

## aero-graphics

## LiDAR MAPPING REPORT

## UTAH 3DEP - WAYNE SAN JUAN AERIAL SURVEY

WU_Name: UT_WestEast_4_B22
WU_ID: 300366
PRJ_ID: 224853

## Submitted: February 2, 2024



## Submitted to:

U.S. Geological Survey tnm_help@usgs.gov

## Submitted by:

Aero-Graphics, Inc. 40 W. Oakland Avenue Salt Lake City, UT 84115 www.aero-graphics.com

# LiDAR Mapping Report Utah 3DEP - Wayne San Juan Aerial Survey 

## Table Of CONTENTS

1. Overview ..... 3
1.1 Project Area ..... 3
1.2 Project Deliverables ..... 3
1.3 Projection, Datum, Units ..... 3
2. ACQUISITION ..... 5
2.1 Flight Planning ..... 5
2.2 Data Acquisition ..... 6
2.3 Acquisition Summary ..... 8
2.4 Ground Control and Check Point Survey ..... 9
3. LiDAR Processing Workflow ..... 12
4. Accuracy Testing and Results ..... 15
4.1 Relative Calibration Accuracy Results ..... 15
4.2 Calibration Control Vertical Accuracy ..... 16
4.3 Point Cloud Testing ..... 16
4.4 Digital Elevation Model Testing ..... 17
4.5 Data Density ..... 17
Appendix A - Check Points ..... 20
Appendix B - Calibration Control Accuracy Report ..... 23

aero-graphics

## 1. Overview

### 1.1 Project Area

Aero-Graphics, Inc., a full-service geospatial firm located in Salt Lake City, Utah, was contracted by the U.S. Geological Survey (USGS) and partners to acquire, process, and deliver aerial lidar data and derivative products that adhere to U.S. Geological Survey (USGS) National Geospatial Program (NGP) Lidar Base Specification 2022, Revision A, QL2 standards. The assigned project area covers approximately 4,746 square miles in Wayne County and San Juan County, Utah. Lidar data was delivered as processed Classified LAZ 1.4 files, formatted to 12,807 individual $1000 \mathrm{~m} \times 1000 \mathrm{~m}$ tiles, as tiled Intensity Imagery and DSMs, and as tiled bare earth DEMs; all tiled to the same 1000 m x 1000 m schema.

### 1.2 Project Deliverables

| LiDAR Data | -Classified point cloud data in LAS v1.4 format, <br> zipped to LAZ |
| :---: | :---: |
| Raster Data | -Bare-earth DEM, Digital Surface Model (DSM), <br> Maximum surface height rasters (MSHR), and <br> intensity imagery with a cell size of 1.0 meter <br> in GeoTIFf format <br> Swath separation images with a 2.0 meter <br> resolution in GeoTIFF format |
| Vector Data | -Breaklines in geodatabase format <br> - <br> Flight index, tile index and AOI in SHP format <br> Surveyed GCPs and checkpoints in .gpkg <br> format |
| Report of Survey | - Reports and metadata as described in TO |

1.3 Projection, Datum, Units

| Projection |  | UTM Zone 12N |
| :---: | :---: | :---: |
| EPSG |  | 6341 |
| Datum | Vertical | NAVD88 (Geoid18) |
|  | Horizontal | NAD83 (2011) |
| Units |  | Meters |



Exhibit 1: Utah 3DEP - Wayne San Juan project boundary


aero-graphics

## 2. ACQUISITION

### 2.1 Flight Planning

Aero-Graphics Aerial Department created a unique flight plan for this project using Optech's Airborne Mission Manager (AMM) flight planning software. AMM simulates flight plans based on the project area's terrain, as well as the sensor's model, mount, and settings. These features helped ensure that all contract specifications are met in the most efficient way possible. Prior to mobilizing to the acquisition sites, Aero-Graphics' staff monitored all site conditions and potential weather hazards including wind, rain, snow, and blowing dust. Additionally, Aero-Graphics ensured all airspace clearances were secured by the proper officials before acquisition occurred. A summary of the flight parameters and sensor settings for the Utah 3DEP - Wayne San Juan Aerial Survey are outlined in Exhibit 2.

Exhibit 2: Summary of planned flight parameters and sensor settings

| Planned Specifications |  |  |
| :---: | :---: | :---: |
| Aircraft |  | Cessna 206 |
| Altitude (ft above ground level) |  | 6,900 |
| Speed (kts) |  | 135 |
| LiDAR Sensor |  | Optech Galaxy Prime |
| PRF (kHz) |  | 550 |
| Scan frequency (Hz) |  | 72 |
| Laser power |  | High (Boost) |
| Scan Angle | Full | $45^{\circ}$ |
|  | From nadir | $\pm 22.5^{\circ}$ |
| Planned Average Point Density (p/m²) |  | 3.91 |
| Post Spacing at Nadir | Cross Track (m) | 0.53 |
|  | Down Track (m) | 0.48 |
| Swath Width (m) |  | 1,718 |
| Sidelap (\%) |  | 20 |
| No. of Flightlines |  | 199 |



### 2.2 Data Acquisition

Aero-Graphics acquired LiDAR data from August to October of 2022 with a turbocharged Cessna 206 (Exhibit 3). The stability of this platform is ideal for efficient data collection at high and low altitudes and at a variety of airspeeds. Additionally, our Cessna 206 has been customized to house a variety of airborne sensors, and the power system and avionics have been upgraded specifically to meet aerial survey needs.

Exhibit 3: A Cessna 206 was the acquisition platform for this project


The Optech Galaxy Prime was selected for this project on account of its high accuracy and efficiency (Exhibit 4). This sensor uses SwathTrak technology, which dynamically adjusts the scan field of view in real time to maintain a constant swath width over a variety of terrains. It also features up to 8 returns per pulse, which increases the vertical resolution of complex terrains. The sensor is complemented with the use of FMS Nav, which allowed the system operator to monitor the point density and swath attributes of this project in real time, ensuring quality data and full coverage, as shown in Exhibit 5. More information about point density can be found in Section 4.4.

Exhibit 4: The Optech Galaxy PRIME was used for data acquisition



Exhibit 5: Swath data for the Utah 3DEP - Wayne San Juan project was recorded and viewed in real-time by the sensor operator.



### 2.3 ACQUISItION SUMMARY

Aero-Graphics acquired LiDAR data beginning August 24, 2022 and concluded acquisition on October 18, 2022. These flights took place when ground conditions were free of snow, ice, and standing water. There were also no technical issues with the data collection such as LiDAR sensor problems.


Exhibit 6: The lines flown by date for the Utah 3DEP - Wayne San Juan project


Data was acquired successfully to cover the entire project area however a single tile (12SWH0028), which is entirely inside the shoreline of the Colorado River (Exhibit 7), resulted in that tile having no Lidar points. A DEM was made for this tile from adjacent breaklines but no other project deliverables were made for this tile. A shapefile named excluded_tile.shp has been included in the metadata folder and txt files have been added to each of the folders for which that tile will be missing.


Exhibit 7: Location of tile 12SWH0028 within the Colorado River

### 2.4 Ground Control and Check Point Survey

Aero-Graphics' professional land surveyor identified, targeted, and surveyed 45 ground control points (Exhibit 8) for use in data calibration as well as 133 QC check points (Exhibit 9) in vegetated and non-vegetated land cover classification as an independent test of accuracy for this project. A combination of precise GPS surveying methods, including static and RTK observations were used to establish the 3D position of ground control points and QC check points. Ground control coordinates can be found in Appendix A. A summary of LiDAR calibration control vertical accuracy can be found in Section 4.2 with a more detailed report in Appendix B.


Exhibit 8: Static ground control for the Utah 3DEP - Wayne San Juan project



Exhibit 9: Check Points for the Utah 3DEP - Wayne San Juan project


## 3. LiDAR Processing Workflow

1. Absolute Sensor Calibration. Following sensor installation, lever arm values were surveyed. A boresight mission was flown over our fully controlled local range, and when adjusted to the surveyed ground control for roll, pitch, heading, and scale errors, boresight angles were developed for application to the POS processing in subsequent steps.
2. Kinematic Air Point Processing. The airborne GPS positions (collected at 1 -second intervals) were post-processed using Applanix's POSPac MMS GNSS Inertial software (PP-RTX). A smoothed best estimate of trajectory (SBET) was developed by combining the corrected GPS positions with $1 / 200$-second inertial measurement unit (IMU) data, which tracked the plane's roll, pitch, and yaw throughout the flight.
3. Raw LiDAR Point Processing (Calibration). The SBET and LiDAR range data were combined to solve for the real-world positions of each laser point. Point cloud data was produced by flight strip in ASPRS v1.4 LAS format. Flight strips were output in the project's coordinate system.
4. Relative Calibration. Performed relative calibration by correcting for roll, pitch, heading, and scale discrepancies between adjacent flightlines; tested resulting relative accuracy. The Aero-Graphics Team generated swath separation images using LP360 software. These images were created from the last return of all points except points classified as noise and/or flagged as withheld. Point Insertion was used as the Surface Method and the cell size was set to 2x the deliverable DEM cell size. The three interval bins used are bulleted above and the parameter to "Modulate source differences by Intensity" was set to $50 \%$. The output GeoTIFF rasters were tiled to the project tile grid, clipped to the master DPA, and formatted (including defining the CRS which matches the project CRS) using GDAL software, version 2.4.0. These results are presented in Section 4.1.
a. A Dz Ortho Raster was generated from Last return lidar points as part of this process (Exhibit 10). This raster identifies clusters of large residuals and differences in measured elevations between overlapping flightlines. These errors are usually caused by topographic relief or environmental factors and require manual adjustments to correct. In most cases, multiple iterations of the Dz ortho raster are created to aid in fine tuning relative calibration parameters.


Exhibit 10: A Dz ortho raster sample generated for the Utah 3DEP - Wayne San Juan project
5. Vertical Accuracy Assessment Height differences between each static survey point and the laser point surface were identified through comparative tests. Results are presented in Section 4.2.
6. Tiling \& Long/Short Filtering Extremely long and short returns were also filtered out as outliers and classified to a temporary class to be reclassified to low or high noise after completion of ground point classification.
7. Classified LAS Processing. The point classification was performed with the ASPRS classes described in Exhibit 11. The bare-earth surface is classified using a combination of TerraScan macro functionality as well as proprietary software. The bare-earth surface is then manually reviewed and corrected to ensure correct classification on the Class 2 (Ground) points. All data is then reviewed and any remaining artifacts removed using functionality provided by TerraScan. LP360 is then used as a final check of the bare-earth dataset. LP360 and TerraScan software was used to perform statistical analysis of the classes in the LAS files, on a per tile level to verify classification metrics and full LAS header information.


Class code 22 Temporal exclusion is typically used for non-favored data in intertidal zones. AGI used this class code to represent non-favored river high elevation flow. Due to fluctuations in river elevation from mission to mission during the flight season for this project AGI used Temporal exclusion class coding to exclude non-favorable high water for the more favorable lowest ground "water" elevation.

Exhibit 11: The ASPRS classes used in lidar point classification
ASPRS Version 1.4 minimum point cloud classification scheme

| CLASS \# | CLASS NAME | DESCRIPTION |
| :---: | :---: | :---: |
| 1 | Processed, but <br> Unclassified | Points that do not fit any other classes |
| 2 | Bare earth | Bare earth surface |
| 7 | Low noise | Low points identified below surface |
| 9 | Water | Points inside of lakes/ponds |
| 17 | Bridge decks | Points on bridge decks |
| 18 | High noise | High points identified above surface |
| 20 | Ignored ground | Points near breakline features; ignored in DEM creation process |
| 22 | Temporal exclusion | Used for non-favored data in intertidal zones |

8. Hydro-Flattened Breakline Collection. Full point cloud intensity imagery, DEMs, and bare earth terrains were used to manually digitize 3D breaklines. Breakline features were collected of inland streams and rivers with a $30-$ meter nominal width, and inland ponds and lakes of 2 acres or greater surface area. Elevation values were assigned to all inland ponds and lakes, inland pond and lake islands, and inland stream and river islands, using ESRI and LP360 functionality.
9. Hydro-Flattened Raster DEM Creation. A hydro-flattened raster digital elevation model (DEM) was created from a TIN surface generated using the ground classified LiDAR points. The hydro-flattened DEMs, clipped to the project tile grid, were generated in LP360 using the hydro breaklines collected. The tiled DEMs were reviewed at a scale of 1:5,000 to look for artifacts caused by the DEM generation process and to verify correct and complete hydro-flattening was applied. Upon correction of any outstanding issues, the DEM data was loaded into Global Mapper for its second review and to verify corrections. Final DEMs are formatted using GDAL software version 2.4.0.
a. Tile 12 SWH 0028 is a small clipped tile contained entirely between the banks of the Colorado River. There are no LiDAR points for this tile. There is a DEM for the tile as the area of the river as it was interpolated from the adjacent points and breaklines. There are no other deliverables other than the DEM for this tile.
10. Maximum Surface Height Rasters Creation. MSHRs are delivered as tiled GeoTIFFs (32-bit, floating point), with the tile size and naming convention matching the project tile grid. All points, excluding points flagged as withheld, are used to produce MSHRs. The rasters are produced with a binning method in which the highest elevation of all lidar points intersecting each pixel is applied as the pixel elevation in the resulting raster. Final MSHRs are formatted using GDAL software version 2.4.0, spatially defined to match the project CRS, and the cell size equals $2 x$ the deliverable DEM cell size.

## 4. Accuracy Testing and Results

### 4.1 Relative Calibration Accuracy Results

Inter-swath relative accuracy is defined as the elevation difference in the overlapping area of parallel swaths. The inter-swath accuracy was tested in 787 areas across the project in a total of 491.96 square kilometers.

## Utah 3DEP - Wayne San Juan project area: ( 225 flightlines, > 83 billion points)

- Inter-swath relative accuracy average of 0.038 m

Intra-swath Precision is a measure of the expected precision of the laser ranging measurement. The metric is derived by calculating the variation in elevation values across a smooth flat surface and was calculated using a kernal size of 2 meters around each control and NVA checkpoint. The intra-swath precision average was found to be 0.020 m .

### 4.2 Calibration Control Vertical Accuracy

Vertical absolute accuracy reports were generated as a quality assurance check. The location of each control point is displayed in the Surveyed Ground Control map in Exhibit 8. Detailed results for each point are included in Appendix B.

Exhibit 12: Calibration control vertical accuracy results summary

$$
\begin{aligned}
& \text { Calibration Control Accuracyz: Utah 3DEP }- \text { Wayne San Juan } \\
& \text { Project Area } \\
& \hline \text { Average Error }=+0.000 \mathrm{~m} \\
& \text { Average Magnitude }=0.020 \mathrm{~m} \\
& \hline \text { Minimum Error }=-0.151 \mathrm{~m} \\
& \text { Maximum Error }=+0.084 \mathrm{~m} \\
& \text { SMSE }=0.041 \mathrm{~m} \\
& \text { Survey Sample Size: } \mathrm{n}=45
\end{aligned}
$$

### 4.3 Point Cloud Testing

The project specifications require that only Non-Vegetated Vertical Accuracy (NVA) be computed for raw LiDAR point cloud swath files. NVA is defined as the elevation difference between the LiDAR ground surface and statically surveyed ground control points collected in open terrain (bare soil, sand, rocks, and short grass) as well as urban terrain (asphalt and concrete surfaces). The NVA for this project was tested with 77 check points. These check points were not used in the calibration or post-processing of the LiDAR point cloud data. Elevations from the unclassified LiDAR surface were measured for the xy location of each check point. Elevations interpolated from the LiDAR surface were then compared to the elevation values of the surveyed control points.

The bare-earth LiDAR dataset was designed to meet or exceed ASPRS Positional Accuracy Standards at the 10 cm vertical accuracy class. Absolute accuracy for non-vegetated areas (NVA) must be accurate within $10.0 \mathrm{~cm}(0.32 \mathrm{ft}) \mathrm{RMSEz}$ and $19.6 \mathrm{~cm}(0.64 \mathrm{ft})$ at the $95 \%$ confidence level. The tested NVA for this dataset was found to be accurate within 4.3 cm ( 0.14 ft ) in terms of the RMSEz. The resulting NVA stated at the $95 \%$ confidence level ( $\mathrm{RMSEz} \times 1.96$ ) is $8.4 \mathrm{~cm}(0.28 \mathrm{ft})$. Therefore, this dataset meets the required NVA of 10 cm ( 0.32 ft ) at the $95 \%$ confidence level as defined by the National Standards for Spatial Data Accuracy (NSSDA).

### 4.4 Digital Elevation Model Testing

The project specifications require the accuracy of the derived DEM be calculated and reported in two ways: (1) Non-Vegetated Vertical Accuracy (NVA) calculated at a $95 \%$ confidence level in "bare earth" and "urban" land cover classes and (2) Vegetated Vertical Accuracy (VVA) in all vegetated land cover classes combined calculated based on the $95^{\text {th }}$ percentile error. The NVA for this project was tested with 77 check points. The VVA was tested with 56 check points.

The Non-Vegetated Vertical Accuracy (NVA) for this dataset was tested by sampling the DEM elevation value at each NVA checkpoint and differencing the sampled DEM Value and the statically surveyed NVA checkpoint elevation value. The resulting RMSEz of the DEM values were found to be $4.7 \mathrm{~cm}(0.15 \mathrm{ft})$. The resulting accuracy stated as the $95 \%$ confidence level ( $\mathrm{RMSEz} \times 1.96$ ) is $9.2 \mathrm{~cm}(0.3 \mathrm{ft})$. Therefore, this dataset meets the required NVA of 19.6 cm at the $95 \%$ confidence level.

The tested Vegetated Vertical Accuracy (VVA) for this dataset captured from the DEM using bi-linear interpolation for all classes was found to be $5.9 \mathrm{~cm}(0.19 \mathrm{ft})$. Therefore, this dataset meets the required VVA of 10.3 cm based on the 95 th percentile error.

### 4.5 Data Density

The goal for this project was to achieve a minimum LiDAR point density of 2.0 points per square meter. First return density is the best representation of the quality of the acquisition because the density of first returns is independent of vegetation and other random factors that could increase the overall point density. The acquisition mission achieved an actual average of 6.2 points per square meter for first returns. Please note that ground water and other random factors could decrease the overall point density.

aero-graphics

Exhibit 13: First returns laser point density by frequency, points/m2. This figure displays the percentage of points in a given density range



Exhibit 14: Density of first returns only in points per meter ${ }^{2}$ for the Utah 3DEP - Wayne San Juan project.

aero-graphics

## Appendix A - Check Points

| Survey Point | Ułah 3DEP - Wayne San Juan Aerial Survey |  |  |
| :---: | :---: | :---: | :---: |
|  | Easting | Northing | Elevation (m) |
| NVA-064 | 526907.117 | 4253562.247 | 1362.247 |
| NVA-065 | 525116.160 | 4245190.355 | 1330.228 |
| NVA-066 | 522605.540 | 4235184.235 | 1456.779 |
| NVA-067 | 522692.380 | 4225838.402 | 1814.164 |
| NVA-068 | 528881.198 | 4239506.021 | 1385.451 |
| NVA-069 | 534304.709 | 4242582.413 | 1374.966 |
| NVA-070 | 532090.126 | 4228186.071 | 1459.584 |
| NVA-071 | 541972.021 | 4230186.046 | 1614.831 |
| NVA-072 | 530519.684 | 4255910.336 | 1445.830 |
| NVA-073 | 538393.717 | 4251063.870 | 1501.823 |
| NVA-075 | 555672.437 | 4261078.669 | 1728.145 |
| NVA-076 | 565251.898 | 4257947.297 | 1614.173 |
| NVA-077 | 560848.718 | 4251243.477 | 1747.118 |
| NVA-078 | 557496.904 | 4239708.527 | 1808.942 |
| NVA-079 | 570656.420 | 4234204.124 | 1974.263 |
| NVA-080 | 576196.367 | 4248761.252 | 1865.749 |
| NVA-081 | 561283.762 | 4227755.599 | 1906.188 |
| NVA-083 | 620995.220 | 4255738.568 | 1684.481 |
| NVA-084 | 620115.289 | 4233936.265 | 1940.106 |
| NVA-085 | 614959.288 | 4235619.426 | 1906.998 |
| NVA-086 | 622218.305 | 4243200.943 | 1872.025 |
| NVA-087 | 634863.423 | 4249272.549 | 1564.609 |
| NVA-088 | 638599.946 | 4222721.420 | 1852.125 |
| NVA-089 | 634034.207 | 4221448.961 | 1918.657 |
| NVA-090 | 638480.387 | 4216455.344 | 1889.214 |
| NVA-091 | 638134.410 | 4209570.213 | 1925.759 |
| NVA-093 | 632347.718 | 4208896.653 | 2025.395 |
| NVA-094 | 639293.184 | 4203530.537 | 2232.785 |
| NVA-095 | 635694.494 | 4199696.900 | 2430.950 |
| NVA-096 | 632482.482 | 4196596.885 | 2522.126 |
| NVA-097 | 637666.983 | 4193120.924 | 2566.746 |
| NVA-098 | 640356.064 | 4183065.514 | 2276.129 |
| NVA-099 | 629318.096 | 4180576.931 | 2292.604 |
| NVA-100 | 613719.421 | 4154860.433 | 1806.965 |
| NVA-101 | 604355.150 | 4158190.358 | 2166.392 |
| NVA-102 | 596489.812 | 4148258.963 | 1971.051 |
| NVA-103 | 593373.771 | 4156147.315 | 2030.060 |
| NVA-104 | 591263.054 | 4162831.327 | 2005.504 |


aero-graphics

| NVA-105 | 580733.801 | 4164307.721 | 1785.684 |
| :---: | :---: | :---: | :---: |
| NVA-106 | 574481.131 | 4165735.022 | 1617.751 |
| NVA-107 | 562960.906 | 4179931.912 | 1438.687 |
| NVA-108 | 568738.645 | 4170960.022 | 1509.189 |
| NVA-109 | 572260.710 | 4148642.302 | 1579.341 |
| NVA-110 | 568037.558 | 4142352.829 | 1459.397 |
| NVA-111 | 556573.278 | 4141230.932 | 1638.084 |
| NVA-112 | 547017.799 | 4140366.990 | 1548.825 |
| NVA-113 | 543767.840 | 4141707.644 | 1463.726 |
| NVA-114 | 539503.902 | 4144279.606 | 1335.369 |
| NVA-115 | 533109.083 | 4146610.070 | 1271.706 |
| NVA-117 | 537765.802 | 4142243.163 | 1317.932 |
| NVA-118 | 537573.900 | 4140768.291 | 1323.473 |
| NVA-119 | 543345.961 | 4137855.761 | 1487.163 |
| NVA-120 | 540786.375 | 4136625.542 | 1438.723 |
| NVA-121 | 582817.354 | 4102433.734 | 1664.084 |
| NVA-122 | 600678.744 | 4117115.906 | 1378.385 |
| NVA-123 | 596470.084 | 4122235.933 | 1541.775 |
| NVA-124 | 596229.110 | 4132585.432 | 1983.145 |
| NVA-125 | 593342.973 | 4141097.624 | 1980.809 |
| NVA-126 | 588349.327 | 4138775.114 | 1894.070 |
| NVA-127 | 582665.353 | 4140046.577 | 1790.363 |
| NVA-128 | 587919.284 | 4132115.764 | 1902.355 |
| NVA-129 | 618437.739 | 4128701.536 | 1354.773 |
| NVA-130 | 605116.830 | 4121612.855 | 1350.546 |
| NVA-131 | 603301.873 | 4119529.399 | 1324.086 |
| NVA-132 | 605399.748 | 4124823.941 | 1423.635 |
| NVA-133 | 604780.755 | 4128010.264 | 1457.770 |
| NVA-134 | 601842.492 | 4130487.156 | 1542.161 |
| NVA-135 | 608590.520 | 4127436.640 | 1501.533 |
| NVA-136 | 618203.455 | 4132006.346 | 1359.898 |
| NVA-137 | 616750.275 | 4134288.188 | 1444.641 |
| NVA-138 | 614065.781 | 4135733.363 | 1525.279 |
| NVA-139 | 612236.089 | 4137497.989 | 1552.141 |
| NVA-140 | 621417.745 | 4154448.404 | 1599.284 |
| NVA-141 | 623885.993 | 4162806.536 | 1678.621 |
| NVA-142 | 618592.525 | 4149354.155 | 1455.181 |
| NVA-143 | 619281.496 | 4145071.221 | 1437.477 |
| NVA-144 | 562683.541 | 4138465.726 | 1420.217 |
| VVA-043 | 529867.327 | 4256339.072 | 1454.964 |
| VVA-044 | 540106.823 | 4254869.814 | 1529.295 |
| VVA-045 | 559596.462 | 4258817.037 | 1696.918 |
| VVA-046 | 566733.387 | 4259132.152 | 1593.501 |


aero-graphics

| VVA-047 | 558781.333 | 4243945.059 | 1787.319 |
| :---: | :---: | :---: | :---: |
| VVA-048 | 566421.284 | 4234232.830 | 1909.592 |
| VVA-049 | 575317.813 | 4245028.585 | 1886.993 |
| VVA-050 | 522184.077 | 4228369.830 | 1638.570 |
| VVA-051 | 530272.589 | 4234044.006 | 1441.689 |
| VVA-052 | 524973.711 | 4238514.271 | 1406.541 |
| VVA-053 | 543539.296 | 4227483.533 | 1670.875 |
| VVA-054 | 537090.219 | 4242230.273 | 1444.377 |
| VVA-055 | 563443.708 | 4229313.261 | 1913.509 |
| VVA-056 | 616680.149 | 4235164.773 | 1918.668 |
| VVA-057 | 624107.776 | 4235321.429 | 1928.242 |
| VVA-058 | 620282.771 | 4251867.287 | 1719.446 |
| VVA-060 | 636621.823 | 4257395.898 | 1581.288 |
| VVA-061 | 636620.315 | 4245431.185 | 1707.334 |
| VVA-062 | 639093.059 | 4237235.245 | 1826.498 |
| VVA-063 | 636797.865 | 4223470.066 | 1874.639 |
| VVA-064 | 638315.530 | 4230013.437 | 1783.753 |
| VVA-065 | 638898.329 | 4211003.344 | 1924.323 |
| VVA-066 | 633603.423 | 4207121.084 | 2030.339 |
| VVA-067 | 636477.447 | 4201016.515 | 2365.477 |
| VVA-068 | 642057.125 | 4188489.553 | 2321.893 |
| VVA-068 | 598041.032 | 4120272.743 | 1478.397 |
| VVA-069 | 640357.644 | 4183094.588 | 2276.187 |
| VVA-070 | 628881.299 | 4182797.314 | 2392.227 |
| VVA-071 | 623725.392 | 4163775.471 | 1692.498 |
| VVA-072 | 621901.136 | 4155017.409 | 1616.732 |
| VVA-073 | 612162.035 | 4155272.429 | 1828.104 |
| VVA-074 | 618983.788 | 4152215.812 | 1476.366 |
| VVA-075 | 618659.917 | 4141405.626 | 1409.607 |
| VVA-076 | 618964.699 | 4134050.294 | 1379.439 |
| VVA-077 | 613037.118 | 4136650.351 | 1544.856 |
| VVA-078 | 615665.935 | 4127238.049 | 1432.889 |
| VVA-079 | 609821.468 | 4126290.801 | 1555.856 |
| VVA-080 | 607993.709 | 4128206.279 | 1486.136 |
| VVA-081 | 601184.571 | 4114945.826 | 1313.384 |
| VVA-082 | 605002.772 | 4121255.627 | 1354.799 |
| VVA-083 | 607296.364 | 4122276.832 | 1426.249 |
| VVA-084 | 602651.530 | 4129660.563 | 1512.550 |
| VVA-085 | 597117.085 | 4124898.751 | 1546.452 |
| VVA-087 | 595344.331 | 4136297.909 | 1986.493 |
| VVA-088 | 590204.225 | 4140537.802 | 1937.655 |
| VVA-089 | 585607.912 | 4140112.923 | 1841.403 |
| VVA-090 | 588819.638 | 4136041.974 | 1898.782 |


aero-graphics

| VVA-091 | 563488.472 | 4139310.516 | 1422.732 |
| :---: | :---: | :---: | :---: |
| VVA-092 | 574754.850 | 4164937.023 | 1637.810 |
| VVA-093 | 542206.196 | 4137185.805 | 1470.849 |
| VVA-094 | 532340.999 | 4146185.960 | 1259.299 |
| VVA-095 | 536084.411 | 4145942.861 | 1268.778 |
| VVA-096 | 537408.867 | 4141411.527 | 1315.678 |
| VVA-097 | 550242.010 | 4140396.225 | 1595.264 |
| VVA-098 | 567024.270 | 4173414.015 | 1478.469 |
| VVA-099 | 577561.872 | 4150420.512 | 1689.308 |

## Appendix B - Calibration Control Accuracy Report

| Utah 3DEP - Wayne San Juan Aerial Survey |  |  |  |
| :---: | :---: | :---: | :---: |
| Survey Point | Known Z (m) | Laser Z (m) | Dz (m) |
| GCP-040 | 1405.790 | 1405.780 | -0.010 |
| GCP-041 | 1351.140 | 1351.160 | 0.020 |
| GCP-042 | 2572.150 | 2572.110 | -0.040 |
| GCP-043 | 1489.870 | 1489.720 | -0.150 |
| GCP-044 | 1586.160 | 1586.150 | -0.010 |
| GCP-045 | 1487.690 | 1487.650 | -0.040 |
| GCP-046 | 1603.610 | 1603.600 | 0.000 |
| GCP-047 | 1566.140 | 1566.100 | -0.040 |
| GCP-048 | 1779.160 | 1779.110 | -0.050 |
| GCP-049 | 1909.720 | 1909.710 | 0.000 |
| GCP-050 | 1501.800 | 1501.800 | 0.000 |
| GCP-051 | 1558.730 | 1558.800 | 0.070 |
| GCP-052 | 1679.530 | 1679.540 | 0.010 |
| GCP-053 | 1802.610 | 1802.570 | -0.040 |
| GCP-054 | 1817.670 | 1817.660 | -0.010 |
| GCP-055 | 1869.380 | 1869.430 | 0.050 |
| GCP-056 | 1782.230 | 1782.220 | -0.010 |
| GCP-057 | 1939.740 | 1939.750 | 0.010 |
| GCP-058 | 2060.190 | 2060.120 | -0.070 |
| GCP-059 | 2133.590 | 2133.500 | -0.090 |
| GCP-060 | 2408.940 | 2408.870 | -0.070 |
| GCP-061 | 2139.180 | 2139.160 | -0.020 |
| GCP-062 | 2167.510 | 2167.510 | 0.000 |
| GCP-063 | 2387.080 | 2387.070 | -0.010 |
| GCP-064 | 1664.140 | 1664.150 | 0.000 |
| GCP-065 | 1742.160 | 1742.170 | 0.010 |
| GCP-066 | 2098.520 | 2098.500 | -0.020 |
| GCP-067 | 1888.610 | 1888.680 | 0.070 |
| GCP-068 | 1605.620 | 1605.600 | -0.020 |

Utah 3DEP - Wayne San Juan Aerial Survey

aero-graphics

| GCP-069 | 1405.340 | 1405.420 | 0.080 |
| :---: | :---: | :---: | :---: |
| GCP-070 | 1176.030 | 1176.070 | 0.040 |
| GCP-071 | 1336.850 | 1336.850 | 0.000 |
| GCP-072 | 1603.780 | 1603.830 | 0.050 |
| GCP-073 | 1442.160 | 1442.190 | 0.020 |
| GCP-074 | 1820.430 | 1820.410 | -0.020 |
| GCP-075 | 1280.330 | 1280.410 | 0.080 |
| GCP-076 | 1988.120 | 1988.110 | 0.000 |
| GCP-077 | 1615.780 | 1615.780 | 0.000 |
| GCP-078 | 1273.360 | 1273.400 | 0.040 |
| GCP-079 | 1472.920 | 1372.880 | -0.040 |
| GCP-080 | 1340.500 | 1613.920 | 0.010 |
| GCP-081 | 1613.900 | 1530.150 | 0.020 |
| GCP-082 | 1530.120 | 1706.590 | 0.030 |
| GCP-083 | 1706.600 | 1598.030 | -0.010 |
| GCP-084 | 1598.000 |  | 0.030 |
| Average Dz $(m)$ | +0.000 |  |  |
| Minimum Dz $(m)$ | -0.151 |  |  |
| Maximum Dz $(m)$ | +0.084 |  |  |
| Average Magnitude $(m)$ | 0.020 |  |  |
| RMSE $(m)$ | 0.041 |  |  |
| Std. Deviation $(m)$ | 0.041 |  |  |

