

Project Report

TASK ORDER NAME: MS_NRCS_East_2018_B19

TASK ORDER NUMBER: 140G021F0262

CONTRACT NUMBER: G16PC00042 ATLANTIC PROJECT NUMBER: 19059

TABLE OF CONTENTS

SECTION 1: PROJECT OVERVIEW AND PURPOSE	3
1.1 Aerial LiDAR Project	3
1.1.1 Project Overview	
1.1.2 Project Purpose	3
1.1.3 Contract Deliverables	4
SECTION 2: FIELD OPERATIONS	5
2.1 Aerial LiDAR Project - Aerial Acquisition	5
2.1.1 Aircraft and Sensor Information	
2.1.2 Sensor Acquisition Information	6
2.1.3 Flight Plan Execution	6
2.1.4 GNSS Reference Stations	7
2.2 Aerial LiDAR Project - Ground Acquisition	8
2.2.1 Ground Control Survey	
SECTION 3: DATA PRODUCTION	11
3.1 Aerial LiDAR Project - Calibration/Classification	11
3.1.1 LiDAR Point Cloud Generation	
3.1.2 Coordinate Reference System	11
3.1.3 LiDAR Point Cloud Statistics	11
3.1.4 Smooth Surface Repeatability (Interswath)	11
3.1.5 LiDAR Calibration	11
3.1.6 LiDAR Classification	12
3.1.7 LiDAR Intensity Imagery	12
3.1.8 Hydro-line Collection/Conflation	
3.1.9 Bare-Earth Surface — Digital Elevation Model (DEM)	12
3.1.10 Contours	
3.1.11 Building Footprint Extractions	13
SECTION 4: ACCURACY ASSESSMENT	14
4.1 Aerial LiDAR Project - Vertical Accuracy Assessment	14
4.1.1 Requirements	14
4.1.2 Results	14
SECTION 5: CERTIFICATION STATEMENTS	15
5.1 Aerial LiDAR Project	15
SECTION 6: CONTROL POINT ASSESSMENTS	
6.1 Aerial LiDAR Project	
6.1.1 Point Cloud Check Point Assessment	
6.1.2 Digital Flevation Model (DFM) Check Point Assessment	16

SECTION 1: PROJECT OVERVIEW AND PURPOSE

1.1 Aerial LiDAR Project

1.1.1 Project Overview

USGS NGTOC task order 140G0219F0262 required Fall 2019 / Spring 2020 leaf-off LiDAR surveys to be collected over 6,245 square miles covering parts of Eastern and Central Mississippi. Aerial LiDAR data for this task order was planned, acquired, processed, and produced at an aggregate nominal pulse spacing (ANPS) of \leq 0.71 meters and in compliance with USGS National Geospatial Program LiDAR Base Specification version 1.3.



Figure 1: Aerial LiDAR Project Overview – Defined Project Area (DPA) and Associated Areas of Interest (AOIs)

1.1.2 Project Purpose

This task order is for planning, acquisition, processing, and derivative products of lidar data to be collected at an aggregate nominal pulse spacing of ≤0.71 meters, including overlap and an aggregate nominal pulse density of no less than 2 points per square meter. Lidar data and derivative products produced in compliance with this task order are based on the "National Geospatial Program Lidar Base Specification Version 1.3". This project will support the 3DEP mission and the Natural Resources Conservation Service (NRCS) high resolution elevation enterprise program.

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

[♥] www.atlantic.tech

[♀] 256.971.9991 3

1.1.3 Contract Deliverables

Item	Specification/Format
Classified Point Cloud	LAS, version 1.4, Point Record Format 6
Bare Earth Surface (Raster DEM) - Hydro	32Bit, floating point, .IMG, 1.0M cell size
Hydro Breaklines	ESRI file geodatabase (polylineZ and polygonZ feature classes)
Intensity Image	8-bit, 256 color gray scale, TIF, 1.0 M cell size
Contours	1-foot, smoothed (automated), ESRI file geodatabase
Building Footprints	Automated, ESRI file geodatabase
Delivery Diagram	ESRI shapefile
Product Metadata	XML, FGDC compliant
Flight Index	ESRI file geodatabase
Swath Data	ESRI file geodatabase
Difference Rasters	.TIF, 2.0 M cell size
Dataset Extents	ESRI shapefile
Project Report	PDF (Acquisition, Survey, Processing, QA/QC)
Tile Scheme	UTM Tiling Scheme, 1500M x 1500M
Tile Naming US National Grid Conventions	
Spatial Reference System	Universal Transverse Mercator Zone 15/16 (as appropriate), Meters; NAVD88, Meters, latest Geoid model, EPSG code 6344/6345

Table 1: Aerial LiDAR Contract Deliverables – Lots 6, 7a, 7b, and 8 Deliverables

♀ 256.971.9991

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

[♥] www.atlantic.tech

SECTION 2: FIELD OPERATIONS

2.1 Aerial LiDAR Project – Aerial Acquisition

2.1.1 Aircraft and Sensor Information

Atlantic operated a PAC 750 (N750VX) outfitted with an Optech Galaxy Prime LiDAR system during the collection of the project area. The specifications of this system are presented in the following table:

Parameter	Specification		
Model	Galaxy Prime		
Manufacturer	Optech		
Performance Envelope	150 – 4700 m AGL, nominal		
Absolute Horizontal Accuracy	1/10,000 x altitude		
Absolute Elevation Accuracy	< 0.03 – 0.20 m RMSE from 150 – 4700 m AGL		
Topographic Laser	1064-nm near-infrared		
Laser Classification	Class IV		
Pulse Repetition Frequency (Effective)	Programmable, 50 – 1000 kHz		
Beam Divergence	0.25 mrad (1/e)		
Laser Range Precision	< 0.008 m		
Minimum Target Separation Distance	< 0.7 m (discrete)		
Range Capture	Up to 8 range measurements, including last		
Intensity Capture	e Up to 8 intensity measurements, including last (12-bit)		
Scan Angle (Fov)	10 - 60°		
Swath Width	10 – 115% of altitude AGL		
Scan Frequency	0 – 120 Hz advertised (0 – 240 scan lines/sec)		
Scan Product	2000 maximum		
Roll Compensation	±5° minimum		
Data Storage	Internal solid-state drive (SSD)		
Power Requirements	28 V; 300 W		
Dimensions and Weight	Sensor: 0.34 x 0.34 x 0.25 m, 27 kg		
	PDU: 0.42 x 0.33 x 0.10 m, 6.5 kg		
Operation Temperature	0 to +35°C		

Table 2: System Specifications – Galaxy Prime

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

www.atlantic.tech

2.1.2 Sensor Acquisition Information

The following table illustrates project specific system parameters for LiDAR acquisition on this project:

Parameter	Specification
System	Optech Galaxy Prime
Nominal Pulse Spacing (m)	.65
Nominal Pulse Density (pls/m²)	2.32
Nominal Flight Height (AGL meters)	2118
Nominal Flight Speed (kts)	130
Pass Heading (°)	Cardinal
Sensor Scan Angle (°)	40
Scan Frequency (Hz)	51
Pulse Rate of Scanner (kHz)	250
Line Spacing (m)	1100
Central Wavelength of Sensor Laser (nm)	1064
Sensor Operated with Multiple Pulses	4
Beam Divergence (mrad)	.25
Nominal Swath Width (m)	1439
Nominal Swath Overlap (%)	20
Scan Pattern	Triangle

Table 3: Aerial LiDAR Sensor Acquisition Parameters

2.1.3 Flight Plan Execution

Atlantic acquired 65 passes of the AOI as a series of perpendicular and/or adjacent flight-lines executed in 5 flight missions conducted between January 9, 2020 and January 14, 2021. Onboard differential Global Navigation Satellite System (GNSS) unit(s) recorded sample aircraft positions at 2 hertz (Hz) or more frequency. LiDAR data was only acquired when a minimum of six (6) satellites were in view.

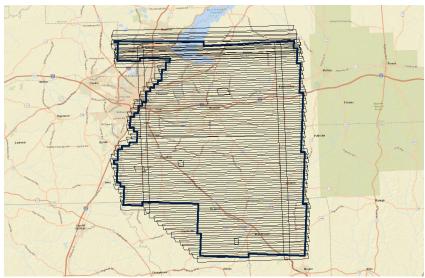


Figure 2: Orientation of Executed Flight-lines and LiDAR DPA

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

www.atlantic.tech

2.1.4 GNSS Reference Stations

Twenty-Eight (28) Continuously Operating Reference Stations (CORS) were used to control the LiDAR acquisition for the defined project area. The coordinates provided in below are in NAD83 (2011), Geographic Coordinate System, Ellipsoid, Meters.

Designation	Туре	PID	Latitude (N)	Longitude (W)	Elevation
1ULM	CORS	1ULM	N32°31'44.52047"	W92°04'33.26902"	15.946
AL23	CORS	AL23	N34°08'54.86892"	W87°57'13.05382"	141.234
AL81	CORS	AL81	N32°34'32.56556"	W88°10'54.32820"	21.105
ALBE	CORS	ALBE	N34°28'31.51982"	W87°51'52.39823"	226.449
ALBU	CORS	ALBU	N32°04'53.91593"	W88°13'59.36284"	16.852
ALFA	CORS	ALFA	N33°41'06.76668"	W87°49'45.54065"	89.166
ARMO	CORS	ARMO	N33°35'40.41810"	W91°48'47.53184"	52.647
MSBN	CORS	MSBN	N31°36'30.35371"	W90°24'34.01893"	125.979
MSBV	CORS	MSBV	N34°39'56.48359"	W88°33'51.51693"	128.612
MSCR	CORS	MSCR	N34°54'23.34342"	W88°32'52.90301"	110.472
MSCT	CORS	MSCT	N32°43'06.65966"	W89°34'17.24910"	85.588
MSEU	CORS	MSEU	N33°32'53.20694"	W89°10'56.99356"	94.83
MSEV	CORS	MSEV	N31°35'42.10104"	W89°12'13.30620"	52.399
MSFL	CORS	MSFL	N34°16'36.56328"	W88°24'55.00177"	75.943
MSGN	CORS	MSGN	N33°20'19.32472"	W91°02'27.47208"	16.295
MSGR	CORS	MSGR	N33°45'50.45050"	W89°49'15.94723"	54.237
MSHS	CORS	MSHS	N34°44'36.31948"	W89°27'12.73029"	153.283
MSJK	CORS	MSJK	N32°19'37.40112"	W90°10'52.80969"	86.498
MSLV	CORS	MSLV	N33°06'27.74211"	W89°04'26.82775"	140.23
MSME	CORS	MSME	N32°22'03.04229"	W88°43'56.81048"	101.878
MSOX	CORS	MSOX	N34°21'50.95182"	W89°31'56.54986"	141.876
MSPE	CORS	MSPE	N33°47'52.35270"	W88°39'30.14101"	75.323
MSPN	CORS	MSPN	N34°14'36.58661"	W89°01'00.68057"	118.394
MSSB	CORS	MSSB	N32°49'46.39663"	W88°29'13.95548"	50.529
MSST	CORS	MSST	N33°27'14.19501"	W88°47'39.13821"	100.103
MSYZ	CORS	MSYZ	N32°50'46.89732"	W90°24'43.10002"	23.04
SIHS	CORS	SIHS	N31°50'36.17712"	W91°39'19.59495"	5.736
TALL	CORS	TALL	N32°24'01.21579"	W91°10'58.84562"	6.074

Table 4: GNSS Reference Stations

& 256.971.9991

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

www.atlantic.tech

8

2.2 Aerial LiDAR Project - Ground Acquisition

2.2.1 Ground Control Survey

A total of 64 ground survey points were collected in support of this project, including 9 LiDAR Control Points (LCP), 32 Non-vegetated Vertical Accuracy (NVA) and 23 Vegetated Vertical Accuracy (VVA).

Point cloud data accuracy was tested against a Triangulated Irregular Network (TIN) constructed from LiDAR points in clear and open areas. A clear and open area can be characterized with respect to topographic and ground cover variation such that a minimum of five (5) times the Nominal Pulse Spacing (NPS) exists with less than 1/3 of the RMSEZ deviation from a low-slope plane. Slopes that exceed ten (10) percent were avoided.

Each land cover type representing ten (10) percent or more of the total project area were tested and reported with a VVA. In land cover categories other than dense urban areas, the tested points did not have obstructions forty-five (45) degrees above the horizon to ensure a satisfactory TIN surface. The VVA value is provided as a target. It is understood that in areas of dense vegetation, swamps, or extremely difficult terrain, this value may be exceeded.

The NVA value is a requirement that must be met, regardless of any allowed "busts" in the VVA(s) for individual land cover types within the project. Checkpoints for each assessment (NVA and VVA) are required to be well-distributed throughout the land cover type, for the entire project area.

The following tables and figures outline the coordinate values and distribution of LCP, NVA and VVA points collected in support of this project:

Point ID	Easting [X]	Northing [Y]	Elevation [Z]	Point Type
LCP069	581541.082	1048700.761	118.020	LCP
LCP070	568532.184	1044626.016	132.164	LCP
LCP071	583535.554	1038759.291	148.301	LCP
LCP072	586220.884	1020327.431	103.886	LCP
LCP073	575529.730	1026204.761	117.161	LCP
LCP074	567638.590	1012482.509	114.037	LCP
LCP075	582997.636	1006563.796	161.402	LCP
LCP076	545821.954	1026858.873	115.680	LCP
LCP083	557695.246	1021508.810	113.270	LCP
BE040	545817.072	1026863.040	115.693	NVA
BE056	581535.496	1048702.928	117.811	NVA
BE057	568523.459	1044626.060	131.817	NVA
BE058	583543.773	1038762.043	148.237	NVA
BE059	575532.088	1026211.453	116.809	NVA
BE060	586227.582	1020327.406	103.515	NVA
BE061	582984.492	1006556.636	160.704	NVA
BE062	567630.146	1012484.227	114.108	NVA
BE063	585012.302	1034144.688	135.051	NVA
OT047	559443.884	1048817.351	111.361	NVA
OT051	542283.782	1055211.087	118.608	NVA

²²²³ Drake Avenue SW, Suite 200 | Huntsville, AL 35805

\$\cong 256.971.9991

www.atlantic.tech

9

Point ID	Easting [X]	Northing [Y]	Elevation [Z]	Point Type
OT053	548020.646	1032856.736	88.938	NVA
OT054	543457.154	1015339.380	78.534	NVA
OT059	550961.458	1018175.344	92.225	NVA
OT060	579845.474	1043332.208	115.473	NVA
OT061	585012.611	1034134.764	134.903	NVA
OT062	582622.381	1021815.748	105.697	NVA
OT063	566202.627	1033417.684	122.677	NVA
OT064	575438.392	1019572.157	104.123	NVA
OT065	564869.474	1006503.116	124.738	NVA
OT072	570048.421	1037157.852	132.958	NVA
OT073	569713.592	1017743.360	112.395	NVA
UR053	557695.510	1021501.157	113.444	NVA
UR054	564337.963	1028185.013	107.663	NVA
UR056	548206.071	1053514.732	94.406	NVA
UR068	563540.324	1050564.261	105.392	NVA
UR069	555927.382	1047390.109	97.327	NVA
UR070	550561.704	1040379.228	84.246	NVA
UR071	557487.612	1041004.387	110.815	NVA
UR072	563473.466	1040036.051	138.256	NVA
UR073	574382.454	1041778.113	114.201	NVA
UR074	580157.419	1043489.270	115.022	NVA
BR045	578259.885	1055007.373	112.865	VVA
BR046	584181.546	1047598.118	121.420	VVA
BR047	577194.221	1038194.511	143.942	VVA
BR048	581793.687	1033777.614	148.873	VVA
BR049	579274.397	1017464.807	107.265	VVA
BR050	555238.041	1030403.360	133.374	VVA
BR051	569706.144	1017723.200	112.460	VVA
HG049	573096.917	1051206.672	98.773	VVA
HG050	575255.437	1044831.074	110.017	VVA
HG051	543654.137	1024866.956	89.594	VVA
HG052	582246.028	1026083.588	119.855	VVA
HG053	586833.107	1011803.698	160.934	VVA
HG054	569179.515	1002587.652	109.133	VVA
HG055	560701.830	1024574.347	112.053	VVA
HG058	566371.666	1022380.868	116.207	VVA
TR048	582827.904	1052837.399	136.825	VVA
TR049	568424.878	1048494.527	100.319	VVA
TR050	570029.617	1037151.873	133.007	VVA
TR051	545755.063	1020575.288	80.667	VVA
TR052	581571.707	1015761.521	113.652	VVA
TR053	577568.811	1006900.219	118.704	VVA
TR054	566365.011	1022353.012	116.676	VVA
TR059	568546.136	1044619.322	131.884	VVA

Table 5: LiDAR Control/Check Point Coordinates

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

 [☐] www.atlantic.tech

Figure 3: LiDAR Control Point Distribution

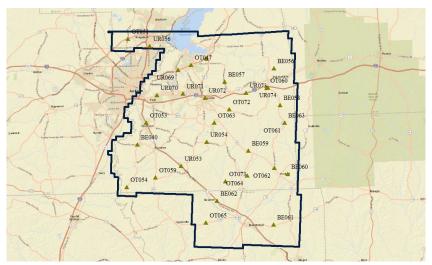


Figure 4: Non-Vegetated Vertical Accuracy (NVA) Point Distribution

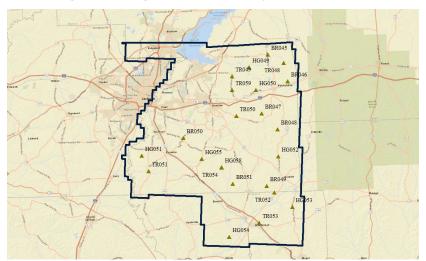


Figure 5: Vegetated Vertical Accuracy (VVA) Point Distribution

♀ 2223 Drake Avenue SW, Suite 200 | Huntsville, AL 35805

 ☐ www.atlantic.tech

\$ 256.971.9991

SECTION 3: DATA PRODUCTION

3.1 Aerial LiDAR Project - Calibration/Classification

3.1.1 LiDAR Point Cloud Generation

Atlantic used Leica software products to download the IPAS ABGNSS/IMU data and raw laser scan files from the airborne system. Waypoint Inertial Explorer is used to extract the raw IPAS ABGNSS/IMU data, which is further processed in combination with controlled base stations to provide the final Smoothed Best Estimate Trajectory (SBET) for each mission. The SBETs are combined with the raw laser scan files to export the LiDAR ASCII Standard (*.las) formatted swath point clouds.

3.1.2 Coordinate Reference System

Parameter	Specification
Horizontal Datum	UTM 15 NORTH
Coordinate System	NAD83 2011
Vertical Datum	NAVD88
Geoid Model	12B
EPSG Code	6344
Units of Reference	METERS

Table 6: Coordinate Reference System

3.1.3 LiDAR Point Cloud Statistics

Category	Value
Total Points (Nominal)	4,031,178,808
Nominal Pulse Spacing (M)	0.5773
Nominal Pulse Density (PLS/M^2)	3.0009
Total Points (Aggregate)	4,031,178,808
Aggregate Pulse Spacing (M)	0.5137
Aggregate Pulse Density (PLS/M^2)	3.7895

Table 7: LiDAR Point Cloud Statistics

3.1.4 Smooth Surface Repeatability (Interswath)

Departures from planarity of first returns within single swaths in non-vegetated areas were assessed at multiple locations with hard surface areas (parking lots or large rooftops) inside the project area. Each area was evaluated using signed difference rasters (maximum elevation – minimum elevation) at a cell size equal to 2 x ANPS, rounded to the next integer.

3.1.5 LiDAR Calibration

Using a combination of GeoCue, TerraScan and TerraMatch; overlapping swath point clouds are corrected for any orientation or linear deviations to obtain the best fit swath-to-swath calibration. Relative calibration was evaluated using advanced plane-matching analysis and parameter corrections derived. This process was repeated interactively until residual errors between overlapping swaths, across all project missions, was reduced to ≤2cm. A final analysis of the calibrated lidar is preformed using a TerraMatch tie line report for an overall

²²²³ Drake Avenue SW, Suite 200 | Huntsville, AL 35805

www.atlantic.tech

statistical model of the project area. Individual control point assessments for this project can be found in Section VI of this report.

Upon completion of the data calibration, a complete set of elevation difference intensity rasters (dZ Orthos) are produced. A user-defined color ramp is applied depicting the offsets between overlapping swaths based on project specifications. The dZ orthos provide an opportunity to review the data calibration in a qualitative manner. Atlantic assigns green to all offset values that fall below the required RMSDz requirement of the project. A yellow color is assigned for offsets that fall between the RMSDz value and 1.5x of that value. Finally, red values are assigned to all values that fall beyond 1.5x of the RMSDz requirements of the project.

3.1.6 LiDAR Classification

Multiple automated filtering routines are applied to the calibrated LiDAR point cloud identifying and extracting bare-earth and above ground features. GeoCue, TerraScan, and TerraModeler software was used for the initial batch processing, visual inspection and any manual editing of the LiDAR point clouds. Atlantic utilized collected breakline data to preform classification for class 9 (Water).

Code	Description
1	Unclassified
2	Ground
6	Building
7	Low Point ("Low Noise")
9	Water
17	Bridge Deck
18	Low Point ("High Noise")
20	Breakline Proximity

Table 8: LiDAR Point Classification Codes and Descriptions

3.1.7 LiDAR Intensity Imagery

LiDAR intensity imagery was created from the final calibrated and classified lidar point cloud. Intensity images were produced from all classified points and posted to a 1.0-meter cell size. Intensity images were cut to match the tile index and its corresponding tile names and delivered in .img format.

3.1.8 Hydro-line Collection/Conflation

Hydro breaklines were compiled using LiDAR intensity data and surface terrain models of the entire project area. After the collection, all delineated hydro features were validated for monotonicity and vertical variance. This procedure ensures that no points were floating above ground. Hydro-lines were then encoded into the LiDAR surface and used to hydro-enforce/flatten all significant water bodies. These final hydro-lines were then used in the production of bare Earth digital models to hydro flatten significant water bodies. This product was delivered as an ESRI geodatabase for the entire project area.

3.1.9 Bare-Earth Surface – Digital Elevation Model (DEM)

Bare earth Digital Elevation Models (DEMs) were derived using the hydro-lines and bare earth (ground) LiDAR points. All DEMs were created with a grid spacing of 1 meter. DEMs for this project were cut to match the tile index and its corresponding tile names and delivered in 32-bit floating point GeoTIFF format.

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

www.atlantic.tech

3.1.10 Contours

Contours for this project were generated utilizing Model Key Points LiDAR point cloud data. Contours were generated at 1.0' (foot) intervals, with 1.0' contours designated as intermediate and every fifth contour interval as index contours. Contour data was delivered as an ESRI geodatabase.

3.1.11 Building Footprint Extractions

Building Footprints were derived from lidar points classified as buildings. Building rooftop polygons for features 400 square feet and larger were extracted from automated building classification algorithms performed on the lidar point cloud data. Omission/Commission errors will exist. Rooftop outlines may appear "generalized" or incomplete in certain areas where vegetation or other artifacts are present in the data. This product was delivered as an ESRI geodatabase (.gdb) for the entire block area.

SECTION 4: ACCURACY ASSESSMENT

4.1 Aerial LiDAR Project - Vertical Accuracy Assessment

4.1.1 Requirements

Per the table below, the Vertical Accuracy Assessment utilized the required parameters for Vertical Data Accuracy Class Choose an item.

Vertical Data Accuracy Class	RMSEz in Non- Vegetated Terrain (cm)	Non-Vegetated Vertical Accuracy (NVA) at 95% Confidence Level (cm)	Vegetated Vertical Accuracy (VVA) at 95th Percentile (cm)
I	1.0	2.0	2.9
II	2.5	4.9	7.4
III	5.0	9.8	14.7
IV	10.0	19.6	29.4
V	12.5	24.5	36.8
VI	20.0	39.2	58.8
VII	33.3	65.3	98.0
VIII	66.7	130.7	196.0
IX	100.0	196.0	294.0
X	333.3	653.3	980.0

Table 9: Vertical Accuracy Standards, Source: ASPRS Positional Accuracy Standards for Digital Geospatial Data v1.0 (2014)

4.1.2 Results

An overall statistical assessment of the check points can be found in the following two tables (values provided in meters):

Broad Land Cover Type	Points (#)	RMSEz	Confidence Level (95%)	Percentile (95th)
NVA (Point Cloud)	12	0.0388	0.0760	0.0312
NVA (DEM)	12	0.0578	0.1133	0.1028
VVA (Point Cloud)	4	0.0559	0.1096	0.0903
VVA (DEM)	4	0.0595	0.1167	0.0450

Table 10: NVA/VVA Accuracies

^{*}The terms NVA and VVA are from the American Society for Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data v1.0 (2014). The term NVA refers to assessments in clear, open areas (which typically produce only single LiDAR returns); the term VVA refers to assessments in vegetated areas (typically characterized by multiple return LiDAR).

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

www.atlantic.tech

SECTION 5: CERTIFICATION STATEMENTS

5.1 Aerial LiDAR Project

This accuracy assessment confirms that the data may be used for the intended applications stated in Section I of this document. This dataset may also be used as a topographic input for other applications, but the user should be aware that this LiDAR dataset was designed with a specific purpose and was not intended to meet specifications and/or requirements of users outside of the United States Geological Survey. It should also be noted that LiDAR points do not represent a continuous surface model. LiDAR points are discrete measurements of the surface and any values derived within a triangle of three LiDAR points are interpolated. As such, the user should not use the resultant LiDAR dataset for vertical placement of a planimetric feature such as a headwall, building footprint or any other planimetric feature unless there is an associated LiDAR point that can be reasonably located on this structure.

Consideration should be given by the end user of this dataset to the fact that this LiDAR dataset was developed differently and separately than previous LiDAR datasets that may be available for this geographic location. It is likely that the data in this project was created using different geodetic control, a different Geoid, newer LiDAR technology and more up-to-date processing techniques. As such, any direct comparative analysis performed between this dataset and previous datasets could result in misleading or inaccurate results. Users are encouraged to proceed with caution while performing this type of comparative analysis and to completely understand the variables that make each of these datasets unique and not corollary.

It is encouraged that the user refers to the full FGDC Metadata and project reports for a complete understanding on the content of this dataset.

I, hereby, certify to the extent of my knowledge that the statements and statistics represented in this document are true and factual.

Brian J. Mayfield, ASPRS Certified Photogrammetrist #R1276

www.atlantic.tech

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

SECTION 6: CONTROL POINT ASSESSMENTS

6.1 Aerial LiDAR Project

6.1.1 Point Cloud Check Point Assessment

Point ID	Given (X)	Given (Y)	Given (Z)	Laser (Z)	Delta (Z)	Report Point Type
BE040	765889.0970	3562187.0930	115.6930	115.6950	0.0020	NVA
BE048	772246.4940	3591911.5960	91.1710	91.1970	0.0260	NVA
BR050	775482.4890	3565382.8560	133.3740	133.3350	-0.0390	VVA
HG051	763644.8250	3560276.0980	89.5940	89.6120	0.0180	VVA
HG055	780765.6460	3559393.6130	112.0530	112.0450	-0.0080	VVA
OT047	780365.1900	3583554.5920	111.3610	111.3960	0.0350	NVA
OT051	763340.9730	3590505.0790	118.6080	118.6270	0.0190	NVA
OT053	768316.2130	3568073.4810	88.9380	88.8450	-0.0930	NVA
OT054	763108.9460	3550803.7330	78.5340	78.5620	0.0280	NVA
OT059	770749.7370	3553365.2290	92.2250	92.2030	-0.0220	NVA
TR051	765603.6470	3555933.6370	80.6670	80.7700	0.1030	VVA
UR053	777634.8810	3556440.4000	113.4440	113.4270	-0.0170	NVA
UR056	769234.6130	3588614.4110	94.4060	94.3910	-0.0150	NVA
UR069	776779.4340	3582256.6110	97.3270	97.2690	-0.0580	NVA
UR070	771137.0310	3575468.5530	84.2460	84.2070	-0.0390	NVA
UR071	778120.7530	3575850.8000	110.8150	110.7930	-0.0220	NVA

Table 11: Point Cloud Check Point Assessment

6.1.2 Digital Elevation Model (DEM) Check Point Assessment

Point ID	Given (X)	Given (Y)	Given (Z)	DEM (Z)	DEM (DZ)	Report Point Type
BE040	765889.0970	3562187.0930	115.6930	115.6740	0.0190	NVA
BE048	772246.4940	3591911.5960	91.1710	91.2000	-0.0290	NVA
OT047	780365.1900	3583554.5920	111.3610	111.3790	-0.0180	NVA
OT051	763340.9730	3590505.0790	118.6080	118.5520	0.0560	NVA
OT053	768316.2130	3568073.4810	88.9380	88.7780	0.1600	NVA
OT054	763108.9460	3550803.7330	78.5340	78.5670	-0.0330	NVA
OT059	770749.7370	3553365.2290	92.2250	92.1960	0.0290	NVA
UR053	777634.8810	3556440.4000	113.4440	113.4310	0.0130	NVA
UR056	769234.6130	3588614.4110	94.4060	94.3620	0.0440	NVA
UR069	776779.4340	3582256.6110	97.3270	97.2800	0.0470	NVA
UR070	771137.0310	3575468.5530	84.2460	84.1960	0.0500	NVA
UR071	778120.7530	3575850.8000	110.8150	110.7820	0.0330	NVA
BR050	775482.4890	3565382.8560	133.3740	133.3260	0.0480	VVA
HG051	763644.8250	3560276.0980	89.5940	89.6270	-0.0330	VVA
HG055	780765.6460	3559393.6130	112.0530	112.0250	0.0280	VVA
TR051	765603.6470	3555933.6370	80.6670	80.7670	-0.1000	VVA

Table 12: DEM Check Point Assessment

\$ 256.971.9991

^{♀ 2223} Drake Avenue SW, Suite 200 | Huntsville, AL 35805

www.atlantic.tech