	LAS N16 2797 30	LAS N16 3802 10
LAS N16 2698 20	LAS N16 2798 40	LAS N16 3802 20
LAS N16 2699 10	LAS N16 2798 30	LAS N16 3803 10
LAS N16 2699 20	LAS N16 2799 40	LAS N16 3803 20
LAS N16 2790 10	LAS N16 2799 30	LAS N16 3804 10
LAS N16 2790 20	LAS N16 2890 40	LAS N16 3804 20
LAS N16 2791 10	LAS N16 2890 30	LAS N16 3805 10
LAS N16 2791 20	LAS N16 2891 40	LAS N16 3805 20
LAS N16 2792 10	LAS N16 2891 30	LAS N16 3806 10
LAS N16 2797 20	LAS N16 2892 40	LAS N16 3606 40
LAS_N16_2708_10	LAS_N16_2892_40	LAS_N16_3606_30
LAS_N16_2798_10	LAS_N16_2892_50	LAS_N10_3000_30
LAS_N16_2796_20	LAS_N16_2003_20	LAS_N10_3007_40
LAS_N16_2799_10	LAS_N16_2895_50	LAS_N10_3007_30
LAS_N16_220	LAS_N16_2894_40	LAS_N10_3008_40
LAS_N16_2890_10	LAS_N16_2894_30	LAS_N10_3008_30
LAS_N16_2890_20	LAS_N16_2895_40	LAS_N16_3009_40
LAS_N16_2891_10	LAS_N10_2895_30	LAS_N10_3009_30
LAS_N16_2891_20	LAS_N16_2896_40	LAS_N16_3700_40
LAS_N16_2892_10	LAS_N10_2890_30	LAS_N10_3700_30
LAS_N16_2892_20	LAS_N16_3606_10	LAS_N16_3701_40
LAS_N16_2893_10	LAS_N16_3606_20	LAS_N16_3701_30
LAS_N16_2893_20	LAS_N10_3007_10	LAS_N16_3702_40
LAS_N16_2894_10	LAS_N16_3607_20	LAS_N16_3702_30
LAS_N16_2894_20	LAS_N16_3608_10	LAS_N16_3/03_40
LAS_N16_2895_10	LAS_N16_3608_20	LAS_N16_3703_30
LAS_N16_2895_20	LAS_N16_3609_10	LAS_N16_3/04_40
LAS_N16_2896_10	LAS_N16_3609_20	LAS_N16_3704_30
LAS_N16_2896_20	LAS_N16_3700_10	LAS_N16_3705_40
LAS_N16_2897_10	LAS_N16_3700_20	LAS_N16_3705_30
LAS_N16_2695_30	LAS_N16_3701_10	LAS_N16_3706_40
LAS_N16_2696_40	LAS_N16_3701_20	LAS_N16_3706_30
LAS_N16_2696_30	LAS_N16_3702_10	LAS_N16_3707_40
LAS_N16_2697_40	LAS_N16_3702_20	LAS_N16_3707_30
LAS_N16_2697_30	LAS_N16_3703_10	LAS_N16_3708_40
LAS_N16_2698_40	LAS_N16_3703_20	LAS_N16_3708_30
LAS_N16_2698_30	LAS_N16_3704_10	LAS_N16_3709_40
LAS_N16_2699_40	LAS_N16_3704_20	LAS_N16_3709_30
LAS_N16_2699_30	LAS_N16_3705_10	LAS_N16_3800_40
LAS_N16_2790_40	LAS_N16_3705_20	LAS_N16_3800_30
LAS_N16_2790_30	LAS_N16_3706_10	LAS_N16_3801_40
LAS_N16_2791_40	LAS_N16_3706_20	LAS_N16_3801_30
LAS_N16_2791_30	LAS_N16_3707_10	LAS_N16_3802_40
LAS_N16_2792_40	LAS_N16_3707_20	LAS_N16_3802_30

LAS_N16_3803_40	LAS_N16_3617_30	LAS_N16_3721_10
LAS_N16_3803_30	LAS_N16_3618_40	LAS_N16_3721_20
LAS_N16_3804_40	LAS_N16_3618_30	LAS_N16_3722_10
LAS_N16_3804_30	LAS_N16_3619_40	LAS_N16_3722_20
LAS_N16_3805_40	LAS_N16_3619_30	LAS_N16_3723_10
LAS N16 3805 30	LAS N16 3710 40	LAS N16 3723 20
LAS N16 3806 40	LAS N16 3710 30	LAS N16 3724 10
LAS_N16_3616_10	LAS_N16_3711_40	LAS N16 3724 20
LAS N16 3616 20	LAS N16 3711 30	LAS N16 3725 10
LAS N16 3617 10	LAS N16 3712 40	LAS N16 3725 20
LAS N16 3617 20	LAS N16 3712 30	LAS N16 3726 10
LAS N16 3618 10	LAS N16 3713 40	LAS N16 3726 20
LAS N16 3618 20	LAS N16 3713 30	LAS N16 3727 10
LAS N16 3619 10	LAS N16 3714 40	LAS N16 3727 20
LAS N16 3619 20	LAS N16 3714 30	LAS N16 3728 10
LAS N16 3710 10	LAS_N16_3715_40	LAS_N16_3728_20
LAS_N16_3710_20	LAS_N16_3715_30	LAS_N16_3720_20
LAS_N16_3711_10	LAS_N16_3715_30	LAS_N16_3729_10
LAS_N16_2711_20	$LAS_N10_5710_40$	LAS_N10_3729_20
LAS_N16_3711_20	LAS_N10_3/10_30	LAS_N16_3820_10
LAS_N16_3712_10	LAS_N10_3/17_40	LAS_N10_3820_20
LAS_N16_3/12_20	LAS_NI6_3/1/_30	LAS_N16_3821_10
LAS_N16_3/13_10	LAS_N16_3/18_40	LAS_N16_3821_20
LAS_N16_3/13_20	LAS_N16_3/18_30	LAS_N16_3822_10
LAS_N16_3714_10	LAS_N16_3719_40	LAS_N16_3822_20
LAS_N16_3714_20	LAS_N16_3719_30	LAS_N16_3823_10
LAS_N16_3715_10	LAS_N16_3810_40	LAS_N16_3823_20
LAS_N16_3715_20	LAS_N16_3810_30	LAS_N16_3824_10
LAS_N16_3716_10	LAS_N16_3811_40	LAS_N16_3824_20
LAS_N16_3716_20	LAS_N16_3811_30	LAS_N16_3825_10
LAS_N16_3717_10	LAS_N16_3812_40	LAS_N16_3825_20
LAS_N16_3717_20	LAS_N16_3812_30	LAS_N16_3826_10
LAS_N16_3718_10	LAS_N16_3813_40	LAS_N16_3826_20
LAS_N16_3718_20	LAS_N16_3813_30	LAS_N16_3624_40
LAS_N16_3719_10	LAS_N16_3814_40	LAS_N16_3624_30
LAS_N16_3719_20	LAS_N16_3814_30	LAS_N16_3625_40
LAS_N16_3810_10	LAS_N16_3815_40	LAS_N16_3625_30
LAS_N16_3810_20	LAS_N16_3815_30	LAS_N16_3626_40
LAS_N16_3811_10	LAS_N16_3816_40	LAS_N16_3626_30
LAS_N16_3811_20	LAS_N16_3624_20	LAS_N16_3627_40
LAS_N16_3812_10	LAS_N16_3625_10	LAS_N16_3627_30
LAS_N16_3812_20	LAS_N16_3625_20	LAS_N16_3628_40
LAS_N16_3813_10	LAS_N16_3626_10	LAS_N16_3628_30
LAS N16 3813 20	LAS N16 3626 20	LAS N16 3629 40
LAS N16 3814 10	LAS N16 3627 10	LAS N16 3629 30
LAS N16 3814 20	LAS N16 3627 20	LAS N16 3720 40
LAS N16 3815 10	LAS N16 3628 10	LAS N16 3720 30
LAS N16 3815 20	LAS N16 3628 20	LAS N16 3721 40
LAS N16 3816 10	LAS N16 3629 10	LAS N16 3721 30
LAS N16 3616 40	LAS N16 3629 20	LAS N16 3722 40
LAS N16 3616 30	LAS N16 3720 10	LAS N16 3722_30
LAS N16 3617 40	LAS N16 3720 20	LAS N16 3723 40
<u></u>	L. 10_1110_0120_20	<u></u>

LAS_N16_3723_30	LAS_N16_3735_20	LAS_N16_3736_30
LAS_N16_3724_40	LAS_N16_3736_10	LAS_N16_3737_40
LAS_N16_3724_30	LAS_N16_3736_20	LAS_N16_3737_30
LAS_N16_3725_40	LAS_N16_3737_10	LAS_N16_3738_40
LAS N16 3725 30	LAS N16 3737 20	LAS N16 3738 30
LAS N16 3726 40	LAS N16 3738 10	LAS N16 3739 40
LAS N16 3726 30	LAS N16 3738 20	LAS N16 3739 30
LAS N16 3727 40	LAS N16 3739 10	LAS N16 3830 40
LAS N16 3727 30	LAS N16 3739 20	LAS N16 3830 30
LAS N16 3728 40	LAS N16 3830 10	LAS N16 3831 40
LAS N16 3728 30	LAS N16 3830 20	LAS N16 3831 30
LAS N16 3729 40	LAS N16 3831 10	LAS N16 3832 40
LAS N16 3729 30	LAS N16 3831 20	LAS N16 3832 30
LAS N16 3820 40	LAS N16 3832 10	LAS N16 3833 40
LAS N16 3820 30	LAS N16 3832 20	LAS N16 3833 30
LAS_N16_3821_40	LAS_N16_3833_10	LAS_N16_383/_/0
LAS N16 321 30	LAS_N16_3833_20	LAS_N16_3834_40
LAS_N16_2822_40	$LAS_N10_{5055}_{20}$	LAS_N10_3034_30
LAS_N16_2822_40	$LAS_N10_{-5054_10}$	LAS_N10_3033_40
LAS_N16_3822_30	LAS_N16_2825_10	LAS_N10_3833_30
LAS_N16_3823_40	LAS_N10_3833_10	LAS_N10_3830_40
LAS_N16_3823_30	LAS_N16_3835_20	LAS_N16_3836_30
LAS_N16_3824_40	LAS_N16_3836_10	LAS_N16_3837_40
LAS_N16_3824_30	LAS_N16_3836_20	LAS_N16_3837_30
LAS_N16_3825_40	LAS_N16_3837_10	LAS_N16_3838_40
LAS_N16_3825_30	LAS_N16_3837_20	LAS_N16_3644_10
LAS_N16_3826_40	LAS_N16_3838_10	LAS_N16_3644_20
LAS_N16_3826_30	LAS_N16_3634_40	LAS_N16_3645_10
LAS_N16_3827_40	LAS_N16_3634_30	LAS_N16_3645_20
LAS_N16_3634_10	LAS_N16_3635_40	LAS_N16_3646_10
LAS_N16_3634_20	LAS_N16_3635_30	LAS_N16_3646_20
LAS_N16_3635_10	LAS_N16_3636_40	LAS_N16_3647_10
LAS_N16_3635_20	LAS_N16_3636_30	LAS_N16_3647_20
LAS_N16_3636_10	LAS_N16_3637_40	LAS_N16_3648_10
LAS_N16_3636_20	LAS_N16_3637_30	LAS_N16_3648_20
LAS_N16_3637_10	LAS_N16_3638_40	LAS_N16_3649_10
LAS_N16_3637_20	LAS_N16_3638_30	LAS_N16_3649_20
LAS_N16_3638_10	LAS_N16_3639_40	LAS_N16_3740_10
LAS_N16_3638_20	LAS_N16_3639_30	LAS_N16_3740_20
LAS_N16_3639_10	LAS_N16_3730_40	LAS_N16_3741_10
LAS_N16_3639_20	LAS_N16_3730_30	LAS_N16_3741_20
LAS N16 3730 10	LAS N16 3731 40	LAS N16 3742 10
LAS N16 3730 20	LAS N16 3731 30	LAS N16 3742 20
LAS N16 3731 10	LAS N16 3732 40	LAS N16 3743 10
LAS N16 3731 20	LAS N16 3732 30	LAS N16 3743 20
LAS N16 3732 10	LAS N16 3733 40	LAS N16 3744 10
LAS N16 3732 20	LAS N16 3733 30	LAS N16 3744 20
LAS N16 3733 10	LAS N16 3734 40	LAS N16 3745 10
LAS N16 3733 20	LAS N16 3734 30	LAS N16 3745 20
LAS N16 3734 10	LAS N16 3735 40	LAS N16 3746 10
LAS N16 3734 20	LAS N16 3735 30	LAS N16 3746 20
LAS N16 3735 10	LAS N16 3736 40	$I \Delta S N16 3747 10$
$L_{D} = 110 = 3733 = 10$	LAJ_110_3730_40	$LAS_1110_3/4/_10$

LAS_N16_3747_20	LAS_N16_3749_40	LAS_N16_3851_10
LAS_N16_3748_10	LAS_N16_3749_30	LAS_N16_3851_20
LAS_N16_3748_20	LAS_N16_3840_40	LAS_N16_3852_10
LAS_N16_3749_10	LAS_N16_3840_30	LAS_N16_3852_20
LAS_N16_3749_20	LAS_N16_3841_40	LAS_N16_3853_10
LAS N16 3840 10	LAS N16 3841 30	LAS N16 3853 20
LAS N16 3840 20	LAS N16 3842 40	LAS N16 3854 10
LAS N16 3841 10	LAS_N16_3842_30	LAS_N16_3854_20
LAS N16 3841 20	LAS N16 3843 40	LAS N16 3855 10
LAS N16 3842 10	LAS N16 3843 30	LAS N16 3855 20
LAS N16 3842 20	LAS N16 3844 40	LAS N16 3856 10
LAS N16 3843 10	LAS N16 3844 30	LAS N16 3856 20
LAS N16 3843 20	LAS N16 3845 40	LAS N16 3857 10
LAS N16 3844 10	LAS N16 3845 30	LAS N16 3857 20
LAS N16 3844 20	LAS N16 3846 40	LAS N16 3858 10
LAS N16 3845 10	LAS N16 3846 30	LAS_N16_3858_20
LAS_N16_3845_20	LAS N16 3847 40	LAS_N16_3850_10
LAS_N16_3846_10	LAS_N16_2847_20	LAS_N16_3656_40
$LAS_N10_5640_10$	$LAS_N10_{5647_{50}}$	LAS_N10_3030_40
LAS_N16_2847_10	LAS_N10_3848_40	LAS_N10_3030_30
LAS_N16_2847_10	LAS_N16_2655_20	LAS_N10_3037_40
LAS_N16_3847_20	LAS_N10_3053_20	LAS_N10_3037_30
LAS_N16_3848_10	LAS_N16_3656_10	LAS_N16_3658_40
LAS_N16_3644_30	LAS_N16_3656_20	LAS_N16_3058_30
LAS_N16_3645_40	LAS_N16_3657_10	LAS_N16_3659_40
LAS_N16_3645_30	LAS_N16_3657_20	LAS_N16_3659_30
LAS_N16_3646_40	LAS_N16_3658_10	LAS_N16_3750_40
LAS_N16_3646_30	LAS_N16_3658_20	LAS_N16_3750_30
LAS_N16_3647_40	LAS_N16_3659_10	LAS_N16_3751_40
LAS_N16_3647_30	LAS_N16_3659_20	LAS_N16_3751_30
LAS_N16_3648_40	LAS_N16_3750_10	LAS_N16_3752_40
LAS_N16_3648_30	LAS_N16_3750_20	LAS_N16_3752_30
LAS_N16_3649_40	LAS_N16_3751_10	LAS_N16_3753_40
LAS_N16_3649_30	LAS_N16_3751_20	LAS_N16_3753_30
LAS_N16_3740_40	LAS_N16_3752_10	LAS_N16_3754_40
LAS_N16_3740_30	LAS_N16_3752_20	LAS_N16_3754_30
LAS_N16_3741_40	LAS_N16_3753_10	LAS_N16_3755_40
LAS_N16_3741_30	LAS_N16_3753_20	LAS_N16_3755_30
LAS_N16_3742_40	LAS_N16_3754_10	LAS_N16_3756_40
LAS_N16_3742_30	LAS_N16_3754_20	LAS_N16_3756_30
LAS_N16_3743_40	LAS_N16_3755_10	LAS_N16_3757_40
LAS_N16_3743_30	LAS_N16_3755_20	LAS_N16_3757_30
LAS_N16_3744_40	LAS_N16_3756_10	LAS_N16_3758_40
LAS_N16_3744_30	LAS_N16_3756_20	LAS_N16_3758_30
LAS_N16_3745_40	LAS_N16_3757_10	LAS_N16_3759_40
LAS_N16_3745_30	LAS_N16_3757_20	LAS_N16_3759_30
LAS_N16_3746_40	LAS_N16_3758_10	LAS_N16_3850_40
LAS N16 3746 30	LAS N16 3758 20	LAS N16 3850 30
LAS N16 3747 40	LAS N16 3759 10	LAS N16 3851 40
LAS N16 3747 30	LAS N16 3759 20	LAS N16 3851 30
LAS N16 3748 40	LAS N16 3850 10	LAS N16 3852 40
LAS N16 3748 30	LAS N16 3850 20	LAS N16 3852 30
_		

LAS_N16_3853_40	LAS_N16_3865_10	LAS_N16_3867_40
LAS_N16_3853_30	LAS_N16_3865_20	LAS_N16_3867_30
LAS_N16_3854_40	LAS_N16_3866_10	LAS_N16_3868_40
LAS_N16_3854_30	LAS_N16_3866_20	LAS_N16_3868_30
LAS_N16_3855_40	LAS_N16_3867_10	LAS_N16_3869_40
LAS N16 3855 30	LAS N16 3867 20	LAS N16 3677 10
LAS N16 3856 40	LAS N16 3868 10	LAS N16 3678 10
LAS N16 3856 30	LAS N16 3868 20	LAS N16 3678 20
LAS_N16_3857_40	LAS N16 3869 10	LAS_N16_3679_10
LAS N16 3857 30	LAS N16 3666 40	LAS N16 3679 20
LAS N16 3858 40	LAS N16 3666 30	LAS N16 3770 10
LAS N16 3858 30	LAS N16 3667 40	LAS N16 3770 20
LAS N16 3859 40	LAS N16 3667 30	LAS N16 3771 10
LAS N16 3666 10	LAS N16 3668 40	LAS N16 3771 20
LAS N16 3666 20	LAS N16 3668 30	LAS N16 3772 10
LAS N16 3667 10	LAS_N16_3669_40	LAS N16 3772 20
LAS N16 3667 20	$LAS_1(10_3669_30)$	LAS N16 3773 10
LAS N16 3668 10	LAS_N16_3760_40	LAS N16 3773 20
LAS_N16_2668_20	$LAS_N10_5700_40$	LAS_N16_3773_20
LAS_N16_3660_10	$LAS_N10_5700_50$	LAS_ $N16_{3774}_{10}$
LAS_N16_2660_20	$LAS_NI0_3701_40$	LAS_ $N16_{2775}_{10}$
LAS_N16_2760_10	$LAS_NI0_5701_50$	LAS_ $N16_{2775}_{2775}_{20}$
LAS_N16_2760_20	LAS_N16_3762_40	LAS_NI0_3//3_20
LAS_N16_2761_10	LAS_N10_3702_30	LAS_ $N10_3/70_10$
LAS_N10_3/01_10	LAS_N10_3703_40	LAS_ $N10_3/70_20$
LAS_N16_3/61_20	LAS_N16_3763_30	LAS_NI6_3///_10
LAS_N16_3/62_10	LAS_N16_3764_40	LAS_N16_3///_20
LAS_N16_3/62_20	LAS_N16_3764_30	LAS_N16_3//8_10
LAS_N16_3/63_10	LAS_N16_3765_40	LAS_N16_3/78_20
LAS_N16_3/63_20	LAS_N16_3765_30	LAS_N16_3779_10
LAS_N16_3/64_10	LAS_N16_3766_40	LAS_N16_3779_20
LAS_N16_3764_20	LAS_N16_3766_30	LAS_N16_3870_10
LAS_N16_3765_10	LAS_N16_3767_40	LAS_N16_3870_20
LAS_N16_3765_20	LAS_N16_3767_30	LAS_N16_3871_10
LAS_N16_3766_10	LAS_N16_3768_40	LAS_N16_3871_20
LAS_N16_3766_20	LAS_N16_3768_30	LAS_N16_3872_10
LAS_N16_3767_10	LAS_N16_3769_40	LAS_N16_3872_20
LAS_N16_3767_20	LAS_N16_3769_30	LAS_N16_3873_10
LAS_N16_3768_10	LAS_N16_3860_40	LAS_N16_3873_20
LAS_N16_3768_20	LAS_N16_3860_30	LAS_N16_3874_10
LAS_N16_3769_10	LAS_N16_3861_40	LAS_N16_3874_20
LAS_N16_3769_20	LAS_N16_3861_30	LAS_N16_3875_10
LAS_N16_3860_10	LAS_N16_3862_40	LAS_N16_3875_20
LAS_N16_3860_20	LAS_N16_3862_30	LAS_N16_3876_10
LAS_N16_3861_10	LAS_N16_3863_40	LAS_N16_3876_20
LAS_N16_3861_20	LAS_N16_3863_30	LAS_N16_3877_10
LAS_N16_3862_10	LAS_N16_3864_40	LAS_N16_3877_20
LAS_N16_3862_20	LAS_N16_3864_30	LAS_N16_3878_10
LAS_N16_3863_10	LAS_N16_3865_40	LAS_N16_3878_20
LAS_N16_3863_20	LAS_N16_3865_30	LAS_N16_3879_10
LAS_N16_3864_10	LAS_N16_3866_40	LAS_N16_3879_20
LAS_N16_3864_20	LAS_N16_3866_30	LAS_N16_3679_40

LAS_N16_3679_30	LAS_N16_3788_10	LAS_N16_3888_40
LAS_N16_3770_40	LAS_N16_3788_20	LAS_N16_3888_30
LAS_N16_3770_30	LAS_N16_3789_10	LAS_N16_3889_40
LAS_N16_3771_40	LAS_N16_3789_20	LAS_N16_3889_30
LAS N16 3771 30	LAS N16 3880 10	LAS N16 3980 40
LAS N16 3772 40	LAS N16 3880 20	LAS N16 3981 30
LAS N16 3772 30	LAS N16 3881 10	LAS N16 3982 40
LAS N16 3773 40	LAS N16 3881 20	LAS N16 3982 30
LAS N16 3774 40	LAS N16 3882 10	LAS N16 3983 40
LAS N16 3774 30	LAS N16 3882 20	LAS N16 3790 10
LAS N16 3775 40	LAS N16 3883 10	LAS N16 3790 20
LAS N16 3775 30	LAS N16 3883 20	LAS N16 3791 10
LAS N16 3776 40	LAS N16 3884 10	LAS N16 3791 20
LAS N16 3776 30	LAS N16 3884 20	LAS N16 3792 10
LAS N16 3777 40	LAS N16 3885 10	LAS N16 3792_10
LAS_N16_3777_30	LAS_N16_3885_20	LAS_N16_3792_20
LAS_N16_3778_40	LAS_N16_3886_10	LAS_N16_3700_10
LAS_N16_2778_20	LAS_N10_3880_10	LAS_N10_3799_10
LAS_N16_2770_40	LAS_N10_3880_20	LAS_N10_3799_20
LAS_N16_3779_40	LAS_N10_3887_10	LAS_N16_3890_10
LAS_N16_3779_30	LAS_N10_3887_20	LAS_N10_3890_20
LAS_N16_38/0_40	LAS_N16_3888_10	LAS_N16_3891_10
LAS_N16_38/0_30	LAS_N16_3888_20	LAS_N16_3891_20
LAS_N16_38/1_40	LAS_N16_3889_10	LAS_N16_3892_10
LAS_N16_38/1_30	LAS_N16_3889_20	LAS_N16_3892_20
LAS_N16_3872_40	LAS_N16_3689_30	LAS_N16_3893_10
LAS_N16_3872_30	LAS_N16_3780_40	LAS_N16_3893_20
LAS_N16_3873_40	LAS_N16_3780_30	LAS_N16_3894_10
LAS_N16_3873_30	LAS_N16_3781_40	LAS_N16_3894_20
LAS_N16_3874_40	LAS_N16_3781_30	LAS_N16_3895_10
LAS_N16_3874_30	LAS_N16_3782_40	LAS_N16_3895_20
LAS_N16_3875_40	LAS_N16_3782_30	LAS_N16_3896_10
LAS_N16_3875_30	LAS_N16_3783_40	LAS_N16_3896_20
LAS_N16_3876_40	LAS_N16_3788_30	LAS_N16_3897_10
LAS_N16_3876_30	LAS_N16_3789_40	LAS_N16_3897_20
LAS_N16_3877_40	LAS_N16_3789_30	LAS_N16_3898_10
LAS_N16_3877_30	LAS_N16_3880_40	LAS_N16_3898_20
LAS_N16_3878_40	LAS_N16_3880_30	LAS_N16_3899_10
LAS_N16_3878_30	LAS_N16_3881_40	LAS_N16_3899_20
LAS_N16_3879_40	LAS_N16_3881_30	LAS_N16_3990_10
LAS_N16_3879_30	LAS_N16_3882_40	LAS_N16_3990_20
LAS_N16_3689_10	LAS_N16_3882_30	LAS_N16_3991_20
LAS N16 3689 20	LAS N16 3883 40	LAS N16 3992 10
LAS N16 3780 10	LAS N16 3883 30	LAS N16 3992 20
LAS N16 3780 20	LAS N16 3884 40	LAS N16 3993 10
LAS N16 3781 10	LAS N16 3884 30	LAS N16 3993 20
LAS N16 3781 20	LAS N16 3885 40	LAS N16 3994 10
LAS N16 3782 10	LAS N16 3885 30	LAS N16 3790 30
LAS N16 3782 20	LAS N16 3886 40	LAS N16 3791 40
LAS N16 3783 10	LAS N16 3886 30	LAS N16 3791 30
LAS N16 3787 10	LAS N16 3887 40	LAS N16 3792 40
LAS N16 3787 20	LAS N16 3887 30	LAS N16 3792 30
L/10_1110_5/07_20	L/10_1010_007_00	$L_{10}_{110}_{172}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0$

LAS_N16_3799_40	LAS_N16_4807_20	LAS_N16_4814_20
LAS_N16_3799_30	LAS_N16_4808_10	LAS_N16_4815_10
LAS_N16_3890_40	LAS_N16_4808_20	LAS_N16_4815_20
LAS_N16_3890_30	LAS_N16_4809_10	LAS_N16_4816_10
LAS N16 3891 40	LAS N16 4809 20	LAS N16 4816 20
LAS N16 3891 30	LAS N16 4900 10	LAS N16 4817 10
LAS_N16_3892_40	LAS N16 4900 20	LAS N16 4817 20
LAS_N16_3892_30	LAS_N16_4901_10	LAS N16 4818 10
LAS N16 3893 40	LAS N16 4901 20	LAS N16 4818 20
LAS N16 3893 30	LAS N16 4902 10	LAS N16 4819 10
LAS N16 3894 40	LAS N16 4902 20	LAS N16 4819 20
LAS N16 3894 30	LAS N16 4903 10	LAS N16 4910 10
LAS N16 3895 40	LAS N16 4903 20	LAS N16 4910 20
LAS N16 3895 30	LAS N16 4904 10	LAS N16 4911 10
LAS_N16_3896_40	LAS_N16_4004_20	LAS_N16_4911_10
LAS_N16_3896_30	LAS_N16_4800_30	LAS_N16_4911_20
LAS_N16_2807_40	LAS_N16_4800_50	LAS_N16_4912_10
$LAS_N10_{-5097_{-40}}$	$LAS_N10_4001_40$	LAS_N10_4912_20
LAS_N16_3897_30	LAS_N16_4801_30	LAS_N10_4913_10
LAS_N16_3898_40	LAS_N16_4802_40	LAS_N16_4913_20
LAS_N16_3898_30	LAS_N16_4802_30	LAS_N16_4914_10
LAS_N16_3899_40	LAS_N16_4803_40	LAS_N16_4914_20
LAS_N16_3899_30	LAS_N16_4803_30	LAS_N16_4810_30
LAS_N16_3990_40	LAS_N16_4804_40	LAS_N16_4811_40
LAS_N16_3990_30	LAS_N16_4804_30	LAS_N16_4811_30
LAS_N16_3991_40	LAS_N16_4805_40	LAS_N16_4813_30
LAS_N16_3991_30	LAS_N16_4805_30	LAS_N16_4814_40
LAS_N16_3992_40	LAS_N16_4806_40	LAS_N16_4814_30
LAS_N16_3992_30	LAS_N16_4806_30	LAS_N16_4815_40
LAS_N16_3993_40	LAS_N16_4807_40	LAS_N16_4815_30
LAS_N16_3993_30	LAS_N16_4807_30	LAS_N16_4816_40
LAS_N16_3994_40	LAS_N16_4808_40	LAS_N16_4816_30
LAS_N16_3994_30	LAS_N16_4808_30	LAS_N16_4817_40
LAS_N16_4701_10	LAS_N16_4809_40	LAS_N16_4817_30
LAS_N16_4701_20	LAS_N16_4809_30	LAS_N16_4818_40
LAS_N16_4702_10	LAS_N16_4900_40	LAS_N16_4818_30
LAS N16 4702 20	LAS N16 4900 30	LAS N16 4819 40
LAS_N16_4800_10	LAS_N16_4901_40	LAS_N16_4819_30
LAS N16 4800 20	LAS N16 4901 30	LAS N16 4910 40
LAS N16 4801 10	LAS N16 4902 40	LAS N16 4910 30
LAS N16 4801 20	LAS N16 4902 30	LAS N16 4911 40
LAS N16 4802 10	LAS N16 4903 40	LAS N16 4911 30
LAS N16 4802 20	LAS N16 4903 30	LAS N16 4912 40
LAS N16 4803 10	LAS N16 4904 40	LAS N16 4912 30
LAS N16 4803 20	LAS N16 4904 30	LAS N16 4913 40
LAS N16 4804 10	LAS N16 4810 20	LAS N16 4913 30
LAS N16 4804 20	LAS N16 4811 10	$I \Delta S N16 / 01/ / 0$
LAS N16 / 805 10	LAS N16 /811 20	$I \Delta S N16 / 01/ 20$
$LAS_1110_{+000}_10$ LAS_N16_ $A805_20$	$LAS_N16_{4812} 10$	LAS_1110_4914_30
$LAS_{110}_{4003}_{20}$	$LAS_{110}_{4012}_{10}$	$LAS_1110_4024_20$
$LAS_{110}_{4000}_{10}$	$LAS_{110}_{4013}_{10}$	$LAS_NIU_4025_10$
$LAS_{N10}_{4800}_{20}$	$LAS_N10_4815_20$	LAS_ $N10_{4825}_20$
LAS_N10_480/_10	LAS_N10_4814_10	LAS_N16_4826_10

LAS_N16_4826_20	LAS_N16_4933_10
LAS_N16_4827_10	LAS_N16_4933_20
LAS_N16_4827_20	LAS_N16_4934_10
LAS_N16_4828_10	LAS_N16_4934_20
LAS_N16_4828_20	LAS_N16_4935_10
LAS N16 4829 10	LAS N16 4838 40
LAS N16 4829 20	LAS_N16_4838_30
LAS N16 4920 10	LAS N16 4839 40
LAS N16 4920 20	LAS N16 4839 30
LAS N16 4921 10	LAS N16 4930 40
LAS N16 4921 20	LAS N16 4930 30
LAS N16 4922 10	LAS N16 4931 40
LAS N16 4922 20	LAS N16 4931 30
LAS N16 4923 10	LAS N16 4932 40
LAS N16 4923 20	LAS N16 4932 30
LAS N16 4924 10	LAS N16 4933 40
LAS N16 4924 20	LAS N16 4933 30
LAS N16 4925 10	LAS N16 4934 40
LAS N16 4825 30	LAS N16 4934 30
LAS N16 4826 40	LAS N16 4935 40
LAS N16 4826 30	LAS N16 4940 10
LAS N16 4827 40	LAS N16 4940 20
LAS N16 4827 30	LAS N16 4941 10
LAS N16 4828 40	LAS N16 4941 20
LAS N16 4828 30	LAS N16 4942 10
LAS N16 4829 40	LAS N16 4942 20
LAS N16 4829 30	LAS N16 4943 10
LAS N16 4920 40	LAS N16 4943 20
LAS N16 4920 30	LAS N16 4944 10
LAS N16 4921 40	LAS N16 4944 20
LAS N16 4921 30	LAS N16 4945 10
LAS N16 4922 40	LAS N16 4940 30
LAS N16 4922 30	LAS N16 4941 40
LAS N16 4923 40	LAS N16 4941 30
LAS N16 4923 30	LAS N16 4942 40
LAS N16 4924 40	LAS N16 4942 30
LAS N16 4924 30	LAS N16 4943 40
LAS N16 4925 40	LAS N16 4943 30
LAS N16 4836 20	LAS N16 4944 40
LAS N16 4837 10	LAS N16 4944 30
LAS N16 4837 20	LAS N16 4945 40
LAS N16 4838 10	LAS N16 4951 10
LAS N16 4838 20	LAS N16 4951 20
LAS N16 4839 10	LAS N16 4952 10
LAS N16 4839 20	LAS N16 4952 20
LAS_N16_4930_10	LAS_N16_4953_10
LAS_N16_4930_20	LAS_N16_4953_20
LAS_N16_4931_10	LAS_N16_4954_10
LAS_N16_4931_20	LAS_N16_4954_20
LAS_N16_4932_10	LAS_N16_4952_30
LAS_N16_4932_20	LAS_N16_4953_40

LAS_N16_4953_30 LAS_N16_4954_40 LAS_N16_4954_30 LAS_N16_4955_40 LAS_N16_4963_20 LAS_N16_4964_10 LAS_N16_4964_20 LAS_N16_4964_20 LAS_N16_4964_40 LAS_N16_4964_30

2 LiDAR Acquisition Report

ACQUISITION REPORT – Virginia LIDAR ACQUISITION

Augusta & Rockingham Virginia

21 June 2011

Prepared for

DEWBERRY 1000 N. Ashley Dr., Suite 801 Tampa, FL 33602

813.225.1325

Prepared by

ATLANTIC GROUP

2223 Drake Avenue SW Huntsville, AL 35805 256.971.9991 www.theatlgrp.com The attached document contains proprietary and confidential information of The Atlantic Group, LLC. The information may not directly or indirectly, be displayed, provided, or transferred to any person or entity and may not be used, copied, or disclosed without the express written permission of The Atlantic Group, LLC.

Revisions

In	formation	shown	for e	ach	revision	supersedes	the	previous	version.	
			/			1		L		

Original Version: Josh Helton, LiDAR Manager	Date: 06/21/2011		
Draft.			
Revision 1: Andy Lucero, Project Manager	Date: 06/30/2011		
Modified for syntax.			
Revision 2:	Date:		
Revision 3:	Date:		
Revision 4:	Date:		

Table of Contents

Table of Contents	17
SCOPE OF WORK	21
LIDAR ACQUISITION DETAILS	
Output Results for JD097F01	25
 Figure 1: Combined - Map 25 Figure 2: JD097F01 [Combined] - Quality Factor Plot 26 Figure 3: JD097F01 [Combined] - Height Profile Plot 27 Figure 4: JD097F01 [Combined] - Forward/Reverse or Combined Separation Plot Figure 5: JD097F01 [Combined] - Forward/Reverse or Combined Weighting Plot Figure 6: JD097F01 [Combined] - PDOP, HDOP, VDOP Plots 30 Figure 7: JD097F01 [Combined] - Horizontal Distance Separation (km) 31 Figure 8: JD097F01 [Combined] - Forward/Reverse or Combined RMS Plot Figure 9: JD097F01 [Combined] - Float or Fixed Ambiguity 33 Output Results for JD104F01 Figure 2: JD104F01 [Combined] - Quality Factor Plot 35 Figure 3: JD104F01 [Combined] - Height Profile Plot 36 Figure 4: JD104F01 [Combined] - Forward/Reverse or Combined Separation Plot Figure 5: JD104F01 [Combined] - Forward/Reverse or Combined Separation Plot 	28 29 32
Figure 6: JD104F01 [Combined] - PDOP, HDOP, VDOP Plots 39 Figure 7: JD104F01 [Combined] - Horizontal Distance Separation (km) 40 Figure 8: JD104F01 [Combined] - Forward/Reverse or Combined RMS Plot Figure 9: JD104F01 [Combined] - Float or Fixed Ambiguity 42	41
Output Results for JD104F02	43
Figure 1: Combined - Map 43 Figure 2: JD104F02 [Combined] - Quality Factor Plot 44 Figure 3: JD104F02 [Combined] - Height Profile Plot 45 Figure 4: JD104F02 [Combined] - Forward/Reverse or Combined Separation Plot Figure 5: JD104F02 [Combined] - Forward/Reverse or Combined Weighting Plot Figure 6: JD104F02 [Combined] - PDOP, HDOP, VDOP Plots 48 Figure 7: JD104F02 [Combined] - Horizontal Distance Separation (km) 49 Figure 8: JD104F02 [Combined] - Forward/Reverse or Combined RMS Plot Figure 9: JD104F02 [Combined] - Float or Fixed Ambiguity 51 Output Results for JD104F03	46 47 50
Figure 1: Combined - Map 52	
Figure 2: JD104F03 [Combined] - Quality Factor Plot 53 Figure 3: JD104F03 [Combined] - Height Profile Plot 54 Figure 4: JD104F03 [Combined] - Forward/Reverse or Combined Separation Plot Figure 5: JD104F03 [Combined] - Forward/Reverse or Combined Weighting Plot Figure 6: JD104F03 [Combined] - PDOP, HDOP, VDOP Plots 57 Figure 7: JD104F03 [Combined] - Horizontal Distance Separation (km) 58 Figure 8: JD104F03 [Combined] - Forward/Reverse or Combined RMS Plot Figure 9: JD104F03 [Combined] - Float or Fixed Ambiguity 60 Output Results for JD105F01	55 56 59 61
Figure 1: Combined - Map 61 Figure 2: JD105F01 [Combined] - Ouality Factor Plot 62	
Figure 3: JD105F01 [Combined] - Height Profile Plot 63	

Figure 4: JD105F01 [Combined] - Forward/Reverse or Combined Separation Plot Figure 5: JD105F01 [Combined] - Forward/Reverse or Combined Weighting Plot Figure 6: JD105F01 [Combined] - PDOP, HDOP, VDOP Plots 66 Figure 7: JD105F01 [Combined] - Harisented Distance Separation (here) 67	64 65
Figure 7: JD105F01 [Combined] - Horizontal Distance Separation (km) 67 Figure 8: JD105F01 [Combined] - Forward/Reverse or Combined RMS Plot Figure 9: JD105F01 [Combined] - Float or Fixed Ambiguity 69 Output Results for ID107F01	<i>68</i> 70
Firms I. Combined Mar. 70	
Figure 1: Combined - Map 70 Figure 2: JD107F01 [Combined] - Quality Factor Plot 71	
Figure 3: JD107F01 [Combined] - $Height$ Profile Plot 72	
Figure 4: JD107F01 [Combined] - Forward/Reverse or Combined Separation Plot	73
Figure 5: JD10/F01 [Combined] - Forward/Reverse or Combined Weighting Plot	74
Figure 0: JD10/F01 [Combined] - FDOF, HDOF, VDOF Flois 75 Figure 7: ID107F01 [Combined] - Horizontal Distance Separation (km) 76	
Figure 8: JD107F01 [Combined] - Forward/Reverse or Combined RMS Plot	77
Figure 9: JD107F01 [Combined] - Float or Fixed Ambiguity 78	
Output Results for JD107F02	79
Figure 1: Combined - Map 79	
Figure 2: JD107F02 [Combined] - Quality Factor Plot 80	
Figure 3: JD107F02 [Combined] - Height Profile Plot 81	
Figure 4: JD107F02 [Combined] - Forward/Reverse or Combined Separation Plot	82
Figure 5: JD107F02 [Combined] - Forward/Reverse or Combined Weighting Plot	83
Figure 0: JD10/F02 [Combined] - PDOP, HDOP, VDOP Plots 84 Figure 7: ID107F02 [Combined] - Horizontal Distance Separation (km) 85	
Figure 8: JD107F02 [Combined] - Forward/Reverse or Combined RMS Plot	86
Figure 9: JD107F02 [Combined] - Float or Fixed Ambiguity 87	
Output Results for JD108F01	
Figure 1: Combined - Map 88	
Figure 2: JD108F01 [Combined] - Quality Factor Plot 89	
Figure 3: JD108F01 [Combined] - Height Profile Plot 90	
Figure 4: JD108F01 [Combined] - Forward/Reverse or Combined Separation Plot	91
Figure 5: JD108F01 [Combined] - Forward/Reverse or Combined Weighting Plot	92
Figure 0. JD108F01 [Combined] - FDOF, HDOF, VDOF Flois 95 Figure 7: ID108F01 [Combined] - Horizontal Distance Separation (km) 94	
Figure 8: JD108F01 [Combined] - Forward/Reverse or Combined RMS Plot	95
Figure 9: JD108F01 [Combined] - Float or Fixed Ambiguity 96	
Output Results for JD108F02	
Figure 1: Combined - Map 97	
Figure 2: JD108F02 [Combined] - Quality Factor Plot 98	
Figure 3: JD108F02 [Combined] - Height Profile Plot 99	
Figure 4: JD108F02 [Combined] - Forward/Reverse or Combined Separation Plot	100
Figure 5: JD108F02 [Combined] - Forward/Reverse or Combined Weighting Plot	101
Figure 0: JD108F02 [Combined] - PDOP, HDOP, VDOP Piols 102 Figure 7: ID108F02 [Combined] - Horizontal Distance Separation (km) 103	
Figure 8: JD108F02 [Combined] - Forward/Reverse or Combined RMS Plot	104
Figure 9: JD108F02 [Combined] - Float or Fixed Ambiguity 105	
Output Results for JD109F01	
Figure 1: Combined - Map 106	
Figure 2: JD109F01 [Combined] - Quality Factor Plot 107	
Figure 3: JD109F01 [Combined] - Height Profile Plot 108	100
Figure 4: JD109F01 [Combined] - Forward/Reverse or Combined Separation Plot	109
rigure 3: JD109F01 [Combined] - Forward/Keverse or Combined Weighting Plot	110

Figure 6: JD109F01 [Combined] - PDOP, HDOP, VDOP Plots 111 Figure 7: JD109F01 [Combined] - Horizontal Distance Separation (km) 112 Figure 8: JD109F01 [Combined] - Forward/Reverse or Combined RMS Plot 113 Figure 9: JD109F01 [Combined] - Float or Fixed Ambiguity 114 115 Figure 1: Combined - Map Figure 2: JD109F02 [Combined] - Quality Factor Plot 116 Figure 3: JD109F02 [Combined] - Height Profile Plot 117 Figure 4: JD109F02 [Combined] - Forward/Reverse or Combined Separation Plot 118 Figure 5: JD109F02 [Combined] - Forward/Reverse or Combined Weighting Plot 119 Figure 6: JD109F02 [Combined] - PDOP, HDOP, VDOP Plots 120 Figure 7: JD109F02 [Combined] - Horizontal Distance Separation (km) 121 Figure 8: JD109F02 [Combined] - Forward/Reverse or Combined RMS Plot 122 Figure 9: JD109F02 [Combined] - Float or Fixed Ambiguity 123 Figure 1: Combined - Map 124 Figure 2: JD110F01 [Combined] - Quality Factor Plot 125 126 Figure 3: JD110F01 [Combined] - Height Profile Plot Figure 4: JD110F01 [Combined] - Forward/Reverse or Combined Separation Plot 127 Figure 5: JD110F01 [Combined] - Forward/Reverse or Combined Weighting Plot 128 Figure 6: JD110F01 [Combined] - PDOP, HDOP, VDOP Plots 129 *Figure 7: JD110F01 [Combined] - Horizontal Distance Separation (km)* 130 Figure 8: JD110F01 [Combined] - Forward/Reverse or Combined RMS Plot 131 Figure 9: JD110F01 [Combined] - Float or Fixed Ambiguity 132 Figure 1: Combined - Map 133 Figure 2: JD111F01 [Combined] - Quality Factor Plot 134 Figure 3: JD111F01 [Combined] - Height Profile Plot 135 Figure 4: JD111F01 [Combined] - Forward/Reverse or Combined Separation Plot 136 Figure 5: JD111F01 [Combined] - Forward/Reverse or Combined Weighting Plot 137 Figure 6: JD111F01 [Combined] - PDOP, HDOP, VDOP Plots 138 *Figure 7: JD111F01 [Combined] - Horizontal Distance Separation (km)* 139 Figure 8: JD111F01 [Combined] - Forward/Reverse or Combined RMS Plot 140 *Figure 9: JD111F01 [Combined] - Float or Fixed Ambiguity* 141 Output Results for JD111F02......142 Figure 1: Combined - Map 142 Figure 2: JD111F02 [Combined] - Quality Factor Plot 143 Figure 3: JD111F02 [Combined] - Height Profile Plot 144 Figure 4: JD111F02 [Combined] - Forward/Reverse or Combined Separation Plot 145 Figure 5: JD111F02 [Combined] - Forward/Reverse or Combined Weighting Plot 146 Figure 6: JD111F02 [Combined] - PDOP, HDOP, VDOP Plots 147 *Figure 7: JD111F02 [Combined] - Horizontal Distance Separation (km)* 148 Figure 8: JD111F02 [Combined] - Forward/Reverse or Combined RMS Plot 149 *Figure 9: JD111F02 [Combined] - Float or Fixed Ambiguity* 150 Figure 1: Combined - Map 151 Figure 2: JD114F01 [Combined] - Quality Factor Plot 152 Figure 3: JD114F01 [Combined] - Height Profile Plot 153 Figure 4: JD114F01 [Combined] - Forward/Reverse or Combined Separation Plot 154 Figure 5: JD114F01 [Combined] - Forward/Reverse or Combined Weighting Plot 155 Figure 6: JD114F01 [Combined] - PDOP, HDOP, VDOP Plots 156 *Figure 7: JD114F01 [Combined] - Horizontal Distance Separation (km)* 157

Figure 8: JD114F01 [Combined] - Forward/Reverse or Combined RMS PlotFigure 9: JD114F01 [Combined] - Float or Fixed Ambiguity159	158
Output Results for JD114F02	
Figure 1: Combined - Map 160 Figure 2: JD114F02 [Combined] - Quality Factor Plot 161 Figure 3: JD114F02 [Combined] - Height Profile Plot 162	
Figure 4: JD114F02 [Combined] - Forward/Reverse or Combined Separation Plot	163
Figure 5: JD114F02 [Combined] - Forward/Reverse or Combined Weighting Plot	164
Figure 6: JD114F02 [Combined] - PDOP, HDOP, VDOP Plots 165	
Figure 7: JD114F02 [Combined] - Horizontal Distance Separation (km) 166	
Figure 8: JD114F02 [Combined] - Forward/Reverse or Combined RMS Plot	167
Figure 9: JD114F02 [Combined] - Float or Fixed Ambiguity 168	
Output Results for JD115F01	
Figure 1: Combined - Map 109 Eisan 2: ID115E01 [Combined] Ourlits Easter Plat 170	
Figure 2: JD115F01 [Combined] - Quality Factor Plot 170 Figure 2: JD115F01 [Combined] - Usicht Ducfle Plot 171	
Figure 5: JD115F01 [Combined] - Height Profile Fiol 1/1 Figure 4: ID115F01 [Combined] Forward/Program on Combined Senaration Plot	172
Figure 4: JD115F01 [Combined] - Forward/Reverse or Combined Separation Fior	172
Figure 5: JD115F01 [Combined] - Forward/Reverse of Combined weighting Piol	173
Figure 0: JD115F01 [Combined] - FD0F, HD0F, VD0F Flois 1/4 Figure 7: ID115F01 [Combined] Horizontal Distance Senanction (Irm) 175	
Figure 7. JD115F01 [Combined] - Horizoniai Distance Separation (Km) 175 Figure 8: ID115F01 [Combined] - Forward/Payarse or Combined PMS Plot	176
Figure 0: ID115F01 [Combined] - Float or Fixed Ambiguity 177	170
Output Desults for ID116E01	170
Figure 1: Combined - Map 178	
Figure 2: JD116F01 [Combined] - Quality Factor Plot 179	
Figure 3: JD116F01 [Combined] - Height Profile Plot 180	
Figure 4: JD116F01 [Combined] - Forward/Reverse or Combined Separation Plot	181
Figure 5: JD116F01 [Combined] - Forward/Reverse or Combined Weighting Plot	182
Figure 6: JD116F01 [Combined] - PDOP, HDOP, VDOP Plots 183	
Figure 7: JD116F01 [Combined] - Horizontal Distance Separation (km) 184	
Figure 8: JD116F01 [Combined] - Forward/Reverse or Combined RMS Plot	185
Figure 9: JD116F01 [Combined] - Float or Fixed Ambiguity 186	
Output Results for JD119F01	
Eisen l. Combined Mar 197	
Figure 1: Combined - Map 18/ Figure 2: ID110E01 [Combined] Quality Easter Plat 188	
Figure 2: JD119F01 [Combined] - Quality Factor Fiol 166 Figure 2: JD110F01 [Combined] - Height Duafta Plat 180	
Figure 5: JD119F01 [Combined] - Height Profile Plot 189 Figure 4: ID110F01 [Combined] - Forward/Devenes on Combined Serverties Dist	100
Figure 4: JD119F01 [Combined] - Forward/Reverse or Combined Separation Plot	190
Figure 5: JD119F01 [Combined] - FORWARA/KEVERSE OF COMDINEA WEIGHTING PLOT Figure 6: ID110F01 [Combined] - DD0D - UD0D - UD0D Plots - 102	171
Figure 0. JD119F01 [Combined] - FDOF, FDOF, VDOF FIOIS 192 Figure 7. ID110F01 [Combined] Howis set of Distance Separation (Inv.) 102	
Figure 7. JD119F01 [Combined] - HORIZONIAI DISIANCE Separation (KM) 195 Figure 8: ID110F01 [Combined] - Forward/Pewares on Combined DMC Dist	104
Figure 0. JD119F01 [Combined] - Forwara/Keverse or Combined KMS Plot Figure 0. JD110F01 [Combined] - Float or Fired Ambiguity. 105	174
rigure 9: JD119F01 [Combinea] - rioat or rixea Ambiguity 193	

SCOPE OF WORK

The Atlantic Group acquired LiDAR data over an Area of Interest (AOI) covering all or portions of Augusta and Rockingham Counties Virginia. The acquisition plan entailed a nominal point spacing of 2 points per meter square and a side lap of 55% between flight lines. The AOI covers 1072 square miles.

Fig. 1 Flight plan

LIDAR ACQUISITION DETAILS

Collections (Lifts): 19

Collection Dates: 2011 April 7,14,15,17,18,19,20,21,24,25,26,and 30

Field of View (FOV): 45 degrees

Average Point Density (planned): 0.7 m

Flight Level(s): 1000 / 3280 m/ft

Sensor Type: Optech Gemini Sensor Serial Number(s): 08SEN113

All acquired LiDAR data was initially quality controlled after every mission for coverage and further verified for content and adherence to flight plan at Atlantic production facilities Huntsville, AL. All data was accepted for processing.

Virginia Flight Trajectories

Output Results for JD097F01

POSGNSS Version 5.20.1209 06/02/2011

Figure 2: JD097F01 [Combined] - Quality Factor Plot

Figure 3: JD097F01 [Combined] - Height Profile Plot

Figure 4: JD097F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD097F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 7: JD097F01 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD097F01 [Combined] - Forward/Reverse or Combined RMS Plot

Output Results for JD104F01

POSGNSS Version 5.20.1209 06/16/2011

Figure 3: JD104F01 [Combined] - Height Profile Plot

Figure 4: JD104F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD104F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Output Results for JD104F02

Figure 2: JD104F02 [Combined] - Quality Factor Plot

Figure 4: JD104F02 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD104F02 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 8: JD104F02 [Combined] - Forward/Reverse or Combined RMS Plot

- Float	— Fixed (1 baseline)	- Fixed (2 or more)

	Process	Run (9)	by Unknown	on 05/27/2011	at 07:14:25
--	---------	---------	------------	---------------	-------------

Output Results for JD104F03

Figure 4: JD104F03 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD104F03 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD104F03 [Combined] - PDOP, HDOP, VDOP Plots

Figure 7: JD104F03 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD104F03 [Combined] - Forward/Reverse or Combined RMS Plot

Output Results for JD105F01

Figure 2: JD105F01 [Combined] - Quality Factor Plot

Figure 4: JD105F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD105F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD105F01 [Combined] - PDOP, HDOP, VDOP Plots

Figure 8: JD105F01 [Combined] - Forward/Reverse or Combined RMS Plot

- Float - Fixed (1 baseline) - Fixed (2 or more)

Process	Run (29)	by Unknown	on 05/31/2011	at 15:37:29

Output Results for JD107F01

Figure 2: JD107F01 [Combined] - Quality Factor Plot

Figure 4: JD107F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD107F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 7: JD107F01 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD107F01 [Combined] - Forward/Reverse or Combined RMS Plot

Process	Run (9)	by Unknown	on 05/31/2011	at 16:28:12

Figure 9: JD107F01 [Combined] - Float or Fixed Ambiguity

Output Results for JD107F02

POSGNSS Version 5.20.1209 06/01/2011

Figure 2: JD107F02 [Combined] - Quality Factor Plot

Figure 4: JD107F02 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD107F02 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 7: JD107F02 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD107F02 [Combined] - Forward/Reverse or Combined RMS Plot

Process	Run (10)	by Unknown	on 06/01/2011	at 07:18:38

Output Results for JD108F01

POSGNSS Version 5.20.1209 06/13/2011

Figure 2: JD108F01 [Combined] - Quality Factor Plot

Figure 3: JD108F01 [Combined] - Height Profile Plot

Figure 4: JD108F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD108F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD108F01 [Combined] - PDOP, HDOP, VDOP Plots

Figure 7: JD108F01 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD108F01 [Combined] - Forward/Reverse or Combined RMS Plot

Figure 9: JD108F01 [Combined] - Float or Fixed Ambiguity

Output Results for JD108F02

POSGNSS Version 5.20.1209 06/03/2011

Figure 2: JD108F02 [Combined] - Quality Factor Plot

Figure 4: JD108F02 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD108F02 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD108F02 [Combined] - PDOP, HDOP, VDOP Plots

Figure 7: JD108F02 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD108F02 [Combined] - Forward/Reverse or Combined RMS Plot

Figure 9: JD108F02 [Combined] - Float or Fixed Ambiguity

Output Results for JD109F01

POSGNSS Version 5.20.1209 06/13/2011

Figure 4: JD109F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD109F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 8: JD109F01 [Combined] - Forward/Reverse or Combined RMS Plot

Figure 9: JD109F01 [Combined] - Float or Fixed Ambiguity

Output Results for JD109F02

POSGNSS Version 5.20.1209 06/15/2011

Figure 2: JD109F02 [Combined] - Quality Factor Plot

Figure 3: JD109F02 [Combined] - Height Profile Plot

Figure 4: JD109F02 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD109F02 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD109F02 [Combined] - PDOP, HDOP, VDOP Plots

Figure 7: JD109F02 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD109F02 [Combined] - Forward/Reverse or Combined RMS Plot

Output Results for JD110F01

POSGNSS Version 5.20.1209 06/15/2011

Figure 4: JD110F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD110F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 9: JD110F01 [Combined] - Float or Fixed Ambiguity

Output Results for JD111F01

POSGNSS Version 5.20.1209 06/16/2011

Figure 2: JD111F01 [Combined] - Quality Factor Plot

Figure 4: JD111F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD111F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 7: JD111F01 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD111F01 [Combined] - Forward/Reverse or Combined RMS Plot

Output Results for JD111F02

POSGNSS Version 5.20.1209 06/16/2011

Figure 2: JD111F02 [Combined] - Quality Factor Plot

Figure 4: JD111F02 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD111F02 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD111F02 [Combined] - PDOP, HDOP, VDOP Plots

Figure 7: JD111F02 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD111F02 [Combined] - Forward/Reverse or Combined RMS Plot

Figure 9: JD111F02 [Combined] - Float or Fixed Ambiguity

GPS Time (TOW, GMT zone)

- Float - Fixed (1 baseline) - Fixed (2 or more)

Process	Run (4)	by Unknown	on 06/16/2011	at 08:37:56

.

Output Results for JD114F01

POSGNSS Version 5.20.1209 06/16/2011

Figure 2: JD114F01 [Combined] - Quality Factor Plot

Figure 3: JD114F01 [Combined] - Height Profile Plot

Figure 4: JD114F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD114F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD114F01 [Combined] - PDOP, HDOP, VDOP Plots

Figure 7: JD114F01 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD114F01 [Combined] - Forward/Reverse or Combined RMS Plot

D D	(10)		0.614.610.01.1	
Process R	Run (10)	by Unknown	on 06/16/2011	at 09:02:32

Output Results for JD114F02

POSGNSS Version 5.20.1209 06/16/2011

Figure 3: JD114F02 [Combined] - Height Profile Plot

Figure 4: JD114F02 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD114F02 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 7: JD114F02 [Combined] - Horizontal Distance Separation (km)

Figure 9: JD114F02 [Combined] - Float or Fixed Ambiguity

Output Results for JD115F01

POSGNSS Version 5.20.1209 06/16/2011

Figure 2: JD115F01 [Combined] - Quality Factor Plot

Figure 4: JD115F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD115F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD115F01 [Combined] - PDOP, HDOP, VDOP Plots

Figure 7: JD115F01 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD115F01 [Combined] - Forward/Reverse or Combined RMS Plot

Figure 9: JD115F01 [Combined] - Float or Fixed Ambiguity

Output Results for JD116F01

POSGNSS Version 5.20.1209 06/17/2011

Figure 2: JD116F01 [Combined] - Quality Factor Plot

Figure 3: JD116F01 [Combined] - Height Profile Plot

Figure 4: JD116F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD116F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD116F01 [Combined] - PDOP, HDOP, VDOP Plots

Figure 7: JD116F01 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD116F01 [Combined] - Forward/Reverse or Combined RMS Plot

Figure 9: JD116F01 [Combined] - Float or Fixed Ambiguity

Output Results for JD119F01

POSGNSS Version 5.20.1209 06/17/2011

Figure 2: JD119F01 [Combined] - Quality Factor Plot

Figure 3: JD119F01 [Combined] - Height Profile Plot

Figure 4: JD119F01 [Combined] - Forward/Reverse or Combined Separation Plot

Figure 5: JD119F01 [Combined] - Forward/Reverse or Combined Weighting Plot

Figure 6: JD119F01 [Combined] - PDOP, HDOP, VDOP Plots

Figure 7: JD119F01 [Combined] - Horizontal Distance Separation (km)

Figure 8: JD119F01 [Combined] - Forward/Reverse or Combined RMS Plot

Figure 9: JD119F01 [Combined] - Float or Fixed Ambiguity

3 LiDAR Processing & Qualitative Assessment

3.1 Data Classification and Editing

LiDAR mass points were produced to LAS 1.2 specifications, including the following LAS classification codes:

- Class 1 = Unclassified, and used for all other features that do not fit into the Classes 2, 7, 9, 10, or 11, including vegetation, buildings, etc.
- Class 2 = Ground, includes accurate LiDAR points in overlapping flight lines
- Class 7 = Noise, low and high points
- Class 9 = Water, points located within collected breaklines
- Class 10 = Ignored Ground due to breakline proximity.
- Class 11 = Withheld, Points with scan angles exceeding +/- 20 degrees.

The data was processed using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classifies any obvious outliers in the dataset to class 7 and points with scan angles exceeding +/- 20 degrees to class 11. After points that could negatively affect the ground are removed from class 1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model.

This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption is that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model.

The following fields within the LAS files are populated to the following precision: GPS Time (0.000001 second precision), Easting (0.01 foot precision), Northing (0.01 foot precision), Elevation (0.01 foot precision), Intensity (integer value - 12 bit dynamic range), Number of Returns (integer - range of 1-4), Return number (integer range of 1-4), Scan Direction Flag (integer - range 0-1), Classification (integer), Scan Angle Rank (integer), Edge of flight line (integer, range 0-1), User bit field (integer - flight line information encoded). The LAS file also contains a Variable length record in the file header that defines the projection, datums, and units.

Once the initial ground routine has been performed on the data, Dewberry creates Delta Z (DZ) orthos to check the relative accuracy of the LiDAR data. These orthos compare the elevations of LiDAR points from overlapping flight lines on a 1 meter pixel cell size basis. If the elevations of points within each pixel are within 10 cm of each other, the pixel is colored green. If the elevations of points within each pixel are between 10 cm and 20 cm of each other, the pixel is colored yellow, and if the elevations of points within each pixel are greater than 20 cm in difference, the pixel is colored red. Pixels that do not contain points from overlapping flight lines are colored according to their intensity values. DZ orthos can be created using the full point cloud or ground only points and are used to review and verify the

calibration of the data is acceptable. Some areas are expected to show sections or portions of red, including terrain variations, slope changes, and vegetated areas or buildings if the full point cloud is used. However, large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data. The DZ orthos for NRCS Virginia showed that the data was calibrated correctly with no issues that would affect its usability. The figure below shows an example of the DZ orthos.

Figure 2: DZ orthos created from the full point cloud. Some red pixels are visible along embankments, sloped terrain, and in vegetated land cover, as expected. Open, flat areas are green indicating the calibration and relative accuracy of the data is acceptable.

BAE utilized a variety of software suites for data processing. The LAS dataset was received and imported into GeoCue task management software for processing in Terrascan. Each tile was imported into Terrascan and a surface model was created to examine the ground classification. BAE analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing conducted by Dewberry. BAE analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled by BAE to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. The final classification routine applied to the dataset selects ground points within a specified distance of the water breaklines and classifies them as class 10, ignored ground due to breakline proximity.

3.2 Qualitative Assessment

Dewberry qualitative assessment utilizes a combination of statistical analysis and interpretative methodology to assess the quality of the data for a bare-earth digital terrain model (DTM). This process

looks for anomalies in the data and also identifies areas where man-made structures or vegetation points may not have been classified properly to produce a bare-earth model.

Within this review of the LiDAR data, two fundamental questions were addressed:

- Did the LiDAR system perform to specifications?
- Did the vegetation removal process yield desirable results for the intended bare-earth terrain product?

Mapping standards today address the quality of data by quantitative methods. If the data are tested and found to be within the desired accuracy standard, then the data set is typically accepted. Now with the proliferation of LiDAR, new issues arise due to the vast amount of data. Unlike photogrammetrically-derived DEMs where point spacing can be eight meters or more, LiDAR nominal point spacing for this project is 1 point per 0.7 square meters. The end result is that millions of elevation points are measured to a level of accuracy previously unseen for traditional elevation mapping technologies and vegetated areas are measured that would be nearly impossible to survey by other means. The downside is that with millions of points, the dataset is statistically bound to have some errors both in the measurement process and in the artifact removal process.

As previously stated, the quantitative analysis addresses the quality of the data based on absolute accuracy. This accuracy is directly tied to the comparison of the discreet measurement of the survey checkpoints and that of the interpolated value within the three closest LiDAR points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the LiDAR data is actually tested. However there is an increased level of confidence with LiDAR data due to the relative accuracy. This relative accuracy in turn is based on how well one LiDAR point "fits" in comparison to the next contiguous LiDAR measurement, and is verified with DZ orthos. Once the absolute and relative accuracy has been ascertained, the next stage is to address the cleanliness of the data for a bare-earth DTM.

By using survey checkpoints to compare the data, the absolute accuracy is verified, but this also allows us to understand if the artifact removal process was performed correctly. To reiterate the quantitative approach, if the LiDAR sensor operated correctly over open terrain areas, then it most likely operated correctly over the vegetated areas. This does not mean that the entire bare-earth was measured; only that the elevations surveyed are most likely accurate (including elevations of treetops, rooftops, etc.). In the event that the LiDAR pulse filtered through the vegetation and was able to measure the true surface (as well as measurements on the surrounding vegetation) then the level of accuracy of the vegetation removal process can be tested as a by-product.

To fully address the data for overall accuracy and quality, the level of cleanliness (or removal of aboveground artifacts) is paramount. Since there are currently no effective automated testing procedures to measure cleanliness, Dewberry employs a combination of statistical and visualization processes. This includes creating pseudo image products such as LiDAR orthos produced from the intensity returns, Triangular Irregular Network (TIN)'s, Digital Elevation Models (DEM) and 3-dimensional models. By creating multiple images and using overlay techniques, not only can potential errors be found, but Dewberry can also find where the data meets and exceeds expectations. This report will present representative examples where the LiDAR and post processing had issues as well as examples of where the LiDAR performed well.

3.3 Analysis

Dewberry utilizes GeoCue software as the primary geospatial process management system. GeoCue is a three tier, multi-user architecture that uses .NET technology from Microsoft. .NET technology provides the real-time notification system that updates users with real-time project status, regardless of who makes changes to project entities. GeoCue uses database technology for sorting project metadata. Dewberry uses Microsoft SQL Server as the database of choice. Specific analysis is conducted in Terrascan and QT Modeler environments.

Following the completion of LiDAR point classification, the Dewberry qualitative assessment process flow for the USGS NRCS Virginia LiDAR project incorporated the following reviews:

- 1. *Format:* The LAS files are verified to meet project specifications. The LAS files for the USGS NRCS Virginia LiDAR project conform to the specifications outlined below.
 - Format, Echos, Intensity
 - oLAS format 1.2, point data record format 1
 - Point data record format 1
 - Multiple returns (echos) per pulse
 - Intensity values populated for each point
 - ASPRS classification scheme
 - ◦Class 1 unclassified
 - ○Class 2 ground
 - ∘Class 7 Noise
 - ∘Class 9 Water
 - Class 10 Ignored Ground due to breakline proximity
 - Class 11 Withheld due to scan angles exceeding +/- 20 degrees
 - Projection
 - o Datum North American Datum 1983, HARN adjustment
 - Projected Coordinate System State Plane Virginia North (4501)
 - o Units U.S. Survey Feet
 - Vertical Datum North American Vertical Datum 1988, Geoid 09
 - Vertical Units Feet
 - LAS header information:
 - oClass (Integer)
 - GPS Week Time (0.0001 seconds)
 - o Easting (0.01 foot)
 - Northing (0.01 foot)
 - Elevation (0.01 foot)
 - Echo Number (Integer 1 to 4)
 - Echo (Integer 1 to 4)
 - Intensity (8 bit integer)
 - •Flight Line (Integer)
 - \circ Scan Angle (Integer degree)

- 2. Data density, data voids: The LAS files are used to produce Digital Elevation Models using the commercial software package "QT Modeler" which creates a 3-dimensional data model derived from Class 2 (ground points) in the LAS files. Grid spacing is based on the project density deliverable requirement for un-obscured areas. For the USGS NRCS Virginia LiDAR project it is stipulated that the minimum post spacing in un-obscured areas should be 1 point per 0.7 square meters.
 - a. Acceptable voids (areas with no LiDAR returns in the LAS files) that are present in the majority of LiDAR projects include voids caused by bodies of water. These are considered to be acceptable voids.
- 3. *Bare earth quality:* Dewberry reviewed the cleanliness of the bare earth to ensure the ground has correct definition, meets the project requirements, there is correct classification of points, and there are less than 5% residual artifacts.
 - a. *Artifacts:* Dewberry identified the presence of a very limited number of artifacts in the dataset. Artifacts are caused by the misclassification of ground points and usually represent vegetation and/or man-made structures. The artifacts identified are usually low lying structures, such as porches or decks. These low lying features are extremely difficult for the automated algorithms to detect as non-ground and must be removed manually. The vast majority of these features have been removed from, as shown in Figure 3, but a small number of these features are still in the ground classification. The limited numbers of features remaining in the ground are also small features, usually 1 foot or less above the actual ground surface, and should not negatively impact the usability of the dataset.

Figure 3 – Tile number LAS_N16_3730_40. Profile with points colored by class (class 1=yellow, class 2=pink) is shown in the top view and a TIN of the surface is shown in the bottom view. The arrow identifies a porch

structure that has correctly been removed from the ground classification. A limited number of these small features are still classified as ground.

b. *Misclassification:* A very limited number of areas with misclassification were identified. The majority of these areas were corrected. Only very small areas of misclassification may remain in the dataset. The areas that that are misclassified are in flat terrain that will not impact the usability of the dataset.

Figure 4 – Tile number LAS_N16_3883_20. Profile with points colored by class (class 1=yellow, class 11=blue) is shown in the top view and a TIN of the surface is shown in the bottom view. A very small portion of ground between two houses is not classified as ground, but as class 1.

c. *Culverts and Bridges:* Bridges have been removed from the bare earth surface while culverts remain in the bare earth surface. In instances where it is difficult to determine if the feature is a culvert or bridge, such as with some large box culverts or small bridges, Dewberry erred on assuming smaller features, especially if they are on secondary or tertiary roads, would be culverts. Below is an example of a culvert that has been left in the ground surface.

Figure 5– Tile number LAS_N16_3876_30. Profile with points colored by class (class 1=yellow, class 2=pink) is shown in the top view and the intensity is shown in the bottom view. This culvert remains in the bare earth surface. Bridges have been removed from the bare earth surface and classified to class 1.

3.4 Conclusion

The dataset conforms to project specifications for format and header values. The spatial projection information and classification of points is correct. Minor artifacts and small areas of misclassification are isolated and have minimal impact on the usability of the dataset.

PT. #	NORTHING	ELEVS.		
	US STATE PLAN			
POINT ID	NORTHING (FT)	EASTING (FT)	ELEVATION (FT)	
OT-1	6943946.13	11401372.15	1365.47	
OT-2	6927979.32	11434294.59	958.66	
OT-3	6907669.99	11411942.05	1099.45	
OT-4	6889401.62	11376387.52	1417.62	
OT-5	6865311.14	11414634.46	1243.05	
OT-6	6864125.76	11371393.26	1285.26	
OT-7	6855129.40	11333822.17	1459.09	
OT-8	6831556.13	11314774.20	1416.53	
OT-9	6828375.39	11359113.46	1302.74	
OT-9A	6826969.50	11358613.63	1290.87	
OT-10	6841410.76	11382953.80	1406.96	
OT-11	6818347.92	11407007.17	1201.47	
OT-12	6795554.60	11385649.27	1147.46	
OT-13	6803946.63	11343075.53	1284.43	
OT-14	6789972.96	11294774.81	1585.75	
OT-15	6754311.03	11306651.26	1446.64	
OT-16	6759428.60	11338657.49	1211.69	
OT-17	6747302.77	11368632.10	1241.12	
OT-18	6742225.86	11343276.75	1355.13	
OT-19	6720932.09	11302724.54	1564.35	
OT-20	6720939.67	11335072.08	1417.45	
OT-21	6691539.62	11341872.83	1390.93	
OT-22	6693591.05	11316957.61	1458.66	
OT-23	6680704.18	11280197.89	1763.19	
OT-24	6654792.57	11342071.24	1717.76	
GWC-1	6942056.08	11420950.20	1074.68	
GWC-2	6918481.77	11412755.66	972.25	
GWC-3	6899051.85	11422256.70	1103.94	
GWC-4	6892376.74	11397045.12	1223.33	
GWC-5	6879007.68	11385900.10	1172.51	
GWC-6	6852023.59	11405689.50	1496.06	
GWC-7	6848358.48	11371449.45	1395.19	
GWC-8	6861735.78	11351842.01	1374.41	
GWC-9	6839122.95	11327326.57	1391.03	
GWC-10	6823757.12	11340023.06	1286.07	
GWC-11	6810377.81	11389233.25	1214.03	
GWC-12	6794902.48	11365029.15	1134.24	

4 Survey Vertical Accuracy Checkpoints

GWC-13	6785598.51	11340243.57	1334.45
GWC-14	6797023.86	11310487.33	1472.86
GWC-15	6779740.98	11302653.22	1476.38
GWC-16	6768607.20	11323034.23	1426.86
GWC-17	6755579.06	11353684.81	1263.45
GWC-18	6734242.61	11357911.84	1216.81
GWC-19	6724783.35	11380439.11	1257.20
GWC-20	6694139.40	11358999.73	1348.15
GWC-21	6726714.44	11322663.54	1513.64
GWC-22	6709575.98	11316179.28	1456.64
GWC-23	6694964.35	11293214.17	1667.62
FO-1	6939020.27	11449766.57	1021.31
FO-2	6926210.61	11397232.11	1284.27
FO-3	6908601.25	11435623.49	1028.52
FO-4	6904651.02	11387823.65	1185.08
FO-5	6882580.92	11427054.24	1207.36
FO-6	6866320.93	11392868.28	1319.34
FO-7	6875520.71	11342546.83	1628.76
FO-8	6855588.46	11298849.69	2047.82
FO-9	6842898.98	11343576.72	1320.92
FO-10	6824860.34	11398806.03	1402.31
FO-11	6813138.45	11372345.23	1346.79
FO-12	6812049.28	11314400.53	1354.44
FO-13	6826781.23	11293667.06	1783.29
FO-14	6810108.71	11266970.75	2155.57
FO-15	6783672.04	11319722.34	1501.54
FO-16	6774097.54	11368855.14	1183.14
FO-18	6717248.81	11368191.19	1374.34
FO-19	6735364.26	11312350.30	1552.21
FO-20	6704602.91	11295924.40	1963.95
FO-21	6678785.23	11332719.42	1639.25
FO-22	6672190.49	11301838.75	1880.08
FO-23	6672492.58	11353349.45	1507.85

 Table 1: USGS NRCS Virginia LiDAR surveyed accuracy checkpoints

4.1 Survey Checkpoints not used in vertical accuracy testing.

Three (3) checkpoints were surveyed in non-ideal locations for testing LiDAR data. Some of these checkpoints were located on sloped terrain. Due to the horizontal spread of the sensor laser, survey checkpoints should be located on flat terrain to ensure LiDAR returns will be measuring a uniform surface and not a sloped surface which could introduce error into the

vertical accuracy calculations. Additionally, some of these checkpoints were not used because they are located in land cover, such as impenetrable brush, or next to obstructions, such as trees or buildings, that do that do not give the LiDAR sensor an adequate chance to measure the ground surface.

Additional checkpoints are normally surveyed in case some of the checkpoints are deemed unusable. Even after removing these three checkpoints from the dataset, there were still 67 checkpoints remaining for the vertical accuracy testing, meeting project requirements of 60 total checkpoints comprised of 20 checkpoints in each land cover category. Table 2, below, identifies checkpoints not used in the vertical accuracy testing.

Point ID	Easting	Northing	Elevation	
OT-14	11294774.81	6789972.96	1585.75	
FO-4	11387823.65	6904651.02	1185.08	
FO-12	11314400.53	6812049.28	1354.44	

Table 2: Checkpoints not used in vertical accuracy testing.

Below are examples of two checkpoints that were not used in vertical accuracy testing.

Figure 6: Survey Checkpoint OT-14. This checkpoint is located on sloped terrain, better shown in the profile below.

Figure 7: DEM of tiles N16_2798_20 and N16_2799_10 showing that survey checkpoint OT-14 is poorly placed, located on sloped terrain, and therefore was not used in vertical accuracy testing.

Figure 8: Survey Checkpoint FO-12. This checkpoint is located right next to a large tree. Checkpoints must not be located next to obstructions as this can prevent the LiDAR sensor from reaching its target. Due to the poor placement of this checkpoint, it was not used during vertical accuracy testing.

5 LiDAR Vertical Accuracy Statistics & Analysis

5.1 Background

Dewberry tests and reviews project data both quantitatively (for accuracy) and qualitatively (for usability).

For qualitative assessment (i.e. vertical accuracy assessment), sixty-seven (67) check points were surveyed for the project and are located within open terrain, forest, or grass, weeds, and crops land cover categories. The checkpoints were surveyed for the project using RTK survey methods. A survey report was produced which details and validates how the survey was completed for this project.

Checkpoints were evenly distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

5.2 Vertical Accuracy Test Procedures

FVA (Fundamental Vertical Accuracy) is determined with check points located only in the open terrain (grass, dirt, sand, and/or rocks) land cover category, where there is a very high probability that the LiDAR sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The FVA determines how well the calibrated LiDAR sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSEz) of the checkpoints x 1.9600. For the USGS NRCS Virginia LiDAR project, vertical accuracy must be 0.61 ft (18.3 cm) or less based on an RMSEz of 0.31 ft (9.25 cm) x 1.9600.

CVA (Consolidated Vertical Accuracy) is determined with all checkpoints in all land cover categories combined where there is a possibility that the LiDAR sensor and post-processing may yield elevation errors that do not follow a normal error distribution. CVA at the 95% confidence level equals the 95th percentile error for all checkpoints in all land cover categories combined. The USGS NRCS Virginia LiDAR Project CVA standard is 1.21 ft (36.3 cm) at the 95% confidence level. The CVA is accompanied by a listing of the 5% outliers that are larger than the 95th percentile used to compute the CVA; these are always the largest outliers that may depart from a normal error distribution. Here, Accuracy_z differs from CVA because Accuracy_z assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas CVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

SVA (Supplemental Vertical Accuracy) is determined for each land cover category other than open terrain. SVA at the 95% confidence level equals the 95th percentile error for all checkpoints in each land cover category. The USGS NRCS Virginia LiDAR Project SVA target is 1.21 ft (36.3 cm) at the 95% confidence level. Target specifications are given for SVA's as one individual land cover category may exceed this target value as long as the overall CVA is within specified tolerances. Again, Accuracy_z differs from SVA because Accuracy_z assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas SVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

The relevant testing criteria are summarized in Table 3.

Table 3 — Acceptance Criteria

Quantitative Criteria	Measure of Acceptability
Fundamental Vertical Accuracy (FVA) in open terrain only	0.61 ft (based on RMSEz (0.31 ft) * 1.9600)
using RMSEz *1.9600	
Consolidated Vertical Accuracy (CVA) in all land cover	1.21 ft (based on combined 95 th percentile)
categories combined at the 95% confidence level	
Supplemental Vertical Accuracy (SVA) in each land cover	1.21 ft (based on 95 th percentile for each land cover category)
category separately at the 95% confidence level	

5.3 Vertical Accuracy Testing Steps

The primary QA/QC vertical accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications. Figure 6 shows the location of the checkpoints.
- 2. Next, Dewberry interpolated the bare-earth LiDAR DTM to provide the z-value for each of the 67 checkpoints.
- 3. Dewberry then computed the associated z-value differences between the interpolated z-value from the LiDAR data and the ground truth survey checkpoints and computed FVA, CVA, and SVA values.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

Figure 9 shows the location of the QA/QC checkpoints within the project area.

Figure 9 – Location of QA/QC Checkpoints

5.4 Vertical Accuracy Results

Table 4 summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the LiDAR LAS files.

Land Cover Category	# of Points	FVA — Fundamental Vertical Accuracy (RMSEz x 1.9600) Spec=0.61 ft	CVA — Consolidated Vertical Accuracy (95th Percentile) Spec=1.21 ft	SVA — Supplemental Vertical Accuracy (95th Percentile) Target=1.21 ft	
Consolidated	67		0.95		
Open Terrain	24	0.47			
Grass/Weeds/Crop	23			0.95	
Forest	20			0.99	

Table 4 — FVA, CVA, and SVA Vertical Accuracy at 95% Confidence Level

The RMSE_z for checkpoints in open terrain only tested 0.24 ft, within the target criteria of 0.31 ft. Compared with the 0.61 ft specification, the FVA tested 0.47 ft at the 95% confidence level based on RMSE_z x 1.9600.

Compared with the 1.21 ft specification, CVA for all checkpoints in all land cover categories combined tested 0.95 ft at the 95% confidence level based on the 95th percentile.

Compared with target 1.21 ft specification, SVA for checkpoints in the grass, weeds, and crops land cover category tested 0.95 ft and checkpoints in the forest land cover category tested 0.99 ft at the 95% confidence level based on the 95^{th} percentiles.

Figure 10 illustrates the magnitude of the differences between the QA/QC checkpoints and LiDAR data. This shows that the majority of LiDAR elevations were within +/-0.50 ft of the checkpoints elevations, but there were some outliers where LiDAR and checkpoint elevations differed by up to +/-1.40 ft.

Checkpoint Errors

Figure 10 – Magnitude of Elevation Discrepancies

Table 5 lists the 5% outliers that are larger than the 95th percentile, or 0.95 feet.

nointNo	NAD_1983_NSF Coordinat	lane NAVD88	LiDAR	Delta	
ροπαινο	Easting - X (feet)	Northing - Y (fee	t) Survey -Z (feet)	(feet)	Z
FO-6	11392868.28	6866320.93	1319.34	1317.98	-1.36
GWC-15	11302653.22	6779740.98	1476.38	1477.71	1.33
GWC-3	11422256.70	6899051.85	1103.94	1104.95	1.01
FO-20	11295924.40	6704602.91	1963.95	1964.92	0.97

Table 5 — 5% Outliers

Table 6 provides overall descriptive statistics.

100 % of Totals	RMSE (ft) Open Terrain Spec=0.31ft	Mean (ft)	Median (ft)	Skew	Std Dev (ft)	# of Points	Min (ft)	Max (ft)
Consolidated		0.29	0.10	0.01	0.39	67	-1.36	1.33
Open Terrain	0.24	0.20	-0.05	0.34	0.24	24	-0.48	0.53
Grass/Weeds/Crop		0.25	0.14	2.06	0.35	23	-0.27	1.33
Forest		0.46	0.32	-1.38	0.53	20	-1.36	0.97

Table 6 — Overall Descriptive Statistics

Figure 11 illustrates a histogram of the associated elevation discrepancies between the QA/QC checkpoints and elevations interpolated from the LiDAR triangulated irregular network (TIN). The frequency shows the number of discrepancies within each band of elevation differences. Although the discrepancies vary between a low of -1.3 ft and a high of +1.45 ft, the histogram shows that the majority of the discrepancies are skewed on the positive side. The vast majority of points are within the ranges of -0.05 ft to +0.45 ft.

Figure 11 — Histogram of Elevation Discrepancies within errors in feet

5.5 Conclusion

Based on the vertical accuracy testing conducted by Dewberry, the LiDAR dataset for the USGS NRCS Virginia LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

6 Breakline Production & Qualitative Assessment Report

6.1 Breakline Production Methodology

Dewberry used GeoCue software to develop LiDAR stereo models of the USGS NRCS Virginia LiDAR Project area so the LiDAR derived data could be viewed in 3-D stereo using Socet Set softcopy photogrammetric software. Using LiDARgrammetry procedures with LiDAR intensity imagery, BAE used the stereo models developed by Dewberry to stereo-compile the two types of hard breaklines in accordance with the project's Data Dictionary.

All drainage breaklines are monotonically enforced to show downhill flow. Water bodies are reviewed in stereo and the lowest elevation is applied to the entire waterbody.

6.2 Breakline Qualitative Assessment

Dewberry completed breakline qualitative assessments according to a defined workflow. The following workflow diagram represents the steps taken by Dewberry to provide a thorough qualitative assessment of the breakline data.

6.3 Breakline Topology Rules

Automated checks are applied on hydro features to validate the 3D connectivity of the feature and the monotonicity of the hydrographic breaklines. Dewberry's major concern was that the hydrographic breaklines have a continuous flow downhill and that breaklines do not undulate. Error points are generated at each vertex not complying with the tested rules and these potential edit calls are then visually validated during the visual evaluation of the data. This step also helped validate that breakline vertices did not have excessive minimum or maximum elevations and that elevations are consistent with adjacent vertex elevations.

The next step is to compare the elevation of the breakline vertices against the elevation extracted from the ESRI Terrain built from the LiDAR ground points, keeping in mind that a discrepancy is expected because of the hydro-enforcement applied to the breaklines and because of the interpolated imagery used to acquire the breaklines. A given tolerance is used to validate if the elevations differ too much from the LiDAR.

Dewberry's final check for the breaklines was to perform a full qualitative analysis. Dewberry compared the breaklines against LiDAR intensity images to ensure breaklines were captured in the required locations. The quality control steps taken by Dewberry are outlined in the QA Checklist below.

6.4 Breakline QA/QC Checklist

Project Number/Description: TO G11PD00336 USGS NRCS Virginia LiDAR

Date:____02/17/2012____

Overview

- All Feature Classes are present in GDB
- All features have been loaded into the geodatabase correctly. Ensure feature classes with subtypes are domained correctly.
- The breakline topology inside of the geodatabase has been validated. See Data Dictionary for specific rules
- Projection/coordinate system of GDB is accurate with project specifications

Perform Completeness check on breaklines using either intensity or ortho imagery

- Check entire dataset for missing features that were not captured, but should be to meet baseline specifications or for consistency (See Data Dictionary for specific collection rules). NHD data will be used to help evaluate completeness of collected hydrographic features. Features should be collected consistently across tile bounds within a dataset as well as be collected consistently between datasets.
- Check to make sure breaklines are compiled to correct tile grid boundary and there is full coverage without overlap
- Check to make sure breaklines are correctly edge-matched to adjoining datasets if applicable. Ensure breaklines from one dataset join breaklines from another dataset that are coded the same and all connecting vertices between the two datasets match in X,Y, and Z (elevation). There should be no breaklines abruptly ending at dataset boundaries and no discrepancies of Z-elevation in overlapping vertices between datasets.

Compare Breakline Z elevations to LiDAR elevations

Using a terrain created from LiDAR ground points and water points and GeoFIRM tools, drape breaklines on terrain to compare Z values. Breakline elevations should be at or below the elevations of the immediately surrounding terrain. This should be performed before other breakline checks are completed.

Perform automated data checks using PLTS

The following data checks are performed utilizing ESRI's PLTS extension. These checks allow automated validation of 100% of the data. Error records can either be written to a table for future correction, or browsed for immediate correction. PLTS checks should always be performed on the full dataset.

- Perform "adjacent vertex elevation change check" on the Inland Ponds feature class (Elevation Difference Tolerance=.001 feet). This check will return Waterbodies whose vertices are not all identical. This tool is found under "Z Value Checks."
- Perform "unnecessary polygon boundaries check" on Inland Ponds and Inland Streams feature classes. This tool is found under "Topology Checks."
- Perform "duplicate geometry check" on (inland streams to inland streams), (inland ponds to inland ponds), (inland ponds to inland streams). Attributes do not need to be checked during this tool. This tool is found under "Duplicate Geometry Checks."
- Perform "geometry on geometry check" on (inland ponds to inland streams). Spatial relationship is contains, attributes do not need to be checked. This tool is found under "Feature on Feature Checks."
- Perform "polygon overlap/gap is sliver check" (inland streams to inland streams), (inland ponds to inland ponds), (inland ponds to inland streams). Maximum Polygon Area is not required. This tool is found under "Feature on Feature Checks."

Perform Dewberry Proprietary Tool Checks

- Perform monotonicity check on inland streams features using "A3_checkMonotonicityStreamLines." This tool looks at line direction as well as elevation. Features in the output shapefile attributed with a "d" are correct monotonically, but were compiled from low elevation to high elevation. These errors can be ignored. Features in the output shapefile attributed with an "m" are not correct monotonically and need elevations to be corrected. Input features for this tool need to be in a geodatabase. Z tolerance is .01 feet. Polygons need to be exported as lines for the monotonicity tool.
- Perform connectivity check between (inland ponds to inland streams) using the tool "07_CheckConnectivityForHydro." The input for this tool needs to be in a geodatabase. The output is a shapefile showing the location of overlapping vertices from the polygon features and polyline features that are at different Z-elevation. The unnecessary polygon boundary check must be run and all errors fixed prior to performing connectivity check. If there are exceptions to the
polygon boundary rule then that feature class must be checked against itself, i.e. inland streams to inland streams.

Metadata

- Each XML file (1 per feature class) is error free as determined by the USGS MP tool
- Metadata content contains sufficient detail and all pertinent information regarding source materials, projections, datums, processing steps, etc. Content should be consistent across all feature classes.

Completion Comments: Complete – Approved

LiDARgrammetry Data Dictionary & Stereo Compilation Rules

For the USGS NRCS Virginia LiDAR Project

March, 2011

Table of Contents

Table of Contents	218
Horizontal and Vertical Datum	
Coordinate System and Projection	
Tidal Waters	
Description	
Table Definition	
Feature Definition	
Inland Streams and Rivers	
Description	
Table Definition	
Feature Definition	
Inland Ponds and Lakes	
Description	
Table Definition	
Feature Definition	
Contact Information	

HORIZONTAL AND VERTICAL DATUM

The horizontal datum shall be North American Datum of 1983/NSRS2007 adjustment, Units in US survey feet. The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88), Units in Feet. Geoid09 shall be used to convert ellipsoidal heights to orthometric heights.

Coordinate System and Projection

All data shall be projected to Virginia State Plane North, Horizontal Units in Feet and Vertical Units in Feet.

Inland Streams and Rivers

Feature Dataset: BREAKLINES Contains M Values: No XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: STREAMS_AND_RIVERS Contains Z Values: Yes Z Resolution: Accept Default Setting Z Tolerance: 0.001 Feature Type: Polygon Annotation Subclass: None

Description

This polygon feature class will depict linear hydrographic features with a width greater than 100 feet.

Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
SHAPE	Geometry							Assigned by Software
SHAPE_LENGTH	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
	Linear hydrographic features such as streams, rivers, canals, etc. with an average	Capture features showing dual line (one on each side of the feature). Average width shall be great than 100 feet to show as a double line. Each vertex placed should maintain vertical integrity and data is required to show "closed polygon". Generally both banks shall be collected to show consistent downhill flow. There are exceptions to this rule where a small branch or offshoot of the stream or river is present.
Streams and Rivers	width greater than 100 feet in length. In the case of embankments, if the feature forms a natural dual line channel, then capture it consistent with the capture rules.	The banks of the stream must be captured at the same elevation to ensure flatness of the water feature. If the elevation of the banks appears to be different see the task manager or PM for further guidance.
	Other natural or manmade embankments will not qualify for this project.	Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually.
		These instructions are only for docks or piers that follow the coastline or water's edge, not for

docks or piers that extend perpendicular from the land into the water. If it can be reasonably
determined where the edge of water most probably falls, beneath the dock or pier, then the
edge of water will be collected at the elevation of the water where it can be directly measured.
If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is
evident that the waterline is most probably adjacent to the headwall or bulkhead, then the
water line will follow the headwall or bulkhead at the elevation of the water where it can be
directly measured. If there is no clear indication of the location of the water's edge beneath the
dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is
adjacent to the water, at the measured elevation of the water.
Every effort should be made to avoid breaking a stream or river into segments.
Dual line features shall break at road crossings (culverts). In areas where a bridge is present
the dual line feature shall continue through the bridge.
Islands: The double line stream shall be captured around an island if the features on either
side of the island meet the criteria for capture. In this case a segmented polygon shall be used
around the island in order to allow for the island feature to remain as a "hole" in the feature.

Inland Ponds and Lakes

Feature Dataset: BREAKLINES Contains M Values: No XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: PONDS_AND_LAKES Contains Z Values: Yes Z Resolution: Accept Default Setting Z Tolerance: 0.001 Feature Type: Polygon Annotation Subclass: None

Description

This polygon feature class will depict closed water body features that are at a constant elevation.

Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
SHAPE	Geometry							Assigned by Software
SHAPE_LENGTH	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Ponds and Lakes	Land/Water boundaries of constant elevation water bodies such as lakes, reservoirs, ponds, etc. Features shall be defined as closed polygons and contain an elevation value that reflects the best estimate of the water elevation at the time of data capture. Water body features will be captured for features 2 acres in size or greater. "Donuts" will exist where there are islands within a closed water body feature greater than ½ acre in size.	 Water bodies shall be captured as closed polygons with the water feature to the right. <u>The compiler shall take care to ensure that the z-value remains consistent for all vertices placed on the water body.</u> Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually. An Island within a Closed Water Body Feature will also have a "donut polygon" compiled. These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or

	pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.
	elevation of the water.

Contact Information

Any questions regarding this document should be addressed to:

Brian Mayfield, C.P., GISP, G.L.S. Director of Remote Sensing Services Dewberry 1000 N. Ashley Dr., Suite 801 Tampa, FL 33602 (813) 421-8628 – voice (703) 340-4141 – cell bmayfield@dewberry.com

7 DEM Production & Qualitative Assessment

7.1 DEM Production Methodology

Dewberry and BAE utilized ESRI software and Global Mapper for the DEM production and QC process. ArcGIS software is used to generate the products and the QC is performed in both ArcGIS and Global Mapper.

Dewberry Hydro-Flattening Workflow

- 1. <u>Classify Water Points</u>: LAS point falling within hydrographic breaklines shall be classified to ASPRS class 9 using TerraScan. Breaklines must be prepared correctly prior to performing this task.
- 2. <u>Classify Ignored Ground Points</u>: Classify points in close proximity to the breaklines from Ground to class 10 (Ignored Ground). Close proximity will be defined as no more than 1x the nominal point spacing on the landward side of the breakline. Breaklines will be buffered using this specification and the subsequent file will need to be prepared in the same manner as the water breaklines for classification. This process will be performed after the water points have been classified and only run on remaining ground points.

- 3. <u>Terrain Processing</u>: A Terrain will be generated using the Breaklines and LAS data that has been imported into Arc as a Multipoint File. If the final DEMs are to be clipped to a project boundary that boundary will be used during the generation of the Terrain.
- 4. <u>Create DEM Zones for Processing</u>: Create DEM Zones that are buffered around the edges. Zones should be created in a logical manner to minimize the number of zones without creating zones too large for processing. BAE will make zones no larger than 200 square miles (taking into account that a DEM will fill in the entire extent not just where LiDAR is present). Once the first zone is created it must be verified against the tile grid to ensure that the cells line up perfectly with the tile grid edge.
- 5. <u>Convert Terrain to Raster</u>: Convert Terrain to raster using the DEM Zones created in step 6. In the environmental properties set the extents of the raster to the buffered Zone. For each subsequent zone, the first DEM will be utilized as the snap raster to ensure that zones consistently snap to one another.
- 6. <u>Perform Initial QAQC on Zones</u>: During the initial QA process anomalies will be identified and corrective polygons will be created.
- 7. <u>Correct Issues on Zones</u>: BAE will perform corrections on zones following Dewberry's correction process.
- 8. <u>Extract Individual Tiles</u>: BAE will extract individual tiles from the zones utilizing the Dewberry created tool.
- 9. <u>Final QA</u>: Final QA will be performed on the dataset to ensure that tile boundaries are seamless.

7.2 DEM Qualitative Assessment

Dewberry performed a comprehensive qualitative assessment of the DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. This process was performed in ArcGIS software with the use of a tool set Dewberry has developed to verify that the raster extents match those of the tile grid and contain the correct projection information. The DEM data was reviewed at a scale of 1:5000 to review for artifacts caused by the DEM generation process and to review the hydro-flattened features. To perform this review Dewberry creates HillShade models and overlays a partially transparent colorized elevation model to review for these issues. Upon completion of this review the DEM data is loaded into Global Mapper to ensure that all files are readable and that no artifacts exist between tiles.

7.3 DEM Vertical Accuracy Results

The same 67 checkpoints that were used to test the vertical accuracy of the LiDAR were used to validate the vertical accuracy of the final DEM products as well. Accuracy results may vary between the source LiDAR and final DEM deliverable. DEMs are created by averaging several LiDAR points within each pixel which may result in slightly different elevation values at each survey checkpoint when compared to the source LAS, which does not average several LiDAR points together but may interpolate (linearly) between two or three points to derive an elevation value.

Table 7 summarizes the tested vertical accuracy results from a comparison of the surveyed checkpoints to the elevation values present within the final DEM dataset.

Land Cover Category	# of Points	FVA — Fundamental Vertical Accuracy (RMSEz x 1.9600) Spec=0.61 ft	CVA — Consolidated Vertical Accuracy (95th Percentile) Spec=1.21 ft	SVA — Supplemental Vertical Accuracy (95th Percentile) Target=1.21 ft
Consolidated	67		0.90	
Open Terrain	24	0.44		
Grass/Weeds/Crop	23			0.87
Forest	20			1.00

Table 7 — FVA, CVA, and SVA Vertical Accuracy at 95% Confidence Level

The RMSE_z for checkpoints in open terrain only tested 0.22 ft, within the target criteria of 0.31 ft. Compared with the 0.61 ft specification, the FVA tested 0.44 ft at the 95% confidence level based on RMSE_z x 1.9600.

Compared with the 1.21 ft specification, CVA for all checkpoints in all land cover categories combined tested 0.90 ft at the 95% confidence level based on the 95th percentile.

Compared with target 1.21 ft specification, SVA for checkpoints in the grass, weeds, and crops land cover category tested 0.87 ft and checkpoints in the forest land cover category tested 1.00 ft at the 95% confidence level based on the 95^{th} percentiles.

Table 8 lists the 5% outliers that are larger than the 95^{th} percentile, or 0.95 feet.

pointNo	NAD_1983_NSR Coordinat	S2007 Virginia State P e System, North Zone	lane NAVD88	DEM -	Delta Z
	Easting - X (feet)	Northing - Y (fee	t) Survey -Z (feet)	Z (feet)	
GWC-15	11302653.22	6779740.98	1476.38	1477.72	1.34
GWC-3	11422256.70	6899051.85	1103.94	1104.86	0.92
FO-20	11295924.40	6704602.91	1963.95	1964.93	0.98
FO-6	11392868.28	6866320.93	1319.34	1317.98	-1.36

Table 8 — 5% Outliers

Table 9 provides overall descriptive statistics.

100 % of Totals	RMSE (ft) Open Terrain Spec=0.31ft	Mean (ft)	Median (ft)	Skew	Std Dev (ft)	# of Points	Min (ft)	Max (ft)
Consolidated		0.29	0.13	-0.06	0.38	67	-1.36	1.34
Open Terrain	0.22	0.18	-0.03	0.44	0.23	24	-0.43	0.55
Grass/Weeds/Crop		0.25	0.16	2.08	0.34	23	-0.28	1.34
Forest		0.45	0.32	-1.58	0.52	20	-1.36	0.98

Table 9 — Overall Descriptive Statistics

7.3 **DEM QA/QC Checklist**

Project Number/Description: TO G11PD00336 USGS NRCS Virginia LiDAR 02/17/2012 Date:

Overview

- \square Correct number of files is delivered and all files are in ERDAS IMG format
- \boxtimes Verify Raster Extents
 - Verify Projection/Coordinate System

Review

- \square Manually review bare-earth DEMs with a hillshade to check for issues with hydroenforcement process or any general anomalies that may be present. Specifically, water should be flowing downhill, water features should NOT be floating above surrounding terrain and bridges should NOT be present in bare-earth DEM. Hydrologic breaklines should be overlaid during review of DEMs.
- \boxtimes Overlap points (in the event they are supplied to fill in gaps between adjacent
- flightlines) are not to be used to create the bare-earth DEMs
- \boxtimes DEM cell size is 2.5 feet
- \square Perform final overview in Global Mapper to ensure seamless product.

Metadata

- \square Project level DEM metadata XML file is error free as determined by the USGS MP tool
- \square Metadata content contains sufficient detail and all pertinent information regarding source materials, projections, datums, processing steps, etc.

Completion Comments: Complete - Approved