TN West TN Lidar 2019 D19

Lot 5 Block 1 Airborne Lidar Report

June 2020

Contract # G16PC00022 Task Order # 140G0219F0060

Contractor Woolpert Project # 79576

Table of Contents

1.	Overview	1
	About	1
	Purpose	1
	Specifications	1
	Spatial Reference	1
	Task Order Deliverables	2
2.	Acquisition	6
	Flight Planning	6
	Lidar Sensor Information	7
	GNSS and IMU Equipment	9
	Timeline	9
	Acquisition Quality Assurance	. 10
3.	Processing	11
	Processing Summary	.11
	GNSS-IMU Trajectory Processing	. 11
	Geometric Calibration	. 12
	Lidar Data Classification	. 12
	Hydrologic Flattening	. 13
	Digital Elevation Model	. 14
	Intensity Imagery	. 14
	Building Footprints	. 14
	Metadata	. 14
4.	Accuracy Statement	15
	Horizontal Accuracy	. 15
	Raw Lidar Swath Testing	. 15
	Digital Elevation Model Testing	. 15

i

Table of Contents

List of Figure	S
----------------	---

Figure 1-1. Project Area	3
Figure 1-1. Project Area - Block 1 (West)	4
Figure 1-1. Project Area - Block 1 (East)	5
List of Tables	
Table 1-1. Spatial Reference System	1
Table 1-2. Deliverables	2
Table 2-1. Acquisition Requirements	6
Table 2-2. Leica ALS70 Sensor Info	7
Table 2-3. Leica Terrain Mapper Sensor Info	8
Table 2-4. GNSS Base Stations	9
Table 2-4. Project Acquisition Specifications	10
Appendix Documents	
Appendix 1: Flight Logs	A1-1

1. Overview

About

This project contains a comprehensive outline of the 140G0219F0060TN West TN Lidar 2019 D19 task order issued by the United States Geological Survey's National Geospatial Technical Operations Center (USGS-NGTOC). This task order called for the acquisition and processing of QL2 data over three blocks that total approximately 7,961 square miles in western Tennessee.

This report encompasses the Lot 5 Block 1 area of interest. This AOI totals approximately 2,690 square miles and includes the following counties:

- Fayette
- Hardeman
- McNairy
- Sequatchie
- Van Burenn

Purpose

The purpose of this project was to collect data to be used for the following: terrain mapping, conservation planning and design, support of easement/land stewardship programs, support of special emphasis programs, support of soil projects, fill gaps in existing lidar, and water resource management.

Specifications

Data for this task order was acquired and produced to meet USGS Lidar Base Specification v1.3 standards and the American Society of Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data (Edition 1, Version 1.0).

Spatial Reference

Geospatial data products were produced using the following horizontal and vertical spatial data reference system.

Table 1-1. Spatial Reference System

Area of Interest								
Horizontal	6576							
	Datum	NAD83 (2011)						
	Projection	State Plane Tennessee (FIPS Zone 4100)						
	Units	US Survey Feet						
Vertical Datum		NAVD88						
	Geoid	GEOID12B						
	US Survey Feet							
Height Type Orthometric								

Task Order Deliverables

All data products produced as part of this task order are listed below. All tiled deliverables had a tile size of 7,000-feet x 4,000-feet. Tile names are derived from the guidance provided by the State of Tennessee Department of Finance and Administration.

Table 1-2. Deliverables

Lidar Data	
Classified lidar point cloud	Tiles in .las v1.4 format
data	Classes
	• 1 – Processed, not Classified
	• 2 – Ground
	• 6 – Buildings
	• 7 – Noise
	• 9 – Water
	• 17 – Bridge Decks
	• 18 – High Noise • 20 – Ignored Ground
Breaklines used for hydro- flattening	 Lake and River features as feature classes in an Esri file geodatabase Water bodies greater than 2 acres as PolygonZ feature classes Rivers 30.5 meters / 100 feet and greater in width as PolylineZ features Bridges used in DEM generation as PointZ feature classes in Esri
	shapefile format
Hydro-flattened bare earth digital elevation model (DEM)	2.5-foot pixel size, 32-bit floating-point; no bridges or overpass structures ERDAS .img format
Intensity Imagery	2.5-foot pixel size, 8-bit gray-scale (linear rescaling from 16-bit intensity) GeoTIFF format
Flight Line Index	Polygon feature classes in an Esri file geodatabase
Control Data	
Lidar calibration points	Esri shapefile format
Lidar NVA checkpoints	Esri shapefile format
Lidar VVA checkpoints	Esri shapefile format
Other Data	
Tile Index	Esri shapefile format
Metadata and Reports	
Metadata	Product-level FGDC CSDGM/USGS MetaParser Compliant metadata in .xml format
Lidar Project Report	Project report with flight logs in .pdf format
Survey Report	Survey report in .pdf format

Figure 1-1. Project Area

Figure 1-1. Project Area - Block 1 (West)

Figure 1-1. Project Area - Block 1 (East)

2. Acquisition

Flight Planning

Aerial lidar data was collected using the specifications listed below.

Table 2-1. Acquisition Requirements

Specification	Target
Resolution	2 points per square meter 0.7-meter nominal point spacing
Overlap	At contractor's discretion, but enough to ensure there are no data gaps between usable portions of the swath and nominal point density is achieved
Acquisition Window	At a period of annual minimal water level in the spring 2019 leaf off window
Acquisition Conditions	 Cloud and fog-free between the aircraft and ground Snow free Ground has no unusual flooding or inundation, except in cases where the goal of the collection is to map the inundation Preference of vegetation is leaf-off
Data Voids	Not allowed except • Where caused by water bodies • Where caused by areas of low near infra-red (NIR) reflectivity (i.e. asphalt or composition roofing) • Where appropriately filled-in by another swath
Control	Airborne Global Positioning System (ABGPS) and Inertial Measurement Unit (IMU) data to be used along with differentially-corrected GPS ground control points

Lidar Sensor Information

Aerial lidar data for this project was acquired using the Leica ALS70 and Leica TerrainMapper lidar sensor systems. A total of 248 flight lines were collected for the Block 1 AOI.

Table 2-2. Leica ALS70 Sensor Info

System Performance								
Maximum Flying Height (m AGL)	3,500							
Maximum Measurement Rate (kHz)	500							
Field of view (degrees)	0 - 75 (full angle, user adjustable)							
Roll stabilization (automatic adaptive, degrees)	70 - active FOV							
Scan patterns (user selectable)	sine, triangle raster							
Maximum Scan Rate (Hz) • Scan • Triangle • Raster	• 200 • 158 • 120							
Number of Returns	unlimited							
Number of intensity measurements	3 (first, second, third)							
Physical Specifications								
Size (cm), Weight (kg) • Scanner • Control Electronics	• 45 W x 47 D x 36 H • 45 kg							
Operating Temperature Scanner Control Electronics	0 - 40°C							
Flight Management	FCMS							
Power Consumption	910 W @ 22.0 – 30.3 VDC							

Source: Leica ALS70-HP Product Specifications

 $https://w3.leica-geosystems.com/downloads 123/zz/airborne/ALS70/brochures/Leica_ALS70_6P_BRO_en.pdf$

Table 2-3. Leica Terrain Mapper Sensor Info

Sensor Specifications	
Operating Altitude (m AGL)	300 - 5,500 at 10% reflective target
Maximum Measurement Rate (kHz)	2,000
Scan Angle	20 - 40
Scan Width	Up to 70% of flight altitude
Scan Frequency	Programmable up to 125 Hz (7,500 RPM), 250 scan lines per second
Number of Returns	15
Number of intensity measurements	15
Pulse Mode(s)	Up to 35 pulses in air
Laser Specifications	
Laser Beam Divergence	0.25 mrad (1/e)
Laser Classification	Class 4 laser product
Accuracy	
Range Resolution	< 1 cm RMS
Elevation Accuracy	< 5 cm 1 σ
Horizontal Accuracy	< 13 cm 1 σ
Physical Specifications	
Size (cm), Weight (kg) • Scanner • Control Electronics	• 37 W x 68 L x 26 H cm, 47 kg • 45 W x 47 D x 25 H cm, 33 kg
Operating Temperature • Scanner • Control Electronics	• 0 - 40°C cabin-side temperature • 0 - 40°C
Flight Management	Leica FlightPro
Power Consumption	922 W @ 22.0 – 30.3 VDC

Source: Leica TerrainMapper Data Sheet

https://leica-geosystems.com/en-US/products/airborne-systems/topographic-lidar-sensors/leica-terrainmapper.

GNSS and IMU Equipment

Prior to mobilizing to the project site, flight crews coordinated with the necessary air traffic control personnel to ensure airspace access. Crews were on-site, operating a Global Navigation Satellite System (GNSS) Base Station for the airborne GPS support.

Flight navigation during acquisition was performed using IGI CCNS (Computer Controlled Navigation System). The pilots are skilled at maintaining their planned trajectory, while holding the aircraft steady and level. If atmospheric conditions are such that the trajectory, ground speed, roll, pitch and/or heading cannot be properly maintained, the mission is aborted until suitable conditions occur.

Base stations were set by acquisition staff and was used to support the aerial data acquisition. See the table below for stations operated during acquisition.

Table 2-4. GNSS Base Stations

Station Name	Latitude (DMS)	Longitude (DMS)	Ellipsoid Height L1 Phase Center (Meters)
COLB_CORS	39° 57′ 35.11256"	83° 02′ 44.74693"	186.508
PAR_KCHA_Base	35° 01′ 56.91115"	85° 12′ 23.60732"	177.269
TN22_CORS	35° 23′ 25.71880"	84° 22′ 40.97004"	207.543
TN23_CORS	35° 55′ 10.68490"	84° 59′ 57.56518"	527.522
TN24_CORS	36° 08′ 03.69715"	85° 29′ 57.81747"	309.655
TN26_CORS	35° 26′ 35.11875"	84° 37′ 48.33555"	258.117
TN28_CORS	35° 42′ 05.60618"	85° 44′ 43.51172"	271.52
TN40_CORS	35° 38′ 50.61711"	88° 24′ 04.31175"	126.737
TN43_CORS	35° 13′ 42.85127"	88° 36′ 14.10607"	122.415
TN44_CORS	35° 38′ 25.50233"	88° 55′ 08.62787"	92.437

Timeline

Lidar data was collected February 26, 2019 through March 29, 2019 for the Block 1 AOI. Acquisition specifications are listed in the table below. An initial quality control process was immediately performed on to review the data coverage, airborne GPS data, and trajectory solution.

Table 2-4. Project Acquisition Specifications

Settings	Leica ALS70	Leica TerriainMapper				
Max. Number of Returns	4	15				
Nominal Point Spacing	0.71 m	0.71 m				
Nominal Point Density	2.56 ppsm	2 ppsm				
Flying Height Above Ground Level	1,392 m	2,500 m				
Flight Speed	120 knots	150 knots				
Scan Angle	40°	40°				
Scan Rate Used	52.2 Hz	90 Hz				
Pulse Rate Used	190.8 kHz	600 kHz				
Multi-Pulse in Air	Enabled	Enabled				
Swath Width	1,013 m	1,819 m				
Swath Overlap	35%	25.5%				

For more information, see the Flight Logs in Appendix 1.

Acquisition Quality Assurance

Woolpert developed a quality assurance and validation plan to ensure the acquired lidar data meets the USGS Base Specification Version 1.3. For quality assurance purposes, the lidar data was processed immediately following acquisition to verify the coverage has appropriate density, distribution, and no unacceptable data voids. Accompanying GPS data was post processed using differential and Kalman filter algorithms to derive a best estimate of trajectory. The quality of the solution was verified to be consistent with the accuracy requirements of the task order. Any required re-flights were scheduled at the earliest opportunity.

The spatial distribution of the geometrically usable first return lidar points was reviewed for density requirements as well as regular and uniform point distribution - verifying the lidar data is spaced so that 90% of the cells in a 2*NPS grid placed over the data contain at least one lidar point. The NPS assessment is made against single swath, first return data located within the geometrically usable center portion (typically ~90%) of each swath. Additionally, the data was reviewed for unacceptable data voids – verifying no area greater than or equal to $(4 \times \text{ANPS})^2$ exhibited data coverage gaps.

3. Processing

Processing Summary

Once the lidar data passed initial QC, the dataset was corrected for aircraft orientation and movement. This process used airborne inertial, orientation, and GPS data collected during acquisition along with ground-based GPS data. The data went through a geometric calibration that further corrected each laser point. This calibrated data set was used to create the LAS point cloud. The LAS point data was initially classified into "ground" and "non-ground", then further refined using the classes specified in this task order. Breaklines were drawn to denote hydrological features. After the hydro-flattening process, the final deliverables products were created.

Note: For Block 1, the new lidar data was combined with approximately 2,084 square miles of data collected over Fayette, Hardeman, and McNairy counties TN for USGS Contract No. G10PC00057 Task Order No. G15PD00231. Data from this legacy project and this new dataset was referenced to existing USGS projects in Tennessee as tie-edges.

GNSS-IMU Trajectory Processing

Kinematic corrections for the aircraft position were resolved using aircraft GPS and static ground GPS (1-Hz) for each geodetic control (base station) for three subsystems: inertial measurement unit (IMU), sensor orientation information, and airborne GPS data.

Post-processing of the IMU system data and aircraft position with attitude data was completed to compute an optimally accurate, blended navigation solution based on Kalman filtering technology, or the smoothed best estimate of trajectory (SBET).

Software: POSPac Software v. 5.3, IPAS Pro v.1.35., Novatel Inertial Explorer v8.60.6129

Trajectory Quality

The GNSS trajectory and high-quality IMU data are key factors in determining the overall positional accuracy of the final sensor data. Within the trajectory processing, there are many factors that affect the overall quality, but the most indicative are the combined separation, the estimated positional accuracy, and the positional dilution of precision (PDOP).

Combination Separation

Combined separation is a measure of the difference between the forward-run and the backward-run solution of the trajectory. The Kalman filter was processed in both directions to remove the combined directional anomalies. In general, when these two solutions match closely, an optimally accurate and reliable solution is achieved.

The data for this task order was processed with a goal to maintain a combined separation difference of less than ten (10) centimeters.

Estimated Positional Accuracy

Estimated positional accuracy plots the standard deviations of the east, north, and vertical directions along a time scale of the trajectory. It illustrates loss of satellite lock issues, as well as issues arising from long baselines, noise, and/or other atmospheric interference.

PDOP

The PDOP measures the precision of the GPS solution in regard to the geometry of the satellites acquired and used for the solution.

The data for this task order was processed with a goal to maintain an average PDOP value below 3.0. Brief periods of PDOP over 3.0 are acceptable due to the calibration and control process if other metrics are within specification.

Geometric Calibration

After the initial phase was complete, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Automated line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift. Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error.

Software: Proprietary Software, TerraMatch v20, Leica CloudPro 1.2.4

Lidar Data Classification

LAS data was classified as ground and non-ground points with additional filters created to meet the task order classification specifications. Statistical absolute accuracy was assessed via direct comparisons of ground classified points to ground RTK survey data. Based on the statistical analysis, the lidar data was then adjusted to reduce the vertical bias when compared to the survey ground control of higher accuracy.

Calibrated LAS files were imported into the task order tiles and initially filtered to create a ground and non-ground class. Then additional classes were filtered as necessary to meet the following client-specified classes:

- Class 1 Default / Processed, but not Classified
- Class 2 Bare Earth Ground
- Class 6 Buildings
- Class 7 Low Noise
- Class 9 Water
- Class 17 Bridge Decks
- Class 18 High Noise
- Class 20 Ignored Water

Classified LAS files were evaluated through a series of manual QA/QC steps as well as a peer-based review to eliminate remaining artifacts from the ground class. This included a review of the DEM surface to remove artifacts and ensure topographic quality.

Software: Proprietary Software, TerraScan v20

Hydrologic Flattening

The lidar task order required compilation of breaklines defining the following types of water body features:

Lakes, reservoirs, ponds	Minimum of 2-acres or greater
	Compiled as closed polygons, collected at a constant elevation
Rivers, streams	Nominal width of 30.5 meters / 100 feet
	Compiled in direction of flow, with both sides maintaining an equal elevation gradient
Bridge breaklines	Breaklines used to enforce a logical terrain surface below a bridge

Woolpert utilized the following steps to hydrologically flatten the water bodies and for gradient hydrologic flattening of the double line streams within the existing lidar data:

- 1. The newly acquired lidar data was utilized to manually compile the hydrologic features in a 2D environment using the lidar intensity and bare earth surface. Open Source imagery was used as reference when necessary.
- 2. An integrated software approach was applied to combine the lidar data and 2D breaklines. This process "drapes" the 2D breaklines onto the 3D lidar surface model to assign an elevation. A monotonic process is performed to ensure the streams are consistently flowing in a gradient manner. A secondary step within the program verifies an equally matching elevation of both stream edges. The breaklines that characterize the closed water bodies are draped onto the 3D lidar surface and assigned a constant elevation at or just below ground elevation.
- 3. All classified ground points from inside the hydrologic feature polygons were reclassified to water, class nine (9).
- 4. All classified ground points were reclassified from within a buffer along the hydrologic feature breaklines to buffered ground, class twenty (20). The buffer distance was approximately the task order designed nominal pulse spacing distance.
- 5. Breaklines used for bridge removal during the hydrologic flattening were included with the hydrologic breakline geodatabase deliverable. The purpose of these breaklines is for a more aesthetically pleasing DEM appearance.
- 6. The lidar ground points and breaklines were used to generate a digital elevation model (DEM).
- 7. QA/QC for this task was performed by reviewing the hydrologically flattened DEM and hydrologic breakline features. Additionally, a combined approach utilizing commercial off the shelf software and proprietary methods were used to review the overall connectivity of the hydrologic breaklines.

TerraScan was used to add the hydrologic breakline vertices and export the lattice models.

Breaklines defining the water bodies greater than 2-acres were provided as a PolygonZ feature class. Rivers and streams with a nominal minimum width of 30.5 meters (100 feet) were provided as a PolylineZ feature class. All lake and river breaklines compiled as part of the flattening process were provided in an Esri file geodatabase.

Breaklines used for DEM generation were provided as PointA features in Esri shapefile format.

Software: TerraScan v20, TerraModeler v20, Esri ArcMap v10.7, LP360 v2018.2.57.4

Digital Elevation Model

TerraScan was used to add the hydrologic breakline vertices and export the lattice models. Class 2 (ground) lidar points in conjunction with the hydro breaklines and bridge breaklines were used to create 2.5-foot hydro-flattened bare-earth raster DEM files. Using automated scripting routines within ArcMap, an 32-bit floating point raster ERDAS .img file was created for each tile. Files were produced to the full tile extents. Each surface is reviewed using Global Mapper to check for any surface anomalies or incorrect elevations found within the surface.

Software: TerraScan v20

Intensity Imagery

Lidar intensity data derived from the acquired lidar data was linearly rescaled from 16-bit intensity and provided as 2.5-foot pixel, 8-bit, 256 gray scale GeoTIFF format intensity imagery files. Files were produced to the full tile extents.

Software: TerraScan v20

Building Footprints

Automated feature extraction was performed using proprietary Woolpert software. The raw lidar and bare earth model datasets were processed to extract and attribute building and vegetation features. Automated extraction was followed by detailed Q/C to verify completeness and accuracy of extraction. Final Q/C'ed features were attributed with geometrically derived attributes based on feature extents, reflective surface DEM and bare earth DEM. Extracted and attributed features were reviewed for completeness and consistency. Projection information and metadata were added to final vector data files.

Software: Proprietary Software, Esri ArcMap v10.7

Metadata

FGDC CSDGM/USGS MetaParser-compliant metadata was produced in XML format. The metadata includes a complete description of the task order client information, contractor information, project purpose, lidar acquisition and ground survey collection parameters, lidar acquisition and ground survey collection dates, spatial reference system information, data processing including acquisition quality assurance procedures, GPS and base station processing, geometric calibration, lidar classification, hydrologic flattening, intensity imagery development, and final product development.

Other metadata deliverables included Esri shapefiles of the ground control and QA/QC points and delivery tile index. A georeferenced, polygonal representation of the detailed extents of each acquired lidar swath was produced as a Polygon feature class in an Esri file geodatabase.

4. Accuracy Statement

Horizontal Accuracy

The data sets was produced to meet ASPRS "Positional Accuracy Standards for Digital Geospatial Data" (2014) for a 18.6 cm RMSEx / RMSEy Horizontal Accuracy Class which equates to Positional Horizontal Accuracy = +/- 45.4 cm at a 95% confidence level.

Raw Lidar Swath Testing

This project required the lidar point cloud swath to be produced to meet a Non-Vegetated Vertical Accuracy (NVA) value of 19.6 cm at a 95% confidence level using an RMSEz target value of 10 cm x 1.9600.

Digital Elevation Model Testing

This project required DEM data to be produced to meet a Non-Vegetated Vertical Accuracy (NVA) value of 19.6 cm at a 95% confidence level using an RMSEz target value of 10 cm x 1.9600 and a Vegetated Vertical Accuracy (VVA) value of 0.294 cm at the 95th percentile error.

Appendix 1: Flight Logs

Lidar Acquisition Log																		
Project Info											Date							
Project #		Unique ID						Flight Date (UTC) Day of Year				Flight #						
79576 Woolpert TN EAS									Day5	 7_SHSN			02,	/26/20)19	5	7	
	ew					ment							Time				Ai	rports
	ot		Aircraft	Make			Air	craft Ta	ail#	Нο	bbs St		Local Start UTC			Start		
	ike		7	- Triunc	,	-	7 111	85PE						47	8:4			PuB
	rator		Sensor	Maka	/N/040		San		ial#	Це	bbs Er	٠,			UTC		Λ.	rivina
						:1			r Serial # Hobbs End									
Ot	ner		А	LS70 H	Р			SN7178					11:	:45	11:4	45		
								Condit										
Wind Dir	(°)	Wind	Speed (kts)	Vis	bility ((mi)	Ceilir	ng (ft)	Clo	oud Cov	/er	Temp	o. (°C)	Dew	/ Point	(°C)	Press	ure ("Hg)
Air Spe	ed (kts)		Altitude	AGL (1	t)	Alt	titude	MSL (ft)	Airfi	eld Ele	vation	(ft)					
1	30						6,5	500										
								Settir	igs									
Point Spacii	ıg (m)	Poin	t Density (pp	sm)	Sca	an Angle				n Frequ	iency (Hz)	Pulse	Rate	(kHz)	Las	er Pov	ver (%)
	- +		7 (17)			40		• •		1 -	., \	. ,			- /			,
							-					Ve	rify S-1	Turns F	Before	Missic	n	Yes
		_	Start Time	End '	Timo	Tim	20	_					, .		50.0.0			103
Line #	Direct	ion	(UTC)		TC)	On-L		Sate	ellite	PD	OP			Line N	otes/C	omme	ents	
49			14:01:00	14:0	_	00:02												
49		_	14:01:00		9:00	00:02												
47			14:12:00		5:00	00:03												
46			14:18:00		2:00	00:04												
45			14:24:00		8:00	00:04												
44			14:31:00		6:00	00:05												
43			14:39:00	14:4	3:00	00:04	04:00											
42			14:46:00	14:5	2:00	00:06	06:00											
41			14:55:00	15:0			05:00											
40			15:03:00		9:00		06:00											
39			15:12:00		7:00		05:00											
38			15:20:00		8:00		08:00											
37			15:31:00	15:3		00:07												
36 35			15:41:00 15:51:00		9:00 8:00	00:08					-							
34			16:01:00		0:00	00:02												
33		-	16:13:00		1:00	00:03					-							
32		$\neg \neg$	16:26:00		5:00	00:09					$\neg \neg$							
		$\neg \neg$			-													
								<u> </u>										L
								Page	1			Verify S-Turns After Mission Yes						Yes
Additional C	ommen	ts										Driv	/e #					
ı																		

					Li	dar	Ac	qui	siti	on l	Log							
				Pro	ject l	nfo										Date		
Project #			Project	Name					U	nique l	ID		Flight	Date	(UTC)	Day o	f Year	Flight #
79576			Woolpert	TN EA	ST				Day5	7_SHSN	N7178		02	/26/20	19	5	7	
Cr	ew				Eauin	ment			•	_			Time				Aiı	ports
	ilot		Aircraft				Δir	craft Ta	ail #	Но	bbs St			Start	UTC	Start		parting
	ake		Alleran	wiakc	ivious	-	7411 (85PE	411 //		555 50	u. c		:29	13:		اعو	Jul 1111
			.	NAslas /	N 1 - d -		C		:-1#	- 11.	. l. l	له ما					Δ.,	
	rator		Sensor			91		sor Ser		Н	obbs E	na	Loca		UTC		Ar	riving
Ot	her		A	LS70 HI	,			SN7178					16	:15	16:	:15		
								onditi										
Wind Dir	r (°)	Wind	Speed (kts)	Visil	oility ((mi)	Ceilir	ng (ft)	Clo	oud Co	ver	Temp	o. (°C)	Dew	/ Point	(°C)	Press	ure ("Hg)
Air Spe	ed (kts)	Altitude	AGL (fi	.)	Al	titude	MSL (f	t)	Airfi	ield Ele	vation	(ft)					
-	30	,	Aitituuc	702 (11	· <i>'</i>	Α.		500		7	CIG LIC	- Vacion	. (,					
1.	30																	
				,				Settin				 \			/ \			(0.4)
Point Spacia	ng (m)	Poir	nt Density (pp	ism)	Sca	an Angl		(°)	Sca	n Frequ	uency	(Hz)	Pulse	Rate	(kHz)	Las	er Pov	ver (%)
						40	0											
												Ve	rify S-	Turns E	Before	Missi	on	Yes
Line #	Direc	tion	Start Time (UTC)	End T (UT		Tin On-L		Sate	llite	PD	ОР			Line N	otes/C	Comme	ents	
31				18:59	9:00	00:1:	1:00											
30			19:02:00	19:10	0:00	00:0	8:00											
29			19:14:00	19:25	5:00	00:1	1:00											
28			19:28:00	19:37	7:00	00:09	9:00											
27			19:40:00	19:52	2:00	00:1	2:00											
26			19:55:00	20:03	3:00													
25			20:07:00	20:18														
24			20:21:00	20:29		00:80:00												
23			20:33:00	20:42		00:09												
22			20:46:00	20:54		00:0												
21			20:57:00	21:05	5:00	00:08	8:00											
	Ĺ																	
								Page	1			V	erify S	-Turns	After I	Missio	n	Yes
Additional C	Commer	nts										Driv	/e #					

					Li	dar	Ac	qui	siti	on l	Log	,						
				Pro	ject lı	nfo									C	Date		
Project #			Project						U	nique	ID		Flight	t Date	(UTC)	Day o	f Year	Flight #
79576			Woolpert							 12HS_8				/27/20			8	
	ew					ment							Time					rports
	lot		Aircraft	Make			Δir	craft T	ail #	Но	bbs St			Start	UTC S	Start		parting
	ake		AllClait	IVIANC	/ IVIOUE	51	All	85PE	all #	110	, DD 3 31	ait					De	parting
					' '								_	25	14:			
	rator		Sensor			el e		sor Sei		Н	obbs E	nd	_	l End	UTC		A	rriving
Ot	her		А	LS70 H	Р			SN717	3				12	:14	17:	14		
							C	Condit	ions									
Wind Dir	(°)	Wind	Speed (kts)	Visi	bility (mi)	Ceilir	ng (ft)	Clo	oud Co	ver	Temp	o. (°C)	Dew	Point	(°C)	Press	ure ("Hg)
Air Spe	ed (kts)	Altitude	AGL (f	t)	Al	titude	MSL (ft)	Airf	ield Ele	evation	(ft)					
	30		7 11 11 11 11 11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,			500	,	7 411 11			. (,					
1.	,						0,.											
D-i- : C	- / \			\			- /=	Settir				/11.	.	D :	/I.i. \ \			10/3
Point Spacir	ıg (m)	Poir	nt Density (pp	sm)	Sca	n Angl		/ (°)	Sca	n Freq	uency	(Hz)	Pulse	Rate	(kHz)	Las	er Pov	wer (%)
						40	0											
												Ve	rify S-	Turns E	Before	Missi	on	Yes
Line #	Direc		Start Time	End '	Гime	Tin	ne	Coto	ellite	00	ОР			Lina N	-t/C	`~ ·~ ·		
Line #	Direc	Lion	(UTC)	(U	ГС)	On-Line		ine Sate		ם א	UP			Line N	otes/C	.omme	ents	
20			14:43:00	14:5	0:00	00:07	7:00											
19			14:53:00	15:0	0:00	00:0	7:00											
18			15:03:00	15:0	9:00	00:06	6:00											
17			15:12:00	15:1	8:00	00:06	6:00											
16			15:21:00	15:2	6:00	00:0	5:00											
15			15:29:00	15:3	4:00	00:0												
14			15:37:00	15:4		00:04												
13			15:44:00	15:4		00:05												
12			15:51:00	15:5		00:0												
11			15:59:00	16:0		00:04												
10			16:06:00	16:0		00:03												
9			16:12:00	16:1		00:04												
8			16:19:00	16:2		00:02												
7			16:24:00		7:00	00:03						-						
6			16:30:00		3:00	00:03												
5 4			16:36:00 16:41:00		8:00 2:00	00:02												
3			16:41:00	16:4		00:0												
2			16:50:00	16:4		00:02												
1			16:54:00	16:5		00:0												
			10.54.00	10.5	3.55	50.0.												
								Page	1			V	erify S	-Turns	After I	Missio	n	Yes
Additional C	ommei	nts											/е #					1

					Li	dar	Ac	qui	siti	on Lo	g						
				Pro	ject lı	nfo								D	ate		
Project #			Project	t Name					U	nique ID		Flight	t Date	(UTC) I	Day of	f Year	Flight #
79576	E	East T	N Lidar Proje	ct - TN	North	block			Day6	4_SH7178_	_A	03	/05/20	19	6	4	Α
Cr	ew				Equip	ment						Time		·		Ai	rports
Pi	lot		Aircraft	Make	/Mode	el	Aire	craft Ta	ail#	Hobbs	Start	Local	Start	UTC S	tart	De	parting
Bla	ake		Ce	essna 2	06			N85PE				8:	47	14:4	17	ı	KRNC
Ope	rator		Sensor	Make	/Mode	ı	Sen	sor Ser	ial #	Hobbs	s End	Loca	l End	UTC	nd	A	rriving
	tsch			ica ALS				7178				+	:05	18:0)5		KRNC
							C	onditi	ons								
Wind Dir	(°)	Wind	Speed (kts)	Visi	bility (mi)		ng (ft)		oud Cover	Tem	p. (°C)	Dew	/ Point ((°C)	Press	ure ("Hg
300	· /		30		10	,		,000		Clear		-6		-15	()		3028
	ed (kts)		Altitude	AGI (f		ΔΙ		MSL (1	[+\		Elevatio			13			5020
	30		5,5		',	Ai		500	,		1,032	11 (11)					
1;	JU		ى, <u>.</u>	,00				Settin	ac		1,032						
Doint Spacin	og (m)	Doi:	t Doncity (ncm)	Soc	n Anal				n Eroaus=	cv (H-)	Dulce	Doto	(ku-)	Loc	or Do	Mar (9/)
Point Spacir	ig (m)	PUIN	t Density (pp	751(1)	oca .	n Angl		()	Sca	n Frequen	cy (ΠΖ)	+	Rate		Las		wer (%)
1			2			4	U			53			153800		\ a !! -	10	,
		-	a =1								V.	erity 5-	i urns t	Before I	VIISSIC	n	
Line #	Direct	ion	Start Time	End		Tin On-I		Sate	llite	PDOP			Line N	otes/Co	omme	ents	
Г1			(UTC)	(U1					10	1.4							
51 50	S S	_	15:06 15:14	15: 15:		5			10 10	1.4 1.4							
52	N N	-	15:14	15:		1			10	1.4							
53	N		15:21	15:		5			10	1.4							
55	S		15:29	15:		E			10	1.4							
54	S		15:36	15:	:37	1		>:	10	1.4							
56	N		15:40	15:	:50	1	0	>:	10	1.4							
57	S		15:53	16:		8			10	1.4							
58	N		16:04	16:		9			10	1.4							
59	S		16:18	16:		8			10	1.4							
60	N		16:30	16:		1			10	1.4	_						
61 62	S N	-	16:43 16:57	16: 17:		1			10 10	1.4 1.4	_						
63	S		17:12		22	1			10	1.4							
64	N		17:25		39		4		10	1.4							
65	S		17:42		53	1			10	1.4							
		-			-												
		\neg															
								Page	1		V	erify S	-Turns	After N	1issio:	n	Yes
Additional C	ommen	ts									Dri	ive#			SSD	3	1
											-		-				

Project Pro						Li	dar	Ac	qui	siti	on Log	<u> </u>						
Type					Pro	oject li	nfo		_						D	ate		
Pilot	Project #			Project		•				U	nique ID		Flight	Date	(UTC) [Day o	f Year	Flight #
Pilot Aircraft Make/Model Aircraft Tail # Hobbs Start Local Start UTC Start Departing	79576		East T	N Lidar Proje	ct - TN	North	block			Day6	5_SH7178_A	\	03,	/06/20	19	6	5	А
Pilot	Cr	ew				Equip	ment						Time				Ai	rports
Blake	Pi	lot		Aircraft	Make			Air	craft Ta	ail#	Hobbs S	tart	Local	Start	UTC S	tart		•
Pautsch	Bla	ke		Ce	ssna 2	06			N85PE				8:	55	14:5	55		
Pautsch	Ope	rator		Sensor	Make	/Mode	ı	Sen	sor Ser	ial #	Hobbs	End	Loca	l End	UTC E	nd	Α	rriving
Wind Dir (*) Wind Speed (kts) Visibility (mi) Ceiling (ft) Cloud Cover Temp. (*C) Dew Point (*C) Pressure ("Hg)									7178				_	_				
Wind Dir (*) Wind Speed (kts) Visibility (mi) Ceiling (ft) Cloud Cover Temp. (*C) Dew Point (*C) Pressure (*Hg)								C		ons								-
300 30	Wind Dir	(°)	Wind	Speed (kts)	Vis	ibility (mi)				oud Cover	Tem	o. (°C)	Dew	Point (°C)	Press	ure ("Hg)
Air Speed (kts)		· /														-,		
Settings Settings		ed (kts))	Altitude	AGL (ft)	Al			ft)								
Settings	-		,			-,				,			. (,					
Point Spacing March Point Density (ppsm) Scan Angle/FOV (*) Scan Frequency (Hz) Pulse Rate (kHz) Laser Power (%)		-		3,5	- -					gs								
1	Point Spacin	ng (m)	Poin	nt Density (nr	sm)	Sca	n Angl				n Freguency	/ (Hz)	Pulse	Rate	(kHz)	Las	er Pov	ver (%)
Line # Direction Start Time (UTC) Ti		,			,				()			()						
Line # Direction (UTC) Start Time (UTC) Time (UTC) Satellite On-Line PDOP Line Notes/Comments 66 S 15:17 15:27 10 >10 1.4 67 N 15:31 15:47 16 >10 1.4 68 S 15:50 16:00 10 >10 1.4 69 N 16:04 16:21 17 >10 1.4 70 S 16:23 16:34 11 >10 1.4 71 N 16:38 17:07 9 >10 1.4 72 S 16:58 17:07 9 >10 1.4 73 N 17:12 17:28 16 >10 1.4 8 Image: Image	-			_			•	•				Ve				Vissio		
Company Comp				Start Time	Fnd	Time	Tir	ne					-					
66 S 15:17 15:27 10 >10 1.4 67	Line #	Direc	tion						Sate	llite	PDOP			Line N	otes/Co	mme	ents	
67 N 15:31 15:47 16 >10 1.4 68 S 15:50 16:00 10 >10 1.4 69 N 16:04 16:21 17 >10 1.4 70 S 16:23 16:34 11 >10 1.4 71 N 16:38 16:54 16 >10 1.4 72 S 16:58 17:07 9 >10 1.4 73 N 17:12 17:28 16 >10 1.4 74 N 17:12 17:28 16 >10 1.4 75 N 17:12 17:28 16 >10 1.4 76 N 17:12 17:28 16 >10 1.4 77 N 17:12 17:28 16 >10 1.4 78 N 17:12 17:28 16 >10 1.4 79 N 17:12 17:28 16 >10 1.4 70 N 17:12 17:28 16 >10 1.4 71 N 17:12 17:28 16 >10 1.4 72 N 17:12 17:28 16 >10 1.4 73 N 17:12 17:28 16 >10 1.4 74 N 17:12 17:28 16 >10 1.4 75 N 17:12 17:28 16 >10 1.4 76 N 17:12 17:28 16 >10 1.4 77 N 17:12 17:28 16 >10 1.4 78 N 17:12 17:28 16 >10 1.4 79 N 17:12 17:28 16 >10 1.4 70 N 17:12 17:28 16 >10 1.4 71 N 17:12 17:28 16 >10 1.4 72 N 17:12 17:28 16 >10 1.4 73 N 17:12 17:28 16 >10 1.4 74 N 17:12 17:28 16 >10 1.4 75 N 17:12 17:28 16 >10 1.4 76 N 17:12 17:28 16 >10 1.4 77 N 17:12 17:28 16 >10 1.4 78 N 17:12 17:28 16 >10 1.4 79 N 17:12 17:28 16 >10 1.4 70 N 17:12 17:28 16 >10 1.4 70 N 17:12 17:28 16 >10 1.4 70 N 16:38 16:34 11 70 N 16:38 16:34 11 70 N 16:38 16:34 11 70 N 16:38 16:34 70 N 16:38 16:34 70 N 17:12 17:28 70 N 16:38 16:34 70 N 16:38 16:34	66								>:	10	1.4							
69 N 16:04 16:21 17 >10 1.4 70 S 16:23 16:34 11 >10 1.4 71 N 16:38 16:54 16 >10 1.4 72 S 16:58 17:07 9 >10 1.4 73 N 17:12 17:28 16 >10 1.4 ———————————————————————————————————	67	N	ı	15:31	15	:47					1.4							
70	68	S	,	15:50	16	:00			>:	10	1.4							
71 N 16:38 16:54 16 >10 1.4																		
72 S 16:58 17:07 9 >10 1.4 73 N 17:12 17:28 16 >10 1.4												-						
73 N 17:12 17:28 16 >10 1.4												+-						
Page 1 Verify S-Turns After Mission Yes												+						
	73			17.12		.20					2,7	+						
												-						
												+						
												+-						
												+						
												1						
									<u> </u>			+						
												+						
												+-						
												+						
Additional Comments Drive # SSD3				. '					Page	1	-	V	erify S-	Turns	After N	lissio	n	Yes
	Additional C	ommer	nts									Dri	ve #			SSD	3	
												_						

					Li	dar	Ac	aui	siti	on Lo	og						
				Pro	oject li			-			- 0			D	ate		
Project #			Project		-				U	nique ID		Flight	t Date	(UTC) I		f Year	Flight #
79576		East T	N Lidar Proje			block				 6_SH7178	3_A		/07/20			6	A
Cr	ew		-		Equip	ment						Time				Ai	rports
Pi	lot		Aircraft	Make	/Mode	el	Air	craft Ta	ail#	Hobb	s Start	Local	Start	UTC S	tart	De	parting
Bla	ke		Ce	ssna 2	06			N85PE				8:	35	14:3	35		KRNC
Ope	rator		Sensor	Make	/Mode	ı	Sen	sor Ser	ial #	Hob	bs End	Loca	l End	UTC I	End	Α	rriving
Pau	tsch		Le	ica ALS	570			7178				11	:00	17:0	00		KRNC
							C	onditi	ions			,					
Wind Dir	(°)	Wind	Speed (kts)	Vis	ibility (mi)	Ceilir	ng (ft)	Clo	oud Cove	r Te	mp. (°C)	Dew	Point ((°C)	Press	sure ("Hg)
290			32		10		2,0	000		Clear		2		-8			3037
Air Spe	ed (kts)	Altitude	AGL (1	ft)	Al	titude	MSL (1	ft)	Airfiel	d Elevat	ion (ft)					
-	30			500				500			1,032						
								Settin	ıgs								
Point Spacir	ıg (m)	Poir	nt Density (pp	sm)	Sca	ın Angl	e/FO\			n Freque	ncy (Hz)	Pulse	Rate	(kHz)	Las	er Po	wer (%)
1			2			4	0			53			153800)		10	0
												Verify S-	Turns E	Before I	Missio	on	
,,			Start Time	End	Time	Tin	ne	<u>.</u>		22.0				. /0			<u> </u>
Line #	Direc	tion	(UTC)	(U	TC)	On-l	Line	Sate	ellite	PDOF	'		Line N	otes/Co	omme	ents	
74	S 15:00				:12	1	2	>:	10	1.2							
75	N 15:15			:27	12				1.2								
76	5		15:31		:42	1			10	1.2							
77 78	N 5		15:45 16:00		:56 :11	1			10 10	1.2							
	N		16:14		:25	1			10	1.2							
80	9		16:29		:40	1		1 >1		1.2							
81	N	1	16:43	16	:53	1	0	>:	10	1.2							
											_						
											\dashv						
											\dashv						
										<u> </u>	-						
								Page	1			Verify S	Turns	After N	/lissin	n	Yes
Additional C	ommei	nts						i uge	_		Г	Orive #	141113	AILEI IV	SSD		163
aartionai C	J											m			330	<u> </u>	

82 83 85 84	or :h Wind (kts)	Aircraft Ce Sensor	Equi t Make/Mod essna 206 Make/Mod ica ALS70 Visibility	block pment lel el	Sens	raft Ta N85PE Sor Seri 7178	Day8	nique ID 7_SH7178_A Hobbs St	art		/28/20 Start	UTC Sta	87 Rt D	Airports Departing
79576 Crew Pilot Blake Operato Pautsch Wind Dir (°) 310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	or :h Wind (kts)	Aircraft Ce Sensor Le Speed (kts) 31 Altitude	ject - North Equit Make/Modessna 206 Make/Modesica ALS70 Visibility 10	pment lel el	Sens	N85PE or Seri	Day8	7_SH7178_A Hobbs St	art	03/ Time Local	/28/20 Start	19 UTC Sta	87 rt D	Airports Departing
Crew Pilot Blake Operato Pautsch Wind Dir (°) 310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	or :h Wind (kts)	Aircraft Ce Sensor Lei Speed (kts) 31 Altitude	Equi t Make/Mod essna 206 Make/Mod ica ALS70 Visibility	pment lel el	Sens	N85PE or Seri	il#	Hobbs St	art	Time Local	Start	UTC Sta	rt D	Airports
Pilot Blake Operato Pautsch Wind Dir (°) 310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	or h Wind (kts)	Sensor Lei Speed (kts) 31 Altitude	Make/Modessna 206 Make/Modesca ALS70 Visibility 10	el	Sens	N85PE or Seri			art	Local			rt D	eparting
Blake Operato Pautsch Wind Dir (°) 310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	or h Wind (kts)	Sensor Lei Speed (kts) 31 Altitude	Make/Modessna 206 Make/Modesca ALS70 Visibility 10	el	Sens	N85PE or Seri							rt D	eparting
Operato Pautsch Wind Dir (°) 310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	or th Wind (kts)	Sensor Lei Speed (kts) 31 Altitude	Make/Modica ALS70 Visibility	el	Sens	N85PE or Seri								
Operato Pautsch Wind Dir (°) 310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	or th Wind (kts)	Sensor Lei Speed (kts) 31 Altitude	Make/Modica ALS70 Visibility 10		Sens	or Seri	al#	,			J	13:02	1	KSRB
Pautsch Wind Dir (°) 310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	Wind (kts)	Speed (kts) 31 Altitude	ica ALS70 Visibility 10					Hobbs E	nd	Local		UTC En		Arriving
Wind Dir (°) 310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	(kts)	Speed (kts) 31 Altitude	Visibility	(mi)			ui //	110005		11:		16:22	_	KSRB
310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	(kts)	31 Altitude	10	(mi)		onditio	onc			11.	22	10.22		KSKB
310 Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84	(kts)	31 Altitude	10	(1111)				ud Cover	Tomp	(°C)	Dow	Point (°C	C) Dro	ccuro ("H
Air Speed (I 150 Point Spacing (n 1 Line # Di 82 83 85 84		Altitude			Ceilin		Cic		Temp		Dew		.) Pres	ssure ("Hg
150 Point Spacing (n 1 Line # Di 82 83 85 84			AGL (ft)		20,0			Clear	1.			1		3034
Point Spacing (n 1 Line # Di 82 83 85 84	(m) Poin	5,5		Al		MSL (f	t)	Airfield Ele		(ft)				
1 Line # Di 82 83 85 84	(m) Poin		500		6,6			1,0	000					
1 Line # Di 82 83 85 84	(m) Poin					Settin								
Line # Di 82 83 85 84		t Density (pp	osm) So	an Angl	le/FOV	(°)	Sca	n Frequency	(Hz)	Pulse	Rate ((kHz)	Laser Po	ower (%)
82 83 85 84		2		4	.0			53		1	153800)	1	00
82 83 85 84									Vei	rify S-T	urns E	Before Mi	ssion	
82 83 85 84	N	Start Time	End Time	Tin	ne	C-1-	II:4 -	DDOD			NI	-+/0		
83 85 84	Direction	(UTC)	(UTC)	On-l	Line	Sate	llite	PDOP			Line N	otes/Con	iments	
85 84	S	13:20	13:30	1	0	>1	0	1.2						
84	N	13:33	13:44	44 1:		>1	0	1.2						
	S	13:47	13:54	7	7 >		0	1.2						
	S	13:55	13:57	2			0	1.2						
86	N	13:59	14:01	_	2	>1		1.2						
87	N	14:03	14:10	_	7	>1		1.2						
89	S	14:13	14:20	_	7	>1		1.2						
90	S N	14:22 14:28	14:23 14:35	1 7		>1 >1		1.2						
91	S	14:38	14:33		5	>1		1.2						
92	N	14:47	14:54	7		>1		1.2						
93	S	14:57	15:02		5	>1		1.2						
94	N	15:05	15:12	_	7	>1		1.2						
95	S	15:14	15:20	(5	>1	0	1.2						
96	N	15:24	15:29	5	5	>1		1.2						
97	S	15:33	15:37		4	>1		1.2						
98	N	15:40	15:46	_	5	>1		1.2						
99	S	15:49	15:53		4	>1		1.2						
100	N	15:55	16:01		5	>1		1.2						
101	S N	16:04	16:09		5 4	>1		1.2						
102	IN	16:12	16:16	+	+	>1	U	1.2						
'						Page	1		Ve	rify S-	Turns	After Mis	sion	Yes
Additional Comn	nments								Driv				SSD2	

					Li	dar	Ac	qui	siti	on Lo	g						
				Pro	oject lı			•						D	ate		
Project #			Project		•				U	nique ID		Flight	Date	(UTC) I		f Year	Flight #
79576		East	TN Lidar Pro	ject - N	lorth b	lock			Day8	7_SH7178_	_B	03,	/28/20	19	8	7	В
Cr	ew				Equip	ment						Time				Ai	rports
Pi	lot		Aircraft	Make	/Mode	el l	Aire	craft Ta	ail#	Hobbs	Start	Local	Start	UTC S	tart	De	parting
Bla	ke		Ce	ssna 2	06			N85PE				12:	:02	17:0	02		KSRB
Ope	rator		Sensor	Make	/Mode	I	Sen	sor Ser	ial#	Hobb	s End	Loca	l End	UTC I	End	Α	rriving
Pau	tsch		Le	ica ALS	70			7178				13:	:10	18:1	10		KSRB
							C	Conditi	ons								
Wind Dir	(°)	Wind	Speed (kts)	Vis	ibility (mi)	Ceilir	ng (ft)	Clo	oud Cover	Tem	p. (°C)	Dew	/ Point ((°C)	Press	sure ("Hg)
300			33		10			000		Clear		19		3			3031
Air Spe)	Altitude		ft)	Al		MSL (ft)		Elevatio	n (ft)					
1	50		5,5	00				500			1,000						
					ı			Settin									
Point Spacir	ng (m)	Poir	nt Density (pp	sm)	Sca		le/FOV	/ (°)	Sca	n Frequen	cy (Hz)	+	Rate	• •	Las		wer (%)
1		_	2	_		4	0			53			153800			10	0
			a =:	- 1	1						Ve	erity S-1	Turns E	Before I	VIISSIC	on	
Line #	Direc	tion	Start Time (UTC)		Time TC)	Tin On-l		Sate	llite	PDOP			Line N	otes/Co	omme	ents	
103	5		17:24		:28		4	>1	10	1.3							
104	N 17:31				:35		4 >1			1.3							
105	S	5	17:38	17	:42	۷			10	1.3							
106	N		17:45		:49		4		10	1.3							
UL001	V	V	17:51	18	:01	1	0	>:	10	1.3			(Cross Fli	ight		
											_						
											-						
											_						
											_						
											_						
											_						
					-												
								Page	1		٧	erify S	Turns	After N	/lissio	n	Yes
Additional C	ommei	nts									Dri	ve#			SSD	2	

					Li	dar	Ac	qui	siti	on Lo	og						
				Pro	oject li									D	ate		
Project #			Project		•				U	nique ID		Flight	Date	(UTC)	Day o	f Year	Flight #
79576		Eas	t TN Lidar Pro	ject - I	REFLIGI	HTS			Day8	8_SH7178	_A	03	/29/20)19	8	8	А
Cr	ew				Equip	ment		•				Time				Ai	rports
Pi	lot		Aircraft	Make	/Mode	el	Air	craft Ta	ail#	Hobb	s Start	Local	Start	UTC S	tart	De	parting
Bla	ke		Ce	ssna 2	06			N85PE				8:	00	13:0	00		KSRB
Ope	rator		Sensor	Make	/Mode	ı	Sen	sor Ser	ial#	Hobb	s End	Loca	l End	UTCI	End	Α	rriving
Pau	tsch		Le	ica ALS	570			7178				9:	32	14:3	32		KSRB
							C	Conditi	ons								
Wind Dir	(°)	Wind	Speed (kts)	Vis	ibility (mi)	Ceilir	ng (ft)	Clo	oud Cover	Tem	p. (°C)	Dew	/ Point	(°C)	Press	sure ("Hg)
330			29		10		20,	000		Clear		11		5			3017
Air Spe	ed (kts)	Altitude	AGL (1	ft)	Al	titude	MSL (f	ft)	Airfield	l Elevatio	n (ft)					
1!	50		5,5	500			6,6	500			1,000						
								Settin	gs								
Point Spacir	ng (m)	Poir	nt Density (pp	sm)	Sca	n Angl	e/FOV	/ (°)	Sca	n Frequer	ncy (Hz)	Pulse	Rate	(kHz)	Las	er Po	wer (%)
1			2			4	.0			53			153800)		10	0
											V	erify S-	Turns E	Before I	Missic	on	
15	D:		Start Time	End	Time	Tin	ne	6-4-	II!.	DD OD			1 N	-+/6			
Line #	Direc	tion	(UTC)	(U	TC)	On-l	Line	Sate	ellite	PDOP			Line iv	otes/Co	omme	ents	
1	SW 13:28					7	7	>:	10	1.4							
2	N		13:38	_	:44	6		>1		1.4							
3	S۱		13:47		:54	7			10	1.4							
<u>4</u> 5	N SV		13:57 14:07		:03		5 5		10 10	1.4	_						
6	N		14:16		:20		<u>. </u>		10	1.4	_						
7	S۱		14:23		:24	1	1	>:		1.4							
UL001	N۱	W	14:25	14	:27	2	2	>:	10	1.4			(Cross Fli	ight		
											_						
											_						
											_						
											_						
								Page	1		,	larify S	Turns	After N	/lissio	n	Yes
Additional C	Omme	nts						rage				ive #	- 1 01113	AILEI IV	SSD		162
Auditional C	Jiiiiiei	11.3									וט	. V C 17			JJU	_	