

<u>Kittitas</u> <u>Post-Flight Aerial Acquisition</u> <u>Report</u>

August 2011

Post-Flight Aerial Acquisition and Calibration Report

FEMA REGION 10

Kittitas County, WA

August 2011

Contents

1.0 Overview
1.1. Contact Information:
1.2. Purpose and Location
2.0 LiDAR Acquisition
2.1 System Parameters
2.2 Base Station Information4
2.3 Time Period:5
2.4 PDOP6
3.0Processing Summary
3.1 Airborne GPS
3.2 LIDAR Calibration15
3.3 LIDAR Processing
3.4Flight Log Overview:16
4.0 Data Verification
Original Flight Logs

1.0 Overview

1.1. Contact Information:

Questions regarding the technical aspects of this report should be addressed to:

AeroMetric, Inc. 4020 Technology Parkway Sheboygan, WI 53081

Attn: Robert Merry (Geomatics Manager) Telephone: 920-457-3631 FAX: 920-457-0410 Email: <u>rmerry@aerometric.com</u>

1.2. Purpose and Location

AeroMetric, Inc acquired highly accurate Light Detection and Ranging (LiDAR) data for an area that comprised of approximately 185 square miles of Kittitas County, Washington for STARR as a part of FEMAs RiskMAP program. A graphic of the location is provided in Figure 1.1.

Figure 1.1 Project Area - Kittitas County, WA

2.0 LiDAR Acquisition

2.1 System Parameters

LiDAR was collected to the 'Highest' FEMA specification which is equivalent to the 2 foot contour equivalency accuracy requirement. This requires a nominal post spacing of 1 meter. The LiDAR system parameters to meet this requirement are found in Table 2.1.

Flying Height	1500 meters
Laser Pulse Rate	70 kHz
Mirror Scan Frequency	41 Hz
Scan Angle	(+/-) 16°
Side Lap	50%
Ground Speed	160 knots
Nominal Point Spacing	1 meter

Table 2.1 LiDAR System Specifications

2.2 Base Station Information:

All missions originated and terminated at Bowers Airport in Ellensburg, WA. A GPS base station was operating at the airport during every lift. Table 2.1 is the Base Station information for the project area. Figure 2.1 provides a graphic representation of the Base Station locations. In the figure the Green Stick Pin represents Base Station 39471080.t01. The maximum extent of the collection area was approximately 22 km from Base Station 39471080.t01. The Yellow Stick Pin represents Base Station 82571071. The maximum extent of the collection area was approximately 20 km from Base Station 82571071. Shapefiles of the Base Stations can be found in the Control.zip file attached to this report.

Table 2.2 Base Station Locations

POINT ID	LAT	LONG	HEIGHT (M)
39471080.t01	47 11 39.9373	120 56 33.6098	584.027
82571071	47 01 51.11424	120 31 14.92835	513.293

Figure 2.1 Base Station Location Map

2.3 Time Period:

LiDAR data acquisition was completed between April 17, 2011 and April 19, 2011. A total of 4 flight missions were required to cover the project area. Table 2.3 provides the acquisition parameters. Figure 2.2 depicts the flightlines over the project area. Shapefiles of the flightline swath can be found in the Coverage.zip file attached to this report.

Acquisition Date, Mission, and Time	20110417 107B 12:15-17:00 PDT
	20110418 108A 09:15-12:15 PDT
	20110419 109A/109B 07:55-17:00 PDT
Area of Acquisition	185 square miles
Aircraft	PA 31 Navajo N59984
Planned Altitude	1,500 meters AGL
Planned Airspeed	160 knots
Planned Number of Flight Lines	Block 1 - 49 lines; Block 2 - 20 lines; Block 3 – 30 Lines
Flight Line Spacing	430 meters
Flight Line Coverage	860 meters
Sidelap	50%
System PRF	70 kHz
Mirror Scan Half Angle	16 degrees
Mirror Scan Rate	42 Hz
Nominal Point Density	0.7 points per square meter per pass
Datum	NAD83(NSRS2007) Epoch of 2007.0
	NAVD88 via Geoid09
Projection and Units	U.S. State Plane WA North Zone, U.S. Survey Foot

Table 2.3 LiDAR Acquisition Flight Summary

Figure 2.2 Flight Line Map

2.4 PDOP

The maximum planned PDOP for the LiDAR collection was set at \leq 3.0. The PDOP plots are provided in Figures 2.3-2.6

PDOP Plots

Figure 2.3

Figure 2.5

3.0Processing Summary

3.1 Airborne GPS

Applanix - POSGPS

Utilizing carrier phase ambiguity resolution on the fly (i.e., without initialization), the solution to subdecimeter kinematic positioning without the operational constraint of static initialization as used in semikinematic or stop-and-go positioning was utilized for the airborne GPS post-processing.

The processing technique used by Applanix, Inc. for achieving the desired accuracy is Kinematic Ambiguity Resolution (KAR). KAR searches for ambiguities and uses a special method to evaluate the relative quality of each intersection (RMS). The quality indicator is used to evaluate the accuracy of the solution for each processing computation. In addition to the quality indicator, the software will compute separation plots (Figures 3.1-3.4)between any two solutions, which will ultimately determine the acceptance of the airborne GPS post processing.

GPS Separation Plots

Figure 3.1

Figure 3.2

Day109A [Combined] - Forward/Reverse or Combined Separation Plot

Inertial Data

The post-processing of inertial and aiding sensor data (i.e. airborne GPS post processed data) is to compute an optimally blended navigation solution. The Kalman filter-based aided inertial navigation algorithm generates an accurate (in the sense of least-square error) navigation solution that will retain the best characteristics of the processed input data. An example of inertial/GPS sensor blending is the following: inertial data is smooth in the short term. However, a free-inertial navigation solution has errors that grow without bound with time. A GPS navigation solution exhibits short-term noise but has errors that are bounded. This optimally blended navigation solution will retain the best features of both, i.e. the blended navigation solution has errors that are smooth and bounded. The GPS Altitude Plots are presented in Figures 3.5 - 3.8.

GPS Altitude Plots

Figure 3.5 107B GPS Altitude Plot

Figure 3.6 108A GPS Altitude Plot

Figure 3.7 109A GPS Altitude Plot

Figure 3.8 109B GPS Altitude Plot

The resultant processing generates the following data:

- Position: Latitude, Longitude, Altitude
 - Velocity: North, East, and Down components
- 3-axis attitude: roll, pitch, true heading
- Acceleration: x, y, z components
- Angular rates: x, y, z components

The airborne GPS and blending of inertial and GPS post-processing were completed in multiple steps.

- 1. The collected data was transferred from the field data collectors to the main computer. Data was saved under the project number and separated between LiDAR mission dates. Inside each mission date, a subdirectory was created with the aircraft's tail number and an A or B suffix was attached to record which mission of the day the data is associated with. Inside the tail number sub-directory, five sub-directories were also created: EO, GPS, IMU, PROC, and RAW.
- 2. The aircraft raw data (IMU and GPS data combined) was run through a data extractor program. This separated the IMU and GPS data. In addition to the extraction of data, it provided the analyst the first statistics on the overall flight. The program was POSPac (POS post-processing PACkage).
- 3. Executing POSGPS program to derive accurate GPS positions for all flights:

Applanix POSGPS

The software utilized for the data collected was PosGPS, a kinematic on-the-fly (OTF) processing software package. Post processing of the data is computed from each base station (Note: only base stations within the flying area were used) in both a forward and backward direction. This provides the analyst the ability to Quality Check (QC) the post processing, since different ambiguities are determined from different base stations and also with the same data from different directions.

The trajectory separation program is designed to display the time of week that the airborne or roving antenna traveled, and compute the differences found between processing runs. Processed data can be compared between a forward/reverse solution from one base station, a reverse solution from one base station and a forward solution from the second base station, etc. For the Applanix POSGPS processing, this is considered the final QC check for the given mission. If wrong ambiguities were found with one or both runs, the analyst would see disagreements from the trajectory plot, and re-processing would continue until an agreement was determined.

Once the analyst accepts a forward and reverse processing solution, the trajectory plot is analyzed and the combined solution is stored in a file format acceptable for the IMU post processor.

- 4. When the processed trajectory (either through POSGPS) data was accepted after quality control analysis, the combined solution is stored in a file format acceptable for the IMU post processor (i.e. POSProc). Shapefiles of the trajectories are found in the Coverage.zip attachment to this document.
- 5. Execute POSProc.

POSProc comprises a set of individual processing interface tools that execute and provide the following functions:

Figure 3.9 shows the organization of these tools, and the function of the POSProc processing components.

Figure 3.9 POSProc Processing Components

Integrated Inertial Navigation (iin) Module.

The name *iin* is a contraction of Integrated Inertial Navigation. *iin* reads inertial data and aiding data from data files specified in a processing environment file and computes the aided inertial navigation solution. The inertial data comes from a strapdown IMU. *iin* outputs the navigation data between start and end times at a data rate as specified in the environment file. *iin* also outputs Kalman filter data for analysis of estimation error statistics and smoother data that the smoothing program *smth* uses to improve the navigation solution accuracy.

iin implements a full strapdown inertial navigator that solves Newton's equation of motion on the earth using inertial data from a strapdown IMU. The inertial navigator implements coning and sculling compensation to handle potential problems caused by vibration of the IMU.

Smoother Module (*smth*)

smth is a companion processing module to *iin. smth* is comprised of two individual functions that run in sequence. *smth* first runs the *smoother function* and then runs the *navigation correction function*.

The *smth* smoother function performs backwards-in-time processing of the forwards-in-time blended navigation solution and Kalman filter data generated by *iin* to compute smoothed error estimates. *smth* implements a modified Bryson-Frazier smoothing algorithm specifically designed for use with the *iin* Kalman filter. The resulting smoothed strapdown navigator error estimates at a given time point are the optimal estimates based on all input data before and after the given time point. In this sense, *smth* makes use of all available information in the input data. *smth* writes the smoothed error estimates and their RMS estimation errors to output data files.

The *smth* navigation correction function implements a feedforward error correction mechanism similar to that in the *iin* strapdown navigation solution using the smoothed strapdown navigation errors. *smth* reads in the smoothed error estimates and with these, corrects the strapdown navigation data. The resulting navigation solution is called a Best Estimate of Trajectory (BET), and is the best obtainable estimate of vehicle trajectory with the available inertial and aiding sensor data.

The above mentioned modules provide the analyst the following statistics to ensure that the most optimal solution was achieved: a log of the *iin* processing, the Kalman filter Measurement Residuals, Smoothed RMS Estimation Errors, and Smoothed Sensor Errors and RMS.

3.2 LIDAR Calibration

The purpose of the LiDAR system calibration is to refine the system parameters in order for the postprocessing software to produce a "point cloud" that best fits the actual ground.

For each mission, LiDAR data for at least one cross flight is acquired over the mission's acquisition site. The processed data of the cross flight is compared to the perpendicular flight lines using either the Optech proprietary software or TerraSolid's TerraMatch software to determine if any systematic errors are present. In this calibration, the data of individual flight lines are compared against each other and their systematic errors are corrected in the final processed data.

3.3 LIDAR Processing

The LAS files were then imported, verified, and parsed into manageable, tiled grids using GeoCue.

The first step after the data has been processed and calibrated is to perform a relative accuracy assessment on the flightline to flightline comparisons and also a data density test prior any further processing. To determine a proper accuracy assessment between flightlines, Aerometric uses GeoCue to create Orthos by elevation differences. The generated orthos have assigned elevation ranges that allow the technician to evaluate if the data passes the accuracy assessment and also determine if additional calibration efforts are needed based on the bias trends. Figure 3.10 is the screen capture of the elevation orthos where green indicates a flightline comparison of less than 0.2 feet; yellow is 0.2-0.4 feet; orange is 0.4-0.6 feet, and red is greater than 0.6 feet.

3.4Flight Log Overview:

-Post Spacing – 1 meter -AGL (Above Ground Level) average flying height – 1500 meters -MSL (Mean Sea Level) average flying height – 2100 meters -Average Ground Speed – 160 knots -Field of View – 30° -Pulse Rate – 70 kHz -Scan Rate – 41 Hz -Side Lap (Average) – 50%

Flight logs are located at the end of this document.

4.0 Data Verification

The data was verified using the ground control data collected by Compass Data, Inc. 21 points were distributed throughout the project area and the points were compared to the LIDAR data using TerraScan. TerraScan computes the vertical differences between the surveyed elevation and the LiDAR derived elevation for each point. Table 4.1 provides this vertical accuracy test. RMSE = 0.1 feet.

The Fundamental Vertical Accuracy (FVA) was tested by Compass Data, Inc. This test consisted of 20 vertical checkpoints reported at the 95% confidence level RMSE. FVA= 0.117 meters

The Supplemental Vertical Accuracy (SVA) was tested by Compass Data, Inc. This test consisted of 20 vertical checkpoints reported at the 95th Percentile RMSE. CVA= 0.152 meters

Point	Surveyed Elev.	Lidar Elev.	Difference
	(U.S. Survey Foot)	(U.S. Survey Foot)	(U.S. Survey Foot)
CP50	1734.91	1734.85	-0.06
CP51	1923.59	1923.64	0.05
CP52	1823.89	1823.87	-0.02
CP53	1678.68	1678.85	0.17
CP54	2078.41	2078.55	0.15
CP55	1714.18	1714.17	-0.01
CP56	2310.98	2311.15	0.17
CP57	1995.45	1995.23	-0.22
CP58	1685.77	1685.75	-0.02
CP59	1540.66	1540.69	0.03
CP70	2303.73	2303.72	-0.01
CP71	2205.49	2205.35	-0.14
CP72	2092.45	2092.39	-0.06
CP73	2038.72	2038.79	0.07
CP74	1841.34	1841.16	-0.18
CP75	1910.75	1910.73	-0.02
CP76	2193.97	2193.99	0.02
CP77	2048.34	2048.29	-0.05
Cleelum	1916.10	1916.18	0.08
SX0873	2076.54	2076.52	-0.02
SX1547	1750.17	1750.25	0.08

Table 4.1 Vertical Accuracy Test Results

Average dz	0.00
Standard deviation	0.10
Root mean square (RMS)	0.10

Original Flight Logs

Flight Log 107B Page 1

TOWI	TOWILL Surveying, Mapping		LIDAR FL	LIDAR FLIGHT LOG		Date: 1-1-1-1 Mission: 10フパ
	Survey In	Survey Information			Base	Base Station Data
Project Name:	ELN 13	101-25921		Station Name:	e: SX 1547	17
Flight Vendor / Tail No:	M	Inc. N	19984	Receiver Type & SN:	De & SN: RIT	1 # 8257 .
METs: temp, press, humid)	0		37.5%	Antenna & M	Antenna & Measurement Type:	e: Zephys Greadetic
Airport Start/End:	KELN:			Antenna Hei	Antenna Height – meters:	1357
Planned Parameters: (scan angle, freq., height)	ters: (6 eight) (6	42 1560	0	Antenna Height – feet:	1	451 - 7 1 3566 Checks
Line Number	Start Time (UTC)	End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
Tes+	1908	1908				
Tert	1915	1915				
0	1916	1917	1500	356		Cal @ KELN
c2	0261	1926	1500	176		
L17	5261	2211	1500	212		a bartra
1-1q	L7791	1928	1500	272		
48	1261	1	1508	26		Erron
84	1935	1936	1560	712		
LH	11 39		1.5%6	le		Elloy Eyr Soloty Alary
LH	1a d.H	19111	565	117		

5						
Line Number	Start Time (UTC)	End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
9 H	19 47	1950	1500	26		
	1954	1956	1500	222		
17/17	1959	2001	1500	26		
54	5002	2007	1500	262		
24	1002	(2192	1500	26		
	1010	b102	1500	272		
40	2023	2202	1500	26		
39	7029	2022	1500	ULL		
2	2035	1402	1500	26		
2 C	2045	7052	1560	722		
38	1055	20 58	1560	26		
63	49 12	2109	1500	112		
H	2112	81 12	1500	76		
3	27 12	2179	1565	141		
25	2517	85-11	1500	1-6		
12	21 43	11 49	ICAN	612		

Start Time (UTC)	le End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
2153	2158	1500	26		
2223		1500	272		
172	8122 8	1500	26		
2222	6222 8	1500	212		
1237	1212 2	1500	26		
122	44 2250	1500	662		
222	H 23 00	1580	26		
13 730	5 2312	1500	222		
121	5 2321	1500	25		
137	12 26 32	150 8	262		
2 6 2	11-62 3	15,00	26		
2346	6 73 53	1500	262		
235	58 0003	1500	26		
60.67	1 6002	15,00	176		
001	00 14	1506	356		

TOW	TOWILL and GIS Services	0				Mission: 108A
	Survey I	Survey Information			Base	Base Station Data
Project Name:	ELN 13652-101	652-101		Station Name:	EASI XS :	547
light Vendor / T	Flight Vendor / Tail No: Mafe.	Inc N	599,84	Receiver Type & SN:	e & SN: R7	# 8257
METs: temp, press, humid)	, 12,5°	950.1 mb	46.2%	Antenna & M	Antenna & Measurement Type:	e: Zephy Gooddic
Airport Start/End:	K#1	LN		Antenna Height – meters:	ht - meters:	1.398
Planned Parameters: (scan angle, freq., height)	eters:) (24	1500	Antenna Height – feet:		4,585 - 13975 Check
Line Number	Start Time (UTC)	End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
$+\epsilon_{r}+$	1559	1559				
c	1603	16 04	1500	176		Col @ KELN
20	1600	1610	1500	336		11 Elleneburg
20	1616	5191	1 400	9 # 2		
SI	1622	11 22	14100	116		trace amongly of Seav
52	8291	1211	0041	296		
53	5291	1638	1400	11 6		
SH	21111	1146	14 00	0 (p		cloud - 205h
SS	V H V	1656	00171	116		
47	11.65	160	1400	20C		Reflactude

TOV	TOWILL Surveying, Mapping	0				Mission: 1084
Line Number	Start Time (UTC)	End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
SG	1700	1701	1400	116		clouds & Refly
Ţ	SOLI	1111	1500	26		Possible cloud - Big bax
و	SILI	12L	1500	212		~
5	1775	121	1508	26		
14	135	ZHLI	15.00	262		
20	1746	2811	15,00	26		
2	1211	18031	1500	212		,
e O	1805	1806	1400	962		Refland
57	1801	1810	1400	116		
58	1815	9131	1400	Z96		
50	18 20	12.31	00171	111		
0 9	181	1817	1400	1 412		
9	12 81	1632	1400	1 8		
29	L281	1839	111 00	1.		Passell - Alassa
29	LARI	1844	1400	116		9 × 1
[o L1	12 44	19 CA	14 114	962		

Start Time End Time Average Approximate R (UTC) (UTC) Range Approximate R (UTC) (UTC) Range Approximate R (B S4 1855 1500 116 116 [9 0.0 1902 1500 296 166 [9 0.6 1907 15.86 116 166 [11]1 1918 15.00 236 166 [11]1 1918 1500 116 166 [11]1 1918 1500 176 166 [1]24 1926 1500 176 166 [1]23 1926 1500 176 166	Range Strip Comments Number cloud About psss. ble
0021 2281 0021 2081 0021 2081 0021 2081 0021 2081 0021 2081 0021 2081 0021 2081	t possibility
6021 50P1 50021 51P1 50021 5	abort
0051 F0F1 0051 S1P1 0051 S1P1 0051 S1P1 0051 S1P1	abut t
1913 1500 1918 1500 1975 1500 1965 1500	a 0.0 × +
0021 8181 0021 2261	a bart
9951 9261	april +
1950 1500	
1926 1566	

F			LIDAR FL	LIDAR FLIGHT LOG		Date: 4 - 9 - 1
TOW	TOWILL Surveying, Mapping TOWILL and GIS Services	ing				Mission: 107A
	Survey	ey Information			Base	Base Station Data
Project Name:	ELN	13657-101		Station Name:	E SX ISHT	L H
Flight Vendor / Tail No:	ail No: Mare	c Inc 110	4866	Receiver Type & SN:	e & SN: R7	# 8257
METs: temp, press, humid)	.511	956.6 ~ 10	55.70	Antenna & M	Antenna & Measurement Type:	De: Zcyhn, Greodetic
Airport Start/End:	KELN		>	Antenna Heig	Antenna Height – meters:	1 2324
Planned Parameters: (scan angle, freq., height)	ters: 1(0 eight)	42 1500		Antenna Height – feet:	jht – feet: ¹ 1,	378 -> 1.3344 Official
Line Number	Start Time (UTC)	End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
4 154	5-41	LCH1				
()	1441	2441	1500	114		CI 2 KELN
c7	9441	LHH	1500	356		11 Ellensburg
36	1455	1454	001	1 N 2		Snow - about - cloude
ę.	1567	1503	36 Jai	075		
178	1567	1558	1500	315		
23	7151	1514	14.00	170		
28	1518	1570	1450	300		
18	1513	1526	1400	011		
A.K	1570	15.32	1400	800		Vose ble chard

Flight Log 109A Page 1

_

TOV	TOWILL Surveying, Mapping	Б	LIDAR FL	LIDAR FLIGHT LOG		Mission: 101A
Line	Start Time	End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
HL	15.38	1542	002	120		66 reflight
SL	19451	1550	1500	300		
76	12 54	1558	1400	120		Passible clauls
17	1667	16.07	604	360		
8L	1 6 1	16 14	1100	021		
ю Г	1619	1623	0.14	500		cloud at West X
91	1625	1625	1406	17.0		about ted Sport
61	3291	1,74	1500	9 (Reflight
LS	18 31	1635 .	1500	296		Reflace + S3
64	1637	16 35	1 200	116		Reflicted
90	1647	1642	1.3%	308		R bortod
21	640	11.03	1500	26		Red D. J.+
-	16 58	102	1560	111		
2	17 06	1709	1500	26		
~	1-1 1-1	81L1	1500	J11		
LI I	1111	177	15.08	47		

TOV	TOWILL Surveying, Mapping	6				Mission: 1014
Line Number	Start Time (UTC)	End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
5	1736	1735	1508	222		
ę	62L1	17 HH	1506	26		
Г	1749	1-7 5-1	1540	272		
8	LS L	1802	1700	500		7200 meter also albart
~	1881	18 15	1500	76		
5	18 19	5131	1560	212		
10	1879	1835	1500	26		
-27	18 4 10	13 41	1500	262		R+F1, + b+
11	1 8 by (s	18 53	156%	272		
02	1954	1831	1500	26		Riflight
11	1904	19.05	1500	24		Red by
11	AL LO	2141	1. 70.4	7.4		-
C1 655	1918	1923	1500	2		r/055/mi
23	1926	126	1560	176		
6H	15.61		1500	356		

F			LIDAR FI	LIDAR FLIGHT LOG		Date: 4 - 19 - 1
TOWILI	VILL Surveying, Mapping and GIS Services	s s				Mission: 104B
	Survey	Survey Information		-	Base	Base Station Data
Project Name:	ELN 1	13652 - 101		Station Name:	3X	
Flight Vendor / Tail No:	ail No: Marc	Inc 1	59984	Receiver Type & SN:	pe & SN: R]	T2553 #
METs: temp, press, humid)		956 mb 359	23.27	Antenna & M	en	200
Airport Start/End:	E KELN			Antenna Hei	Antenna Height – meters:	1
Planned Parameters: (scan angle, freq., height)		24 05.6	×011	Antenna Height – feet:	ght – feet: 🍐	. 378 -> 13344 Oneolo
Line Number	Start Time (UTC)	End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
trit	2110					
87	L1 12	5212	1703	200		1200- also
88	21 12	1133	1700	170		Charles and a second
89	21 34	1412	1200	300		
90	21412	2160	1100	021		
11	7155	2700	0071	000		
16	17017	1208	1200	120		Sour in Air - with
93	21 22	8) 22	1 200	300		() /
d r/	01 11	4222	1260	1-10		
56	12 24	12 77	17.00	3,00		

TOWI	VILL Surveying, Mapping	Б				Mission: 1015
Line Number	Start Time (UTC)	End Time (UTC)	Average Range	Approximate Heading	Range Strip Number	Comments
96	1222	2238	0021	Q21		
L b	1422	4422	1200	300		
98	1422	8422	1200	021		
d d	1222	2512	1200	700		
00)	7256	L522	12 00	021		
16	P2759	73 67	1700	300		Rillight - Bad 1:40
JD	7306	2207	000	17.0		1500m plag
-	1122	2122	1 514	310		
ZL	2125	1121	1760	021		
0 L	1122	12221	1100	300		
26	2326	CI II	1700	110		Ref lish
20	LC27	1222	1500	300		Kefland
61	0422	7743	1500	021		Rithaut
LL	LH22	13 C L	1500	300		ナトリアフェンタ
31	7355	65 22	1 206	170		Rofered
20	0005	6005	1500	14		Let 1
CH	0000	2 4 4 4	15.00	1 1		7