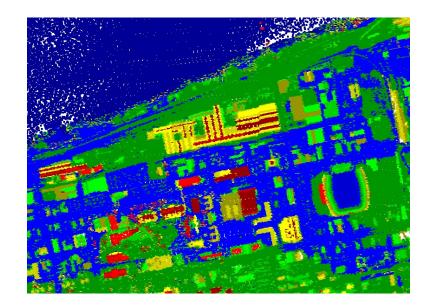

AERIAL LIDAR ACQUISITION AND PROCESSING REPORT

ind M

WOOLPERT


CABELL COUNTY, WEST VIRGINIA 2009 DIGITAL ORTHOIMAGERY PROJECT

CABELL COUNTY, WEST VIRGINIA

WOOLPERT PROJECT #69280

JUNE 2009

AERIAL LIDAR ACQUISITION AND PROCESSING REPORT

CABELL COUNTY, WEST VIRGINIA 2009 DIGITAL ORTHOIMAGERY PROJECT

CABELL COUNTY, WEST VIRGINIA

WOOLPERT PROJECT #69280

JUNE 2009

PREPARED BY:

WOOLPERT 4454 Idea Center Boulevard Dayton, Ohio 45430-1500

TABLE OF CONTENTS

Section 1:	Overview
Section 2:	GNSS-IMU Trajectory Information
Section 3:	
Section 4:	LiDAR System Specifications
Section 5:	LiDAR System Calibration and Accuracy Assessment
Section 6:	Data Processing and Quality Control

SECTION 1: OVERVIEW

Project Name: Cabell County, West Virginia - 2009 Digital Orthoimagery Project

Woolpert Project #69280

Woolpert was contracted by the government of Cabell County, West Virginia to perform an aerial acquisition survey of said county covering 281 square miles, which includes a 500-foot buffer zone outside the county, for the purpose of ultimately producing 1"=100' scale orthoimagery with a 0.5-foot pixel resolution. LiDAR data was collected for a high accuracy DEM for the orthorectification. The LiDAR data can also be utilized for the future generation of contours (with the addition of 3D breaklines).

LiDAR data was collected by the Leica ALS50-II 150kHz Multi-Pulse enabled LiDAR system in Leica roll-stabilizing mounts. The ALS type-II 150kHZ LiDAR sensor collects up to four returns per pulse, as well as intensity data. The aerial LiDAR was collected at the following sensor specifications:

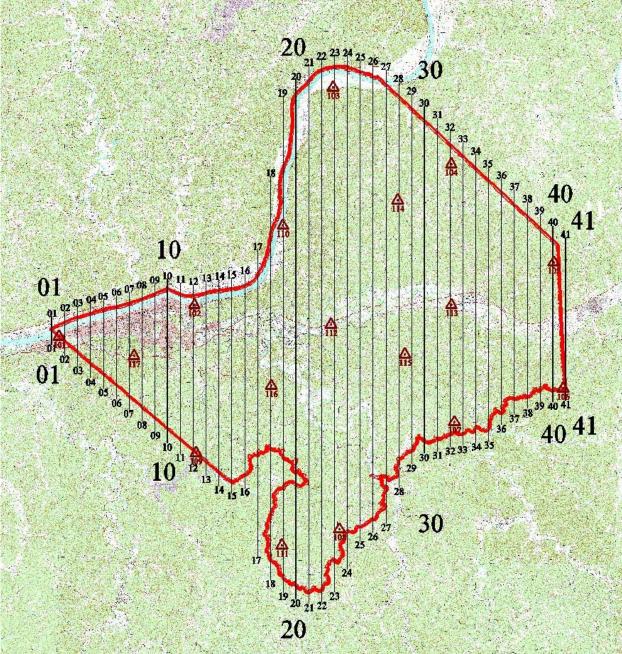
Post Spacing (Average):	3.3
AGL (Above Ground Level) average flying height:	6,5
MSL (Mean Sea Level) flying height:	6,8
Average Ground Speed:	130
Field of View (full):	40
Pulse Rate:	114
Scan Rate:	36I
Side Lap (Average):	309

3.3 ft / 1.0 m 6,500 ft / 1,981 m 6,800 ft / 2,073 m 130 kts / 150 mph 40 degrees 114.500 kHz 36Hz (SH46) & 41 Hz (SH77) 30%

Forty-one (41) flight lines and 550 line miles were collected on two (2) days, March 18, 2009 and March 22, 2009 covering Cabell County, West Virginia.

Flight line acquisition was performed in as few missions as possible, as close together with the ADS imagery collect as possible, to ensure consistency across the county. Woolpert mobilized two (2) LiDAR sensors to complete the job in a short window.

The data collected on was flown back to the Woolpert Dayton, Ohio office, processed and quality controlled immediately such that re-flights for GNSS and coverage were determined and flown at next opportunity.


Woolpert's Aerial Acquisition Team coordinated with the necessary Air Traffic Control and Restricted Airspace personnel prior to flying to ensure access.

Woolpert was onsite, running a GNSS base station at Tri-State/Milton J Ferguson Field Airport (HTS). All GNSS base station data and point locations, including any CORS stations used were tied together, along with the ground control (see Photogrammetric Ground Control Survey Report).

Table 1.1:	Aerial LiDAR	Flight Summary
------------	---------------------	-----------------------

Date of Flying	Lines Flown	Time On/Off Line (UTC)	Time On/Off Line (Local = EDT)
March 18, 2009 – Sensor 46	21 - 41	20:02 - 24:02	04:02 PM - 08:02 PM
March 18, 2009 – Sensor 77	01 - 20	19:14 – 22:07	03:14 PM - 06:07 PM
March 22, 2009 – Sensor 46	Re-flights 10, 11 & 38	16:17 – 16:40	12:17 PM - 12:40 PM

SECTION 2: GNSS-IMU TRAJECTORY INFORMATION

Equipment

Woolpert owns all the equipment used for the ground control and ABGNSS missions with the exception of CORS stations.

Flight navigation is performed using IGI CCNS (Computer Controlled Navigation System). The pilots are thoroughly trained and highly skilled at maintaining their planned trajectory, while holding the aircraft steady and level. If atmospheric conditions are such that the trajectory, ground speed, roll, pitch and heading cannot be properly maintained, the mission is aborted until suitable conditions occur.

The aircraft are all configured with a NovAtel Millennium 12-channel, L1/L2 dual frequency GNSS receivers collecting at 2 Hz.

All Woolpert aerial sensors are equipped with Litton LN200 series IMU's operating at 200 Hz.

A base-station unit was mobilized for each acquisition mission, and was operated by a member of the Woolpert survey and/or flight crew. Each base-station setup consisted of one Trimble 4000 - 5000 series dual frequency receiver, one Trimble Compact L1/L2 dual frequency antenna, one 2-meter fixed-height tripod, and essential battery power and cabling. Ground planes were used on the base-station antennas. Data was collected at 1 or 2 Hz.

GNSS Base Stations operated during the acquisition missions, including nearby CORS stations used, are listed below.

Woolpert flight crews were onsite, running a GNSS base station at Tri-State/Milton J Ferguson Field Airport (HTS).

Station Name	Latitude (DMS)	Longitude (DMS)	Ellipsoid Height (L1 Phase center) (Meters)
AP 1963 STA A / NGS PID: AC7561	N 38° 22' 10. 05452"	W 82° 33' 53.66674"	217.664
KYGB	N 38° 28' 50. 19583"	W 82° 52' 23.97844"	184.419

Table 2.1: GNSS Base Stations

Data Processing

All airborne GNSS and IMU data was post-processed and quality controlled using Grafnav Waypoint software and either Applanix POSPac or Leica IPAS software. GNSS data was processed at a 1 or 2 Hz data capture rate and IMU data was processed at 200 Hz.

Trajectory Quality

Example graphs from: Day077, N7079F & ALS LiDAR S/N 46:

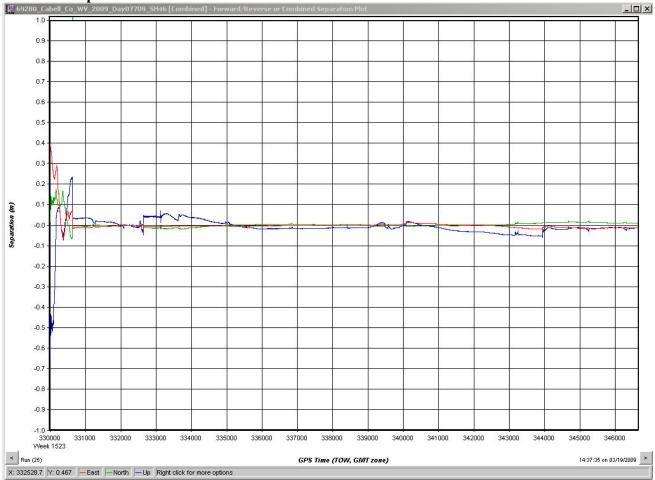
The GNSS Trajectory, along with high quality IMU data, is a key factor in determining the overall positional accuracy of the final sensor data.

ſ AutoAnt

Flight Trajectory:

Within the trajectory processing, there are many factors that affect the overall quality, but the most indicative are the Combined Separation, the Estimated Positional Accuracy, and the PDOP.

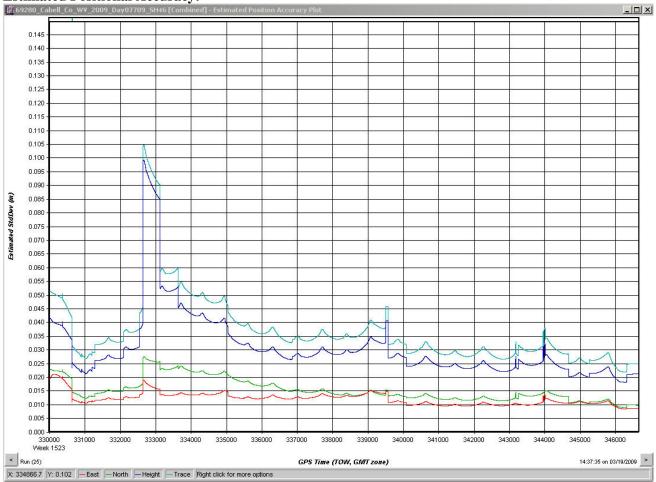
The following table lists the Base Station(s), the average Combined Separation, Estimated Position Accuracy and PDOP for each acquisition mission.


Table 2.2:

Mission Specific Base Stations, Combined Separation, Estimated Positional Accuracy and PDOP

Date Sensor Head	Base Station(s)	Combined Separation: Average Difference (meters)	PDOP: Average	Horizontal Estimated Positional Accuracy: (meters)	Vertical Estimated Positional Accuracy: (meters)
Mar-18-2009 Sensor 46	AC7561	0.02	2.2	0.020	0.040
Mar-18-2009 Sensor 77	AC7561	0.03	2.0	0.015	0.030
Mar-22-2009 Sensor 46	KYGB	0.05	1.3	0.030	0.050

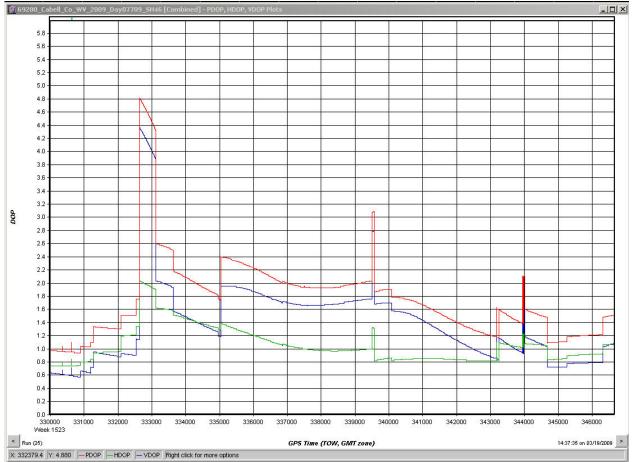
The Combined Separation is a measure of the difference between the forward run and the backward run solution of the trajectory. The Kalman filter is run in both directions to remove directional specific anomalies. The closer these two solutions match; in general, the better is the overall reliability of the solution.


Woolpert's goal is to maintain a Combined Separation Difference of < 10cm, often achieving results well below this cap.

Combined Separation:

The Estimated Positional Accuracy plots the standard deviations of the east, north, and vertical directions along a time scale of the trajectory. It shows loss of lock issues as well as issues arising from long baselines and noise or other interference.

Woolpert's goal is to maintain an Estimated Positional Accuracy of < 10 cm, often achieving results well below this cap.



Estimated Positional Accuracy:

PDOP, the Positional Dilution of Precision, is a factor that describes the effects of satellite geometry on the accuracy of the airborne GNSS solution. The geometric distribution of the satellites is measured relative to the locations of the receivers on the ground and in the aircraft. PDOP can be computed in advance, based on the approximate receiver locations and the predicted location of the satellite, which is called the satellite ephemeris.

Low PDOP numbers are preferable; the higher the PDOP number, the weaker the geometric quality of solution between the satellite, aircraft and reference receivers.

Woolpert's goal is to maintain a final PDOP of < 3.0 during acquisition missions. Satellite geometry and the resultant PDOP levels are dynamic, changing with the position of the aircraft. Occasionally, one satellite in the network will drop below the horizon, breaking its connection to the receiver, and the PDOP level will spike above 3.0 momentarily. Small deviations of this type are accounted for during post-processing of the data through the use of Kalman filtering. If PDOP in the aircraft rises above 3.0 for a significant time period, the survey is usually stopped until the geometry improves or flight is marked for a re-flight if post processing signifies a significant loss of accuracy due to the PDOP.

PDOP:

SECTION 3: FLIGHT LOG(S)

This section contains the Flight Log(s) covering the project. Flight Logs list mission specific details such as crew members, airports, weather conditions, real time DOP values and document any issues encountered during the mission. Flight Logs are filled out by the sensor operator during the acquisition flight.

WOOLPERT	LIDAB LO SHEET	6	Date: 18/03/09 DD / MM / YY				77	Mission Name: Cabell Co WV 69280			
Operator:			Aircraf	С: 🗹 н	7079F	· ·	lobbs St	art	Local Start Time (Wheels Up)	Zulu Start	
imith Pilot:			□ N404CP □ N475RC			798.7	33	12:01 PM	16:01		
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Hobbs E		Local End Time (Wheels	Zulu End Tir	
Albers Passenge	[5:		Sensor: SH46 SH77						Dows)	21:07	
			373				804		5:07 PM	12012	
find Directi 250/7	inn/Sp Tiribility 10	Claud ceili ch		Claud Ca	ver X:	Depart	ing Airp	ort	00W	Arriving	
Temp: Deu Pressure:			Wis-4/Hes		Applan	iz GPS Ba	igan Luggi	CRW ng et: 3:39 19:39	HTS		
22.0 ° 0	C 6.0°C	30.0	09	df Firs	•20						
Base Stat	ion # Operator	:						Using a	r Relying on CORS		
	ion #: Operator			<					5 🗆 NO	S 8	
				,	aser S	Specific	ations	-			
Scan An		Pul		Mode		tuator		Speed	AGL: 6500 ft		
(FO¥):	40 Frequen cy (Hz):	Rate(kHz	2j: 114.5	2+2	0.0		<u></u>	30	MSL: 7000 ft		
	36			🗹 4+3	0.3			Pauer X	Maz Range:		
				🗆 Single	0.7	i	87%		Avg. Elev.: 500 Adj. AGL:		
				🗹 Multi			517.				
Flt Line	Mission ID#	Heading	HDOP	YDOP	S¥s	Cours	Fine	AGC	Line Notes		
<u>IEST</u>	090318-194057								ok		
	Times entered ar	e Zulu / GMT	T 🔻	Ver	ify S-Tur	ns Befor	e Missior	n ⊡ Y₀r	□ N₀		
41	"" 200146	N	0.792	1.043	11	6	7	· · · · ·			
40	···· 200953	S	0.97	1.256	8	6	7				
39	"" 201747	N	0.973	1.198	8	6	7				
38	202600	S	1.017	1.157	8	6	7				
37	""203445	N	1.651	2.383	7	6	7				
36	"" 204355	S	1.714	2.641	7	6	7				
35	"" 205350 "" 210429	N S	1.716	2.804	7	6	7				
34	"" 210429 "" 211536	N	1.491 1.367	2.24	9	6	7				
32	"" 212720	s	1.252	1.911	9	6	7				
31	"" 213837	N	1.208	1.899	8	6	7				
30	"" 215019	s	1.197	1.919	8	6	7				
29	"" 220149	N	1.23	1.98	8	6	7				
28	···· 221304	S	1.044	1.556	9	6	7				
27	···· 222527	N	1.097	1.58	9	6	7				
26	"" 223903	s	1.037	1.597	9	6	7				
25	225231	N	0.975	1.517	9	6	7				
24	230554	S	0.914	1.402	9	6	7				
23	"" 232109	N	0.875	1.278	9	6	7				
22	"" 233537 "" 235105	S	0.993	1.409	9	6	7				
21	"" 235105	N	0.858	1.275	9	6	7				
	7										
			-	1							
			3 (
-											
				V.	erify S-T	urns Afte	r Missior		/or N=		

Page 1 of

~	LIDAB LO SHEET	6	пп	Date: 18/03/09 / MM /	YY		Date: 77		n Name: 5 WV 69280	
perator:			Aircraf		7079F	1	lobbs St	art	Local Start Time (Wheels Up)	Zele Star
chneider			M N404						10 A.S.	15:40
ilot:			E INAVA		475RC		2559.8	33 2	11:40 AM	1000000
iebhart			Sensor	-			Hobbs Ei	nd .	Local End Time (Wheels Down)	Zulu End Ti
assenge	IS:				SH77				2	22:17
Wind Direction/Sp Viribility Claud ceilin		1000				2566.5		6:17 PM	Service	
			Claud Ca	ver X:	Depart	ing Airp	ort		Arriving	
210/9	10 Deu	ch Pressure:		Wind/Has		A		qan Luqqi	HTS 4 4t: 15:26	HTS
122-122-12	Paint:	r rentere:		4 Fire			11 OF 3 D#	448 2844		
15.0 ° C	6.0 ° C	30.:	21							
ase Stat	ion # Operato	r: Schneider		STAA 1	963 AF	,		Using o	r Relying on CORS	
	ion #: Operato			8					I NO	2
				· ;	acer 4	nacilio	ations	-		
Scan An		Pul		Mode		tuatar		ipaad	AGL: 6500 ft	
(FO¥):			:): 114.5	2+2	0.0			20	MSL: 7000 ft	
	cy (Hz): 36			4+3	0.3		1	30	Max Range: 4924-7165	
				Single	0.7		Larer	ansı X	Avg. Elev.: 500	
							87%		Adj. AGL:	
		54		🗹 Multi						
Flt Line	Mission ID#	Heading	HDOP	YDOP	S¥s	Cours	Fine	AGC	Line Notes	
JEST	090318-152716								ok	
i i i	Times entered a	1	「 ▼	Ver	<u> </u>		e Mission	Yer		
1	191425	S	2	1.3	11	12	7	33		
2	"" 192004	N	2 2	1.3	11	12	7	s - s		
3	"" 192625	S	2	1.3	11	12	7	33		
4	"" 193228	N	2	1.4	11	12	7	33		
5	""193907	S	2	1.3	11	12	7	33		
6	"" 194601	N	2	1.4	12	12	7	33	3	
7	···· 195342	S	2 2	1.4	12	12	7	3	3	
8	"" 200040	N	2 2	1.3	12	12	7	s	1	
9	200834	S	2 2	1.6	12	12	7	s	1	
10	"" 201644	N	2	1.9	11	12	7	3		0.000.000.000.000.000
11	"" 202510	S	2 2	2	12	12	7	s - s	PDOP SPIKE-FINISH LINE A	ND CIRCLE
12	"" 203313	N	22	2.8	10	12	7	3	-	
13	204126	S	· · · · ·	2.8	9	12	7	3		
14	205008	N		2.4	10	12	7	d		
15	205902	s	2	2.4	10	12	7	d	-	
16	"" 210827	N	2	2.2	10	12	7	d	-	
17	"" 211800	s	2 2	2.1	9	12	7		-	
18	···· 212849	N		1.9	9	12	7	s		
19	214255	S		1.8	9	12	7	·		
_	215652	N		1.7	9	12	7			
20	210602		1			5		3		
20	210602	s)	2			1				
20	210602					s;	1	8	-	
20	210602					9 9				
20	219692					93 93				
20	219692									
20	219692									
20	210602									
20	210602									
20	210602				erify S-Ti	urns Afte	r Mission		AT □ N ₀	

Page 1 of

_									8. 				
	IIDAB LOG			Date: 22/03/09		Julia	Date:	Missio	n Name:				
		8H1	eet -		nn l	22/03/09	YY		81 Cabell C		co WV 69280		
Op	erator:				Aircraft: MT079F			1	Hobbs Start		Local Start Time (Wheels Up)	Zele S	Start
Sh	uler											15:20	
	lot:						1475RC		834.1		11:20 AM	10:20	
							<u> </u>	Hobbs E		Local End Time (Wheels	Zulu En	d Time	
	der Issenge				Sensor						Down)		
	SSENge	12:			SH4	6 🗆	SH77		836.5		1:44 PM	17:44	
	Direct		Tiribility	Claud cailin	na (ft):	Claud Ca	Per X:	Depart	ing Airp			Arriving	
	200/4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	10	cir							DAY	DA	
Ter		-	Deu	Pressure:		Wind/Has	es/Clas	Applan	iz GPS B.	qan Luqqi			19
202			Paint:	80 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4/ Fire	•?	100000			entrestati aportananta rateran		
	11.0 ° C	8	-6.0°C	30.4	43			84				5	
	100.0 <u>01</u> 20.001									2002000			
Ba	se Stat	ion #	Operator	: Schneider		STAA 1	963 AF	,			r Relying on CORS		<u> </u>
Ba	se Stat	ion #:	Operator	:		10				VES	; 🗆 NO	5	
							laser S	pecific	ations				
	Scan An	gle	Scan	Pul	se	Mode		tuatar		Speed	AGL: 6500 ft		
	(FO¥):	40	Frequen	Rate(kHz	:): 114.5	2+2	0.0				MSL: 7000 ft		
		ſ	cy (Hz):			4+3	0.3		1	30	Max Bange: 4924-7165		
			36				0.00		Larer	Pauer Z	Avg. Elev.: 500		
						Single	0.7		87%		Adj. AGL:		
		ſ				Multi							
		B.R.L	sies IDA		upop	YDOP	SVs	Cours	F 1	100	Line Mater		
	Flt Line	MIS	sion ID#	Heading	HDOP	TUOP	545	e	Fine	AGC	Line Notes		
	<u>JEST</u>		322 151123								ok		
		▲ Time	s entered ar	e Zulu / GM1	[T	Ver	ify S-Tur	ns Befor	e Mission	1 🗹 Yor	□ No		
	10		161642	S	1.07	1.226	9	6	7		refit		
	11		162503	N	1.09	1.235	9	6	7		refit		
	38		163816	s	0.983	1.128	10	6	7		reflt		
-			100010		0.000	1.120	10	Ů					-
-		-		3	 	<u>+</u>	-	1					
					<u> </u>	<u> </u>	<u> </u>			-			
					<u> </u>	<u> </u>	L			-			
				~ .									
						1 1			1				
								-					
		-		<u> </u>	t	<u> </u>		<u> </u>		1			- 1
				<u></u>	 	<u> </u>	-	8	-				
-	$ \rightarrow $	-		-	<u> </u>	 	<u> </u>		-	-			
	$ \rightarrow $	<u> </u>			<u> </u>	<u> </u>	ļ	-		-			
													_
						L							
													1
				50 C				С.					
-				2	t	1		8					
		-			 	+ · · ·	-	1					
	$ \rightarrow $	-		<u> </u>	<u> </u>	<u> </u>		-					
					<u> </u>	<u> </u>		-		-			
								~					
						1 1			1				
													-
	⊢ +	-			t	+	1		-				
-	\vdash	<u> </u>			÷	<u> </u>	-	2	-	÷ ;			
	\vdash	<u> </u>			<u> </u>	<u> </u>				÷			
											- 100 M		
				200		V	erify S-T	urns Afte	r Mission	. 🗹 1	lor 🗌 No		
5-	pplomont	al Hata											
1													
1													

SECTION 4: LIDAR SYSTEM SPECIFICATIONS

The LiDAR data was acquired using two ALS50-II 150kHz Multi-Pulse enabled LiDAR systems, both which are on board Cessna 404 Titans. The ALS50-II LiDAR system, developed by Leica Geosystems of Heerbrugg, Switzerland, includes the simultaneous first, intermediate and last pulse data capture module, the extended altitude range module, and the target signal intensity capture module. The system software is operated on an OC50 Operation Controller aboard the aircraft.

The ALS50-II LiDAR System has the following specifications:

	Nominal					
Operating Altitude	200 - 6,000 meters					
Scan Angle	0 to 75° (variable)					
Swath Width	0 to 1.5 X altitude (variable)					
Scan Frequency	0 – 90 Hz (variable based on scan angle)					
Maximum Pulse Rate	150 kHz					
Range Resolution	Better than 1 cm					
Elevation Accuracy	8 – 24 cm single shot (one standard deviation)					
Horizontal Accuracy	7 – 64 cm (one standard deviation)					
Number of Returns per Pulse	4 (first, second, third, last)					
Number of Intensities	3 (first, second, third)					
Intensity Digitization	8 bit intensity + 8 bit AGC (Automatic Gain Control) level					
MPia (Multiple Pulses in Air)	8 bits @ 1nsec interval @ 50kHz					
Laser Beam Divergence	0.22 mrad @ 1/e ² (~0.15 mrad @ 1/e)					
Laser Classification	Class IV laser product (FDA CFR 21)					
Eye Safe Range	400m single shot depending on laser repetition rate					
Roll Stabilization	Automatic adaptive, range = 75 degrees minus current FOV					
Power Requirements	28 VDC @ 25A					
Operating Temperature	0-40°C					
Humidity	0-95% non-condensing					
Supported GNSS Receivers	Ashtech Z12, Trimble 7400, Novatel Millenium					

SECTION 5: LIDAR SYSTEM CALIBRATION AND ACCURACY ASSESSMENT

Introduction

This Woolpert Leica ALS50-II 150kHz Multi-Pulse enabled LiDAR system Calibration and Accuracy Assessment Report shall be used to represent confirmation of the LiDAR system specifications, performance, and requirements. The system functionality, elevation, and horizontal accuracy performance shall be demonstrated for calibration purposes.

This report contains various test results and information pertaining to the system.

On Site Antenna Offsets and Location

Aircraft GPS Antenna

The following measurements were calculated for Woolpert's aircraft Cessna 404 N404CP and Cessna 404 N7079F, equipped with LiDAR. The POS/AV and ALS50 processing numbers were calculated from internal measurements completed in Leica's lab, and the positioning of the GPS antenna on the aircraft was field surveyed by Woolpert using a total station.

N7079F: Cessna 404 with ALS50-II S/N 46 installed

Reference Point to GPS Antenna				
Х	0.608 m			
Y	0.050 m			
Z	-1.341 m			

N404CP: Cessna 404 with ALS50-II S/N 77 installed

Reference Point to GPS Antenna					
Х	0.762 m				
Y	0.120 m				
Z	-1.277 m				

The following measurements were calculated in the lab at Leica and will remain constant.

ALS50-II S/N 46

User to IMU Lever Arm (POS/AV)		
Х	-0.273 m	
Y	0.161 m	
Z	-0.017 m	

ALS50-II S/N 77

User to IMU Lever Arm (IPAS)			
Х	-0.262 m		
Y	0.117 m		
Z	0.006 m		

Base Station GPS Antenna

Monument Description:			
GPS Receiver Type: Epoch Interval: 1 sec			
Trimble 4700 Elevation Mask: 10 degrees			
Antenna Type: Trimble	Observation Type: Static		
Station Names used in processing the acceptance data:			
<u>#1: ASI</u> N 39 53 57.97634 Lat. W 84 12 01.41721 Long. 277.671 Ellipsoidal. HI.			

Flight Calibration Methodology

Data Collection

To accomplish the formal calibration, Woolpert has established a calibration range consisting of an airport runway. The calibration range has been ground surveyed to an accuracy of better than 1 cm. Four flight lines with two different altitude and opposing headings (see Figure 5-3) are required in order to capture pitch, roll, heading (see Figure 5-1) and torsion errors (see Figure 5-2).

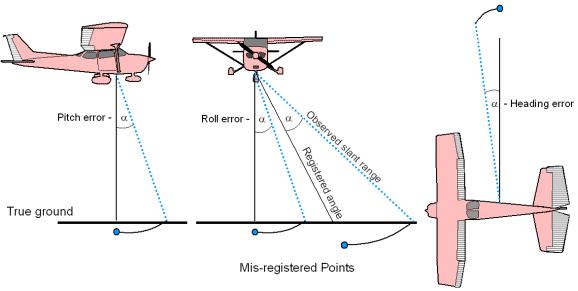


Figure 5-1: Misalignment Errors.

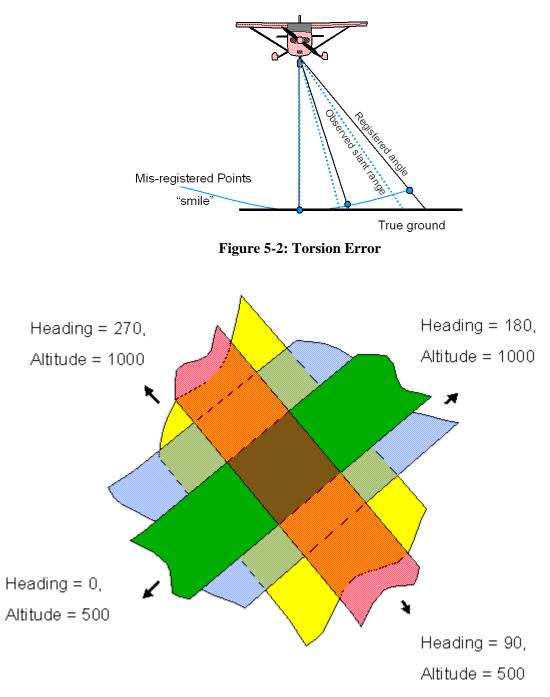


Figure 5-3: Optimal Flight Pattern for Calibration

Intensity Images

Four images from LiDAR intensity reflectance are generated in order to pick up tie points (see Figure 5-4). A least square adjustment (LSA) is performed using AutoBoresighting software provided by system manufacturer. Pitch, roll, heading, and torsion errors are calculated by LSA.

Figure 5-4: Ortho photo generated from LiDAR intensity reflectance.

Ground Control Points

Ground control points were collected along and across an airport runway. A total of 116 runway points were surveyed. The LiDAR collects scan data over the control points and the data is then used to determine the absolute Z accuracy of the system. The distribution of the runway points can be found in Figure 5.5.

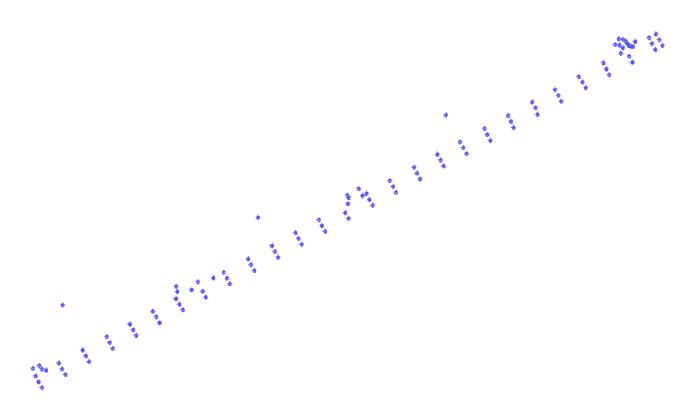


Figure 5-5: Ground control points on the runway

Flight over Ground Control Points

Flight lines, flown parallel and perpendicular to the runway control points were used to determine the elevation (Z) error of the LiDAR data as well as pitch, roll, heading, and torsion can be seen in Figure 5-6. Each day the runway was flown, multiple overlapping strips were performed to assure that most control points were covered and to increase the likelihood that a laser point would strike within 0.5 meters of a control point.

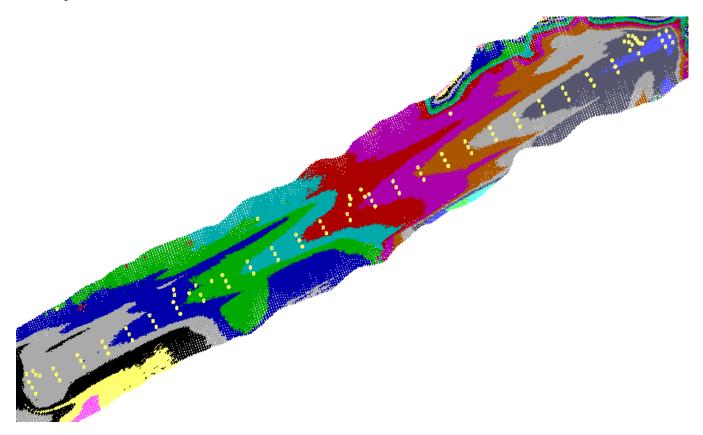


Figure 5-6: One flight line parallel to the runway ground control points. The flight line is color coded by elevations. The LiDAR data was collected at about 2500 meters AGL.

Calibration Results and Accuracy Assessment

Final Calibration Parameters

The following numbers were derived by Leica through lab calibration, and/or from data acquired on Woolpert's LiDAR calibration site as well as from data acquired over the project site. These are the latest pertinent values for each respective sensor and project.

ALS50-II S/N 46

Parameter	Value	Format	
Lab fixed parameters			
Range 1 Correction	1.000/1.000 m	0.000	
Range 2 Correction	1.002/1.026 m	0.000	
Range 3 Correction	1.018/0.975 m	0.000	
Range 4 Correction	0.979/1.006 m	0.000	
Encoder Latency	0.00 mcr sec	0.00	
Ticks Per Revolution	8388608 ticks	0000000	
Attitude			
*Roll (radian)	-0.021630598	0.000000000	
*Pitch (radian)	0.016400155	0.000000000	
*Heading (radian)	-0.000441233	0.000000000	
*Scan angle correct	35600 ticks	00000	
Mechanic			
*Torsion (no unit)	120000	00000	

ALS50-II S/N 77

Parameter	Value	Format	
Lab fixed parameters			
Range 1 Correction	0.893/0.880 m	0.000	
Range 2 Correction	0.893/0.884 m	0.000	
Range 3 Correction	0.946/0.853 m	0.000	
Range 4 Correction	0.875/0.918 m	0.000	
Encoder Latency	0.20 mcr sec	0.00	
Ticks Per Revolution	8388608 ticks	0000000	
Attitude			
*Roll (radian)	-0.000776506	0.000000000	
*Pitch (radian)	-0.002643632	0.000000000	
*Heading (radian)	0.000546823	0.000000000	
*Scan angle correct	13250 ticks	00000	
Mechanic			
*Torsion (no unit)	70000	00000	

*Value calibrated on site from calibration data

Accuracy Assessment

Vertical accuracy statistics was calculated by comparing LiDAR bare earth to existing control points as following.

Average error	-0.007	feet
Minimum error	-0.440	feet
Maximum error	0.610	feet
Average magnitude	0.270	feet
Root mean square	0.333	feet
Std deviation	0.360	feet

Point ID	Easting (feet)	Northing (feet)	Elevation (feet)	Laser Elevation (feet)	Dz (feet)
101	1538061.89	515413.88	548.24	548.19	-0.05
102	1572903.59	523556.65	547.33	547.32	-0.01
103	1608699.30	579645.17	566.06	outside	*
104	1639193.47	559901.47	872.70	outside	*
105	1665627.53	534572.91	953.69	outside	*
106	1668006.94	502020.06	1054.60	outside	*
107	1639968.97	493378.29	646.04	outside	*
108	1610374.50	465747.50	1032.70	outside	*
109	1573323.40	485365.76	616.34	616.07	-0.27
110	1595749.99	544048.86	565.45	565.01	-0.44
111	1595483.30	461595.01	640.44	640.75	0.31
112	1608179.03	518499.59	575.83	576.44	0.61
113	1639197.04	523599.53	586.18	outside	*
114	1625370.67	550579.92	942.67	outside	*
115	1627267.30	510802.45	620.96	removed	*
116	1592752.60	502733.74	627.26	outside	*
117	1557358.01	510483.95	887.29	887.09	-0.20

Based on the analysis of the LiDAR data the accuracy of the system meets the required specifications.

Approved By:				
Title	Name	Signature	Date	
Woolpert, Associate Member LiDAR Specialist Certified Photogrammetrist #1281	Qian Xiao	0	June 22, 2009	

SECTION 6: DATA PROCESSING AND QUALITY CONTROL

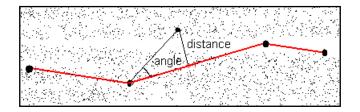
LiDAR Data Processing

In this process, Woolpert employed GPS differential processing and Kalman filtering techniques to derive an aircraft trajectory solution at one or half-second intervals for each base station within the project limits. Statistics for each solution (base station) were generated and studied for quality. The goal for each solution is to have:

- maintained satellite lock throughout the session
- > position standard deviation of less than 10 centimeters
- Iow ionospheric noise
- ➢ few or no cycle slips
- > a fixed integer ambiguity solution throughout the trajectory
- > a maximum number of satellites for a given constellation
- ➤ a low (3.0 or less) Position Dilution of Precision (PDOP)

Often times a solution for a given base station will meet all of the above parameters in certain portions of the trajectory while the other base station might meet the above conditions in different portions of the trajectory solution. In this case, further processing was done to form different combinations of base station solutions and/or satellites to arrive at the optimal trajectory.

When the calibration, data acquisition, and GPS processing phases were complete, the formal data reduction process began by Woolpert LiDAR specialists:


✓ Processed individual flight lines to derive "Point Cloud."

Given the airborne GPS aircraft trajectory and the raw LiDAR data subdivided by flight lines, we used manufacturer software to reduce raw information to a LiDAR point cloud on the ground. Woolpert has developed proprietary software to generate parameter files, allowing the manufacturer's software to process a block; this allows us to batch process any number of flight lines. As part of this process, outliers in the data are removed. Typical outlying data points are a result of returns from clouds.

- ✓ Studied individual flight lines and how these lines match adjacent flight lines to ensure the accuracy meets expectations.
- ✓ Overlap match individual flight lines, generated statistics on the fit, and make the necessary adjustments.
- ✓ Identified and removed systematic error locally (by flight) which is not possible if the lines are combined into a block. This is sometimes the case when a satellite loss of lock occurs during a flight and the GPS solution fixes on the wrong integer ambiguity.
- ✓ Adjusted any small residual error (due to system noise) between flight lines and across all flight lines to survey ground control (or existing mapping if available).
- \checkmark Clipped the outer edges of the swath to remove less accurate points.

✓ Classified the point cloud data into ground and non-ground points

The classification algorithm classifies ground points by iteratively building a triangulated surface model. The routine starts by selecting some local low points as sure hits on the ground then builds an initial Triangulated Irregular Network (TIN) from selected low points. The routine then starts developing the ground model upward by iteratively adding new laser points to it. Each added point makes the model follow the ground surface more closely. Two iteration parameters, iteration angle and iteration distance, determine how close a point must be to a triangle plane so that the point can be accepted to the ground model. **Iteration angle** is the maximum angle between points, its projection on triangle plane and closest triangle vertex. **Iteration distance** parameter makes sure that the iteration does not make big jumps upwards when triangles are large. This helps to keep low buildings out of the ground model.

✓ Filtered the bare-earth data to remove small undulations.

Small random errors exist in the data due to electronic noise within the system. These errors manifest themselves as small undulations in the data. The filter controls accuracy by an elevation tolerance setting to meet a given accuracy threshold. The tolerance determines the maximum allowable elevation change of laser points.

✓ Adjust for vertical offsets

If all flights are consistent within the mapping specifications, cross flights and ground control data is imported and studied for fit. As a QC measure, Woolpert has developed a routine to generate accuracy statistical reports by comparison among LiDAR points, ground control, and TINs generated by LiDAR points. The absolute accuracy is determined by comparison with ground control. Statistical analysis is then performed on the fit between the LiDAR data and the ground control. Based on the statistical analysis, the LiDAR data is then adjusted in relation to the ground control.

- \checkmark All final delivery data was determined to meet and or exceed the project specifications.
- ✓ Reformat data in accordance with final deliverables.